Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

G Protein-coupled Receptors (GPCRs) as Potential Therapeutics for Psychiatric Disorders

Author(s): Sharaf E. Sharaf*

Volume 23, Issue 2, 2024

Published on: 04 May, 2023

Page: [232 - 245] Pages: 14

DOI: 10.2174/1871527322666230403130324

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

In the central nervous system (CNS), G-protein-coupled receptors (GPCRs) are the most common targets of neuropharmacological drugs. GPCRs are activated by various neurotransmitters, which results in slow synaptic transmission. Recently, remarkable progress has been achieved in identifying genes and signaling pathways linked to the risk of psychiatric disorders. Even though the biological mechanisms governing psychiatric disorders, such as mood disorders and schizophrenia, are uncertain, GPCRs are essential in diagnosing and treating various ailments. However, due to the complicated reasons responsible for these disorders, there has been a significant decrease in the pipeline for the progression of novel psychiatric medications throughout the world. Antipsychotics and antidepressants target GPCRs, which regulate various subsequent signaling pathways and play a key role in altering brain function. The advancement of our knowledge of GPCR signaling has opened up new avenues for developing customized medications. This review summarizes the current understanding of therapeutic GPCR targets for psychiatric disorders. For patients resistant to current therapies, the future development of new drugs targeting GPCR signaling pathways is promising.

Keywords: GPCRs, psychiatric disorders, mood disorders, schizophrenia, antidepressants, risk factor.

[1]
Tiwari P, Fanibunda SE, Kapri D, Vasaya S, Pati S, Vaidya VA. GPCR signaling: role in mediating the effects of early adversity in psychiatric disorders. FEBS J 2021; 288(8): 2602-21.
[http://dx.doi.org/10.1111/febs.15738] [PMID: 33523596]
[2]
Kessler R. Childhood adversities and adult psychopathology in the WHO world mental health surveys. Br J Psychiatry 2010; 197(5): 378-85.
[http://dx.doi.org/10.1192/bjp.bp.110.080499] [PMID: 21037215]
[3]
Carr CP, Martins CMS, Stingel AM, Lemgruber VB, Juruena MF. The role of early life stress in adult psychiatric disorders: A systematic review according to childhood trauma subtypes. J Nerv Ment Dis 2013; 201(12): 1007-20.
[http://dx.doi.org/10.1097/NMD.0000000000000049] [PMID: 24284634]
[4]
Anda RF, Felitti VJ, Bremner JD, et al. The enduring effects of abuse and related adverse experiences in childhood. Eur Arch Psychiatry Clin Neurosci 2006; 256(3): 174-86.
[http://dx.doi.org/10.1007/s00406-005-0624-4] [PMID: 16311898]
[5]
Bale TL, Baram TZ, Brown AS, et al. Early life programming and neurodevelopmental disorders. Biol Psychiatry 2010; 68(4): 314-9.
[http://dx.doi.org/10.1016/j.biopsych.2010.05.028] [PMID: 20674602]
[6]
Benmhammed H, El Hayek S, Berkik I, Elmostafi H, Bousalham R, Mesfioui A. Animal models of early-life adversity. Psychiatric Disorders. New York, NY: Humana 2019; pp. 143-61.
[http://dx.doi.org/10.1007/978-1-4939-9554-7_10]
[7]
Murthy S, Gould E. Early life stress in rodents: Animal models of illness or resilience? Vol. 12. Front Behav Neurosci 2018; 12: 157.
[http://dx.doi.org/10.3389/fnbeh.2018.00157] [PMID: 30108490]
[8]
Schmidt MV, Wang XD, Meijer OC. Early life stress paradigms in rodents: Potential animal models of depression? Psychopharmacology 2011; 214(1): 131-40.
[http://dx.doi.org/10.1007/s00213-010-2096-0] [PMID: 21086114]
[9]
Azam S, Haque ME, Jakaria M, Jo SH, Kim IS, Choi DK. G-Protein-coupled receptors in CNS: A potential therapeutic target for intervention in neurodegenerative disorders and associated cognitive deficits. Cells 2020; 9(2): 506.
[http://dx.doi.org/10.3390/cells9020506] [PMID: 32102186]
[10]
Sachdev P, Kalaria R, O’Brien J, et al. Diagnostic criteria for vascular cognitive disorders: a VASCOG statement. Alzheimer Dis Assoc Disord 2014; 28(3): 206-18.
[http://dx.doi.org/10.1097/WAD.0000000000000034] [PMID: 24632990]
[11]
Meador-Woodruff JH, Hogg AJ Jr, Smith RE. Striatal ionotropic glutamate receptor expression in schizophrenia, bipolar disorder, and major depressive disorder. Brain Res Bull 2001; 55(5): 631-40.
[http://dx.doi.org/10.1016/S0361-9230(01)00523-8] [PMID: 11576760]
[12]
Waxham MN. Neurotransmitter receptors From Molecules to Networks. Elsevier 2014; pp. 285-321.
[http://dx.doi.org/10.1016/B978-0-12-397179-1.00010-5]
[13]
Greengard P. The neurobiology of slow synaptic transmission. Science 2001; 294(5544): 1024-30.
[http://dx.doi.org/10.1126/science.294.5544.1024]
[14]
Wakamatsu Y, Watanabe Y, Shimono A, Kondoh H. Transition of localization of the N-Myc protein from nucleus to cytoplasm in differentiating neurons. Neuron 1993; 10(1): 1-9.
[http://dx.doi.org/10.1016/0896-6273(93)90236-K] [PMID: 8427698]
[15]
Sakuma K, Komatsu H, Maruyama M, Imaichi S, Habata Y, Mori M. Temporal and spatial transcriptional fingerprints by antipsychotic or propsychotic drugs in mouse brain. PLoS One 2015; 10(2): e0118510.
[http://dx.doi.org/10.1371/journal.pone.0118510] [PMID: 25693194]
[16]
Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F. Brain dopamine and the syndromes of Parkinson and Huntington clinical, morphological and neurochemical correlations. J Neurol Sci 1973; 20(4): 415-55.
[http://dx.doi.org/10.1016/0022-510X(73)90175-5] [PMID: 4272516]
[17]
Pauls DL, Abramovitch A, Rauch SL, Geller DA. Obsessive-compulsive disorder: An integrative genetic and neurobiological perspective. Nat Rev Neurosci 2014; 15(6): 410-24.
[http://dx.doi.org/10.1038/nrn3746] [PMID: 24840803]
[18]
de Bartolomeis A, Buonaguro EF, Iasevoli F, Tomasetti C. The emerging role of dopamine-glutamate interaction and of the postsynaptic density in bipolar disorder pathophysiology: Implications for treatment. J Psychopharmacol 2014; 28(6): 505-26.
[http://dx.doi.org/10.1177/0269881114523864] [PMID: 24554693]
[19]
Creese I, Burt DR, Snyder SH. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. J Neuropsychiatry Clin Neurosci 1996; 8(2): 223-6.
[http://dx.doi.org/10.1176/jnp.8.2.223] [PMID: 9081563]
[20]
Lieberman JA, Kane JM, Gadaleta D, Brenner R, Lesser MS, Kinon B. Methylphenidate challenge as a predictor of relapse in schizophrenia. Am J Psychiatry 1984; 141(5): 633-8.
[http://dx.doi.org/10.1176/ajp.141.5.633] [PMID: 6143506]
[21]
Davidson M, Keefe RSE, Mohs RC, et al. L-dopa challenge and relapse in schizophrenia. Am J Psychiatry 1987; 144(7): 934-8.
[http://dx.doi.org/10.1176/ajp.144.7.934] [PMID: 2886063]
[22]
Missale C, Nash R Sr. Dopamine receptors: From structure to function. Physiol Rev 78(1): 18.
[23]
Surmeier DJ, Day M, Gertler T, Chan S, Shen W. D1 and D2 dopamine receptor modulation of glutamatergic signaling in striatal medium spiny neurons. Handb Behav Neurosci 2010; 20(C): 113-32.
[http://dx.doi.org/10.1016/B978-0-12-374767-9.00006-8]
[24]
Page MJ, McKenzie JE, Bossuyt PM, et al. Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. J Clin Epidemiol 2021; 134: 103-12.
[http://dx.doi.org/10.1016/j.jclinepi.2021.02.003] [PMID: 33577987]
[25]
Khan SM, Sung JY, Hebert TE G. Gβγ subunits-different spaces, different faces. Pharmacol Res 2016; 111: 434-41.
[26]
Bologna Z, Teoh J, Bayoumi AS, Tang Y, Kim I. Biased g protein-coupled receptor signaling: New player in modulating physiology and pathology. Biomol Ther 2017; 25(1): 12-25.
[http://dx.doi.org/10.4062/biomolther.2016.165] [PMID: 28035079]
[27]
Grundmann M, Merten N, Malfacini D, et al. Lack of beta-arrestin signaling in the absence of active G proteins. Nat Commun 2018; 9(1): 341.
[http://dx.doi.org/10.1038/s41467-017-02661-3] [PMID: 29362459]
[28]
O’Hayre M, Eichel K, Avino S, et al. Genetic evidence that β-arrestins are dispensable for the initiation of β 2 -adrenergic receptor signaling to ERK. Sci Signal 2017; 10(484): eaal3395.
[http://dx.doi.org/10.1126/scisignal.aal3395] [PMID: 28634209]
[29]
Salahpour A, Espinoza S, Masri B, Lam V, Barak LS, Gainetdinov RR. BRET biosensors to study GPCR biology, pharmacology, and signal transduction. Front Endocrinol 2012; 3(AUG): 105.
[http://dx.doi.org/10.3389/fendo.2012.00105] [PMID: 22952466]
[30]
Murray CJL, Lopez AD. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet 1997; 349(9063): 1436-42.
[http://dx.doi.org/10.1016/S0140-6736(96)07495-8] [PMID: 9164317]
[31]
Catapano LA, Manji HK. G protein-coupled receptors in major psychiatric disorders. Biochim Biophys Acta Biomembr 2007; 1768(4): 976-93.
[http://dx.doi.org/10.1016/j.bbamem.2006.09.025] [PMID: 17078926]
[32]
Dobson KS, Scherrer MC. Major depressive disorder. In: Hersen M, Thomas JC, Eds. Handbook of clinical interviewing with adults. 2007; pp. 134-52.
[http://dx.doi.org/10.4135/9781412982733.n10]
[33]
Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression: Review and meta-analysis. Am J Psychiatry 2000; 157(10): 1552-62.
[http://dx.doi.org/10.1176/appi.ajp.157.10.1552] [PMID: 11007705]
[34]
Goodwin FK, Jamison KR. Manic-Depressive Illness.
[35]
Cichon S, Nöthen MM, Rietschel M, Körner J, Propping P. Single-strand conformation analysis (SSCA) of the dopamine D1 receptor gene (DRD1) reveals no significant mutation in patients with schizophrenia and manic depression. Biol Psychiatry 1994; 36(12): 850-3.
[http://dx.doi.org/10.1016/0006-3223(94)90597-5] [PMID: 7893850]
[36]
Belmaker RH. Bipolar Disorder. N Engl J Med 2004; 351(5): 476-86.
[http://dx.doi.org/10.1056/NEJMra035354] [PMID: 15282355]
[37]
Post RM, Ketter TA, Joffe RT, Kramlinger KL. Lack of beneficial effects of l-baclofen in affective disorder. Int Clin Psychopharmacol 1991; 6(4): 197-208.
[http://dx.doi.org/10.1097/00004850-199100640-00001] [PMID: 1816278]
[38]
Nobutaka M. GABA receptor alterations after chronic lithium administration. Comparison with carbamazepine and sodium valproate. Prog Neuropsychopharmacol Biol Psychiatry 1992; 16(4): 571-9.
[http://dx.doi.org/10.1016/0278-5846(92)90062-J] [PMID: 1322549]
[39]
Motohashi N, Ikawa K, Kariya T. GABAB receptors are up-regulated by chronic treatment with lithium or carbamazepine. GABA hypothesis of affective disorders? Eur J Pharmacol 1989; 166(1): 95-9.
[http://dx.doi.org/10.1016/0014-2999(89)90687-0] [PMID: 2553432]
[40]
Hunt J. Manic-Depressive Illness: Bipolar disorders and recurrent depression, 2nd Ed. J Am Acad Child Adol Psychiat. Oxford University Press 2008; 47: 1208-9.
[41]
Ellis J, Lenox RH. Chronic lithium treatment prevents atropine-induced supersensitivity of the muscarinic phosphoinositide response in rat hippocampus. Biol Psychiatry 1990; 28(7): 609-19.
[http://dx.doi.org/10.1016/0006-3223(90)90399-M] [PMID: 2171686]
[42]
Comings DE, Wu S, Rostamkhani M, McGue M, Iacono WG, MacMurray JP. Association of the muscarinic cholinergic 2 receptor (CHRM2) gene with major depression in women. Am J Med Genet-Neuropsychiatr Genet 2002; 114(5): 527-9.
[43]
Shah M, Coon H, Holik J, Hoff M, Helmer V, Panos P. Mutation scan of the D1 dopamine receptor gene in 22 cases of bipolar I disorder. Am J Med Genet-Neuropsychiatr Genet 1995; 60(2): 150-3.
[http://dx.doi.org/10.1002/ajmg.1320600212]
[44]
Dmitrzak-Weglarz M, Rybakowski JK, Slopien A, et al. Dopamine receptor D1 gene -48A/G polymorphism is associated with bipolar illness but not with schizophrenia in a Polish population. Neuropsychobiology 2006; 53(1): 46-50.
[http://dx.doi.org/10.1159/000090703] [PMID: 16397404]
[45]
Severino G, Congiu D, Serreli C, De Lisa R, Chillotti C, Del Zompo M. A48G polymorphism in the D1 receptor genes associated with bipolar I disorder. Am J Med Genet-Neuropsychiatr Genet 2005; 134 B(1): 37-8.
[46]
Massat I, Souery D, Del-Favero J, Van Gestel S, Serretti A, Macciardi F. Positive association of dopamine D2 receptor polymorphism with bipolar affective disorder in a European Multicenter Association study of affective disorders. Am J Med Genet-Neuropsychiatr Genet 2002; 114(2): 177-85.
[http://dx.doi.org/10.1002/ajmg.10118]
[47]
Li T, Liu X, Sham PC, et al. Association analysis between dopamine receptor genes and bipolar affective disorder. Psychiatry Res 1999; 86(3): 193-201.
[http://dx.doi.org/10.1016/S0165-1781(99)00034-7] [PMID: 10482338]
[48]
Dikeos DG, Papadimitriou GN, Avramopoulos D, et al. Association between the dopamine D3 receptor gene locus (DRD3) and unipolar affective disorder. Psychiatr Genet 1999; 9(4): 189-96.
[http://dx.doi.org/10.1097/00041444-199912000-00005] [PMID: 10697826]
[49]
López León S, Croes EA, Sayed-Tabatabaei FA, Claes S, Broeckhoven CV, van Duijn CM. The dopamine D4 receptor gene 48-base-pair-repeat polymorphism and mood disorders: A meta-analysis. Biol Psychiatry 2005; 57(9): 999-1003.
[http://dx.doi.org/10.1016/j.biopsych.2005.01.030] [PMID: 15860340]
[50]
López JF, Chalmers DT, Little KY, Watson SJAE. Bennett Research Award. Regulation of serotonin1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for the neurobiology of depression. Biol Psychiatry 1998; 43(8): 547-73.
[http://dx.doi.org/10.1016/S0006-3223(97)00484-8] [PMID: 9564441]
[51]
Stockmeier CA, Shapiro LA, Dilley GE, Kolli TN, Friedman L, Rajkowska G. Increase in serotonin-1A autoreceptors in the midbrain of suicide victims with major depression-postmortem evidence for decreased serotonin activity. J Neurosci 1998; 18(18): 7394-401.
[http://dx.doi.org/10.1523/JNEUROSCI.18-18-07394.1998] [PMID: 9736659]
[52]
Matsubara S, Arora RC, Meltzer HY. Serotonergic measures in suicide brain: 5-HT1A binding sites in frontal cortex of suicide victims. J Neural Transm 1991; 85(3): 181-94.
[http://dx.doi.org/10.1007/BF01244944] [PMID: 1834090]
[53]
Parsey RV, Olvet DM, Oquendo MA, Huang Y, Ogden RT, Mann JJ. Higher 5-HT1A receptor binding potential during a major depressive episode predicts poor treatment response: preliminary data from a naturalistic study. Neuropsychopharmacology 2006; 31(8): 1745-9.
[http://dx.doi.org/10.1038/sj.npp.1300992] [PMID: 16395308]
[54]
Drevets WC, Frank E, Price JC, et al. Pet imaging of serotonin 1A receptor binding in depression. Biol Psychiatry 1999; 46(10): 1375-87.
[http://dx.doi.org/10.1016/S0006-3223(99)00189-4] [PMID: 10578452]
[55]
Sargent PA, Kjaer KH, Bench CJ, et al. Brain serotonin1A receptor binding measured by positron emission tomography with [11C]WAY-100635: effects of depression and antidepressant treatment. Arch Gen Psychiatry 2000; 57(2): 174-80.
[http://dx.doi.org/10.1001/archpsyc.57.2.174] [PMID: 10665620]
[56]
Pivac N. Serotonin. Period Biol 2011; 113(1): 29-41.
[57]
Chaput Y, de Montigny C, Blier P. Presynaptic and postsynaptic modifications of the serotonin system by long-term administration of antidepressant treatments. An in vivo electrophysiologic study in the rat. Neuropsychopharmacology 1991; 5(4): 219-29.
[PMID: 1839498]
[58]
Blier P, de Montigny C. Current advances and trends in the treatment of depression. Trends Pharmacol Sci 1994; 15(7): 220-6.
[http://dx.doi.org/10.1016/0165-6147(94)90315-8] [PMID: 7940983]
[59]
Shen C, Li H, Meller E. Repeated treatment with antidepressants differentially alters 5-HT1A agonist-stimulated [35S]GTPγS binding in rat brain regions. Neuropharmacology 2002; 42(8): 1031-8.
[http://dx.doi.org/10.1016/S0028-3908(02)00064-3] [PMID: 12128004]
[60]
Yatham LN, Liddle PF, Dennie J, et al. Decrease in brain serotonin 2 receptor binding in patients with major depression following desipramine treatment: a positron emission tomography study with fluorine-18-labeled setoperone. Arch Gen Psychiatry 1999; 56(8): 705-11.
[http://dx.doi.org/10.1001/archpsyc.56.8.705] [PMID: 10435604]
[61]
Pandey GN, Pandey SC, Ren X, Dwivedi Y, Janicak PG. Serotonin receptors in platelets of bipolar and schizoaffective patients: Effect of lithium treatment. Psychopharmacology 2003; 170(2): 115-23.
[http://dx.doi.org/10.1007/s00213-003-1530-y] [PMID: 12845409]
[62]
Manji HK, Rudorfer MV, Potter WZ. Affective disorders and adrenergic function. Adren Dysfunct Psychobiol 1994; 365: 365-401.
[63]
Meeley MP, Ernsberger PR, Granata AR, Reis DJ. An endogenous clonidine-displacing substance from bovine brain: receptor binding and hypotensive actions in the ventrolateral medulla. Life Sci 1986; 38(12): 1119-26.
[http://dx.doi.org/10.1016/0024-3205(86)90248-1] [PMID: 3007903]
[64]
Michel MC, Regan JW, Gerhardt MA, Neubig RR, Insel PA, Motulsky HJ. Nonadrenergic [3H]idazoxan binding sites are physically distinct from α 2-adrenergic receptors. Mol Pharmacol 1990; 37(1): 65-8.
[PMID: 2153910]
[65]
Bricca G, Dontenwill M, Molines A, Feldman J, Belcourt A, Bousquet P. Evidence for the existence of a homogenous population of imidazoline receptors in the human brainstem. Eur J Pharmacol 1988; 150(3): 401-2.
[http://dx.doi.org/10.1016/0014-2999(88)90028-3] [PMID: 3416916]
[66]
Boyajian CL, Leslie FM. Pharmacological evidence for alpha-2 adrenoceptor heterogeneity: differential binding properties of [3H]rauwolscine and [3H]idazoxan in rat brain. J Pharmacol Exp Ther 1987; 241(3): 1092-8.
[PMID: 2885406]
[67]
Chen G, Hasanat KA, Bebchuk JM, Moore GJ, Glitz D, Manji HK. Regulation of signal transduction pathways and gene expression by mood stabilizers and antidepressants. Psychosom Med 1999; 61(5): 599-617.
[http://dx.doi.org/10.1097/00006842-199909000-00004] [PMID: 10511011]
[68]
Ebstein RP, Lerer B, Shapira B, Shemesh Z, Moscovich DG, Kindler S. Cyclic AMP second-messenger signal amplification in depression. Br J Psychiatry 1988; 152(5): 665-9.
[http://dx.doi.org/10.1192/bjp.152.5.665] [PMID: 2844354]
[69]
Pandey GN, Dysken MW, Garver DL, Davis JM. Beta-adrenergic receptor function in affective illness. Am J Psychiatry 1979; 136(5): 675-8.
[http://dx.doi.org/10.1176/ajp.136.5.675] [PMID: 219719]
[70]
Extein I, Tallman J, Smith CC, Goodwin FK. Changes in lymphocyte beta-adrenergic receptors in depression and mania. Psychiatry Res 1979; 1(2): 191-7.
[http://dx.doi.org/10.1016/0165-1781(79)90061-1] [PMID: 233157]
[71]
Mann JJ, Brown RP, Halper JP, et al. Reduced sensitivity of lymphocyte beta-adrenergic receptors in patients with endogenous depression and psychomotor agitation. N Engl J Med 1985; 313(12): 715-20.
[http://dx.doi.org/10.1056/NEJM198509193131202] [PMID: 2993884]
[72]
Healy D, Carney PA, Leonard BE. Monoamine-related markers of depression: Changes following treatment. J Psychiatr Res 1982-1983; 17(3): 251-60.
[http://dx.doi.org/10.1016/0022-3956(82)90003-6] [PMID: 6821276]
[73]
Wright AF, Crichton DN, Loudon JB, Morten JEN, Steel CM. Adrenoceptor binding defects in cell lines from families with manic-depressive disorder. Ann Hum Genet 1984; 48(3): 201-14.
[http://dx.doi.org/10.1111/j.1469-1809.1984.tb01016.x] [PMID: 6087716]
[74]
Berk M, Williams LJ, Jacka FN, et al. So depression is an inflammatory disease, but where does the inflammation come from? BMC Med 2013; 11(1): 200.
[http://dx.doi.org/10.1186/1741-7015-11-200] [PMID: 24228900]
[75]
Rudzki L, Maes M. The Microbiota-Gut-Immune-Glia (MGIG) Axis in Major Depression. Mol Neurobiol 2020; 57(10): 4269-95.
[http://dx.doi.org/10.1007/s12035-020-01961-y] [PMID: 32700250]
[76]
Makris AP, Karianaki M, Tsamis KI, Paschou SA. The role of the gut-brain axis in depression: endocrine, neural, and immune pathways. Hormones 2021; 20(1)
[77]
Roman M, Irwin MR. Novel neuroimmunologic therapeutics in depression: A clinical perspective on what we know so far. Brain Behav Immun 2020; 83: 7-21.
[http://dx.doi.org/10.1016/j.bbi.2019.09.016] [PMID: 31550500]
[78]
Lotrich FE. Inflammatory cytokine-associated depression. Brain Res 2015; 1617: 113-25.
[http://dx.doi.org/10.1016/j.brainres.2014.06.032]
[79]
Jones BDM, Daskalakis ZJ, Carvalho AF, et al. Inflammation as a treatment target in mood disorders review. BJPsych Open 2020; 6(4): e60.
[http://dx.doi.org/10.1192/bjo.2020.43] [PMID: 32498754]
[80]
Felger JC. Role of Inflammation in Depression and Treatment Implications. 2019.
[81]
Morris G, Berk M, Galecki P, Walder K, Maes M. The neuro-immune pathophysiology of central and peripheral fatigue in systemic immune-inflammatory and neuro-immune diseases. Mol Neurobiol 2016; 53(2): 1195-219.
[http://dx.doi.org/10.1007/s12035-015-9090-9] [PMID: 25598355]
[82]
Sokol CL, Luster AD. The chemokine system in innate immunity. Cold Spring Harb Perspect Biol 2015; 7(5): a016303.
[http://dx.doi.org/10.1101/cshperspect.a016303]
[83]
Jiang Z, Jiang JX, Zhang GX. Macrophages: A double-edged sword in experimental autoimmune encephalomyelitis. Immunol Lett 2014; 160(1): 17-22.
[http://dx.doi.org/10.1016/j.imlet.2014.03.006] [PMID: 24698730]
[84]
Brites D, Fernandes A. Neuroinflammation and depression: Microglia activation, extracellular microvesicles and microRNA dysregulation. Front Cell Neurosci 2015; 9: 476.
[http://dx.doi.org/10.3389/fncel.2015.00476] [PMID: 26733805]
[85]
Nedic Erjavec G, Sagud M, Nikolac Perkovic M, et al. Depression: Biological markers and treatment. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105: 110139.
[http://dx.doi.org/10.1016/j.pnpbp.2020.110139] [PMID: 33068682]
[86]
Feng X, Zhao Y, Yang T, et al. Glucocorticoid-driven NLRP3 inflammasome activation in hippocampal microglia mediates chronic stress-induced depressive-like behaviors. Front Mol Neurosci 2019; 12(210): 210.
[http://dx.doi.org/10.3389/fnmol.2019.00210] [PMID: 31555091]
[87]
Ransohoff RM, Khoury JE. Microglia in health and disease. Cold Spring Harb Perspect Biol 2016; 8(1): a020560.
[http://dx.doi.org/10.1101/cshperspect.a020560] [PMID: 26354893]
[88]
Frost JL, Schafer DP. Microglia: Architects of the developing nervous system. Trends Cell Biol 2016; 26(8): 587-97.
[http://dx.doi.org/10.1016/j.tcb.2016.02.006] [PMID: 27004698]
[89]
Mondelli V, Vernon AC, Turkheimer F, Dazzan P, Pariante CM. Brain microglia in psychiatric disorders. Lancet Psychiatry 2017; 4(7): 563-72.
[http://dx.doi.org/10.1016/S2215-0366(17)30101-3] [PMID: 28454915]
[90]
Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl Neurodegener 2020; 9(1): 42.
[http://dx.doi.org/10.1186/s40035-020-00221-2] [PMID: 33239064]
[91]
Silver DJ, Siebzehnrubl FA, Schildts MJ, et al. Chondroitin sulfate proteoglycans potently inhibit invasion and serve as a central organizer of the brain tumor microenvironment. J Neurosci 2013; 33(39): 15603-17.
[http://dx.doi.org/10.1523/JNEUROSCI.3004-12.2013] [PMID: 24068827]
[92]
Wake H, Moorhouse AJ, Miyamoto A, Nabekura J. Microglia: Actively surveying and shaping neuronal circuit structure and function. Trends Neurosci 2013; 36(4): 209-17.
[http://dx.doi.org/10.1016/j.tins.2012.11.007] [PMID: 23260014]
[93]
Jia X, Gao Z, Hu H. Microglia in depression: Current perspectives. Sci China Life Sci 2021; 64(6): 911-25.
[http://dx.doi.org/10.1007/s11427-020-1815-6] [PMID: 33068286]
[94]
Tecklenborg J, Clayton D, Siebert S, Coley SM. The role of the immune system in kidney disease. Clin Exp Immunol 2018; 192(2): 142-50.
[http://dx.doi.org/10.1111/cei.13119] [PMID: 29453850]
[95]
Deng S, Chen J, Wang F. Microglia: A central player in depression. Curr Med Sci 2020; 40(3): 391-400.
[http://dx.doi.org/10.1007/s11596-020-2193-1] [PMID: 32681244]
[96]
Voet S, Prinz M, van Loo G. Microglia in central nervous system inflammation and multiple sclerosis pathology. Trends Mol Med 2019; 25(2): 112-23.
[http://dx.doi.org/10.1016/j.molmed.2018.11.005] [PMID: 30578090]
[97]
Tayab MA, Islam MN, Chowdhury KAA, Tasnim FM. Targeting neuroinflammation by polyphenols: A promising therapeutic approach against inflammation-associated depression. Biomed Pharmacother 2022; 147: 112668.
[http://dx.doi.org/10.1016/j.biopha.2022.112668] [PMID: 35104696]
[98]
Gong W, Zhang S, Zong Y, et al. Involvement of the microglial NLRP3 inflammasome in the anti-inflammatory effect of the antidepressant clomipramine. J Affect Disord 2019; 254: 15-25.
[http://dx.doi.org/10.1016/j.jad.2019.05.009] [PMID: 31082627]
[99]
Guo Y, Gan X, Zhou H, et al. Fingolimod suppressed the chronic unpredictable mild stress-induced depressive-like behaviors via affecting microglial and NLRP3 inflammasome activation. Life Sci 2020; 263(118582): 118582.
[http://dx.doi.org/10.1016/j.lfs.2020.118582] [PMID: 33058911]
[100]
Kaufmann FN, Costa AP, Ghisleni G, et al. NLRP3 inflammasome-driven pathways in depression: Clinical and preclinical findings. Brain Behav Immun 2017; 64: 367-83.
[http://dx.doi.org/10.1016/j.bbi.2017.03.002] [PMID: 28263786]
[101]
Jo EK, Kim JK, Shin DM, Sasakawa C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol 2016; 13(2): 148-59.
[http://dx.doi.org/10.1038/cmi.2015.95] [PMID: 26549800]
[102]
Swanson KV, Deng M, Ting JPY. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat Rev Immunol 2019; 19(8): 477-89.
[http://dx.doi.org/10.1038/s41577-019-0165-0] [PMID: 31036962]
[103]
Pan Y, Chen XY, Zhang QY, Kong LD. Microglial NLRP3 inflammasome activation mediates IL-1β-related inflammation in prefrontal cortex of depressive rats. Brain Behav Immun 2014; 41(1): 90-100.
[http://dx.doi.org/10.1016/j.bbi.2014.04.007] [PMID: 24859041]
[104]
Gądek-Michalska A, Tadeusz J, Rachwalska P, Bugajski J. Cytokines, prostaglandins and nitric oxide in the regulation of stress-response systems. Pharmacol Rep 2013; 65(6): 1655-62.
[http://dx.doi.org/10.1016/S1734-1140(13)71527-5] [PMID: 24553014]
[105]
Park HJ, Shim HS, An K, Starkweather A, Kim KS, Shim I. IL-4 inhibits IL-1 β-induced depressive-like behavior and central neurotransmitter alterations. Mediators Inflamm 2015; 2015: 941413.
[106]
Hashioka S, Miyaoka T, Wake R, Furuya M, Horiguchi J. Glia: An important target for anti-inflammatory and antidepressant activity. Curr Drug Targets 2013; 14(11): 1322-8.
[http://dx.doi.org/10.2174/13894501113146660214] [PMID: 24020976]
[107]
Leonard BE. Inflammation and depression: A causal or coincidental link to the pathophysiology? Acta Neuropsychiatr 2018; 30(1): 1-16.
[http://dx.doi.org/10.1017/neu.2016.69] [PMID: 28112061]
[108]
Jo WK, Zhang Y, Emrich HM, Dietrich DE. Glia in the cytokine-mediated onset of depression: Fine tuning the immune response. Front Cell Neurosci 2015; 9: 268.
[http://dx.doi.org/10.3389/fncel.2015.00268] [PMID: 26217190]
[109]
Haroon E, Miller AH, Sanacora G. Inflammation, glutamate, and glia: A trio of trouble in mood disorders. Neuropsychopharmacology 2017; 42(1): 193-215.
[http://dx.doi.org/10.1038/npp.2016.199] [PMID: 27629368]
[110]
Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate immunity. Trends Immunol 2007; 28(3): 138-45.
[http://dx.doi.org/10.1016/j.it.2007.01.005] [PMID: 17276138]
[111]
Steardo L Jr, Bronzuoli MR, Iacomino A, Esposito G, Steardo L, Scuderi C. Does neuroinflammation turn on the flame in Alzheimer’s disease? Focus on astrocytes. Front Neurosci 2015; 9(JUL): 259.
[http://dx.doi.org/10.3389/fnins.2015.00259] [PMID: 26283900]
[112]
Krystal JH, D’Souza DC, Mathalon D, Perry E, Belger A, Hoffman R. NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: Toward a paradigm shift in medication development. Psychopharmacology (Berl) 2003; 169(3-4): 215-33.
[http://dx.doi.org/10.1007/s00213-003-1582-z] [PMID: 12955285]
[113]
Rujescu D. Schizophrenia genes: On the matter of their convergence. Curr Top Behav Neurosci 2012; 12(1): 429-40.
[PMID: 22246848]
[114]
Coyle JT. Glutamate and schizophrenia: Beyond the dopamine hypothesis. Cell Mol Neurobiol 2006; 26(4-6): 363-82.
[http://dx.doi.org/10.1007/s10571-006-9062-8] [PMID: 16773445]
[115]
Mancama D, Arranz MJ, Landau S, Kerwin R. Reduced expression of the muscarinic 1 receptor cortical subtype in schizophrenia. Am J Med Genet-Neuropsychiatr Genet 2003; 119 B(1): 2-6.
[http://dx.doi.org/10.1002/ajmg.b.20020]
[116]
Miyamoto S, Duncan GE, Marx CE, Lieberman JA. Treatments for schizophrenia: A critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol Psychiatry 2005; 10(1): 79-104.
[http://dx.doi.org/10.1038/sj.mp.4001556] [PMID: 15289815]
[117]
Rowley M, Bristow LJ, Hutson PH. Current and novel approaches to the drug treatment of schizophrenia. J Med Chem 2001; 44(4): 477-501.
[http://dx.doi.org/10.1021/jm0002432] [PMID: 11170639]
[118]
Bymaster F, Felder C, Ahmed S, McKinzie D. Muscarinic receptors as a target for drugs treating schizophrenia. Curr Drug Targets CNS Neurol Disord 2002; 1(2): 163-81.
[http://dx.doi.org/10.2174/1568007024606249] [PMID: 12769625]
[119]
Lewis R, Kapur S, Jones C, et al. Serotonin 5-HT2 receptors in schizophrenia: a PET study using [18F]setoperone in neuroleptic-naive patients and normal subjects. Am J Psychiatry 1999; 156(1): 72-8.
[http://dx.doi.org/10.1176/ajp.156.1.72] [PMID: 9892300]
[120]
Joyce JN, Shane A, Lexow N, Winokur A, Casanova MF, Kleinman JE. Serotonin uptake sites and serotonin receptors are altered in the limbic system of schizophrenics. Neuropsychopharmacology 1993; 8(4): 315-36.
[http://dx.doi.org/10.1038/npp.1993.32] [PMID: 8512620]
[121]
Krystal JH, Abi-Dargham A, Laruelle M, Moghaddam B. Pharmacologic models of psychoses. Neurobiol Ment Illn 1999; 1999: 214-24.
[122]
Aghajanian GK. Electrophysiological studies on the actions of hallucinogenic drugs at 5-HT2 receptors in rat brain. NIDA Res Monogr 1994; 146(146): 183-202.
[PMID: 8742799]
[123]
Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III-the final common pathway. Schizophr Bull 2009; 35(3): 549-62.
[http://dx.doi.org/10.1093/schbul/sbp006] [PMID: 19325164]
[124]
Ena S, de Kerchove d’Exaerde A, Schiffmann SN. Unraveling the differential functions and regulation of striatal neuron sub-populations in motor control, reward, and motivational processes. Front Behav Neurosci 2011; 5: 47.
[http://dx.doi.org/10.3389/fnbeh.2011.00047] [PMID: 21847377]
[125]
Cachope R, Cheer JF. Local control of striatal dopamine release. Front Behav Neurosci 2014; 8: 188.
[http://dx.doi.org/10.3389/fnbeh.2014.00188] [PMID: 24904339]
[126]
Graybiel AM, Canales JJ, Capper-Loup C. Levodopa-induced dyskinesias and dopamine-dependent stereotypies: A new hypothesis. Trends Neurosci 2000; 23(10) (Suppl.): S71-7.
[http://dx.doi.org/10.1016/S1471-1931(00)00027-6] [PMID: 11052223]
[127]
Gerfen CR, Scott Young W III. Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: An in situ hybridization histochemistry and fluorescent retrograde tracing study. Brain Res 1988; 460(1): 161-7.
[http://dx.doi.org/10.1016/0006-8993(88)91217-6] [PMID: 2464402]
[128]
Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 1990; 250(4986): 1429-32.
[129]
Komatsu H, Maruyama M, Yao S, et al. Anatomical transcriptome of G protein-coupled receptors leads to the identification of a novel therapeutic candidate GPR52 for psychiatric disorders. PLoS One 2014; 9(2): e90134.
[http://dx.doi.org/10.1371/journal.pone.0090134] [PMID: 24587241]
[130]
Schiffmann SN, Jacobs O, Vanderhaeghen JJ. Striatal restricted adenosine A2 receptor (RDC8) is expressed by enkephalin but not by substance P neurons: An in situ hybridization histochemistry study. J Neurochem 1991; 57(3): 1062-7.
[http://dx.doi.org/10.1111/j.1471-4159.1991.tb08257.x] [PMID: 1713612]
[131]
Schiffmann SN, Fisone G, Moresco R, Cunha RA, Ferré S. Adenosine A2A receptors and basal ganglia physiology. Prog Neurobiol 2007; 83(5): 277-92.
[http://dx.doi.org/10.1016/j.pneurobio.2007.05.001] [PMID: 17646043]
[132]
Lobo MK, Cui Y, Ostlund SB, Balleine BW, William Yang X. Genetic control of instrumental conditioning by striatopallidal neuron-specific S1P receptor Gpr6. Nat Neurosci 2007; 10(11): 1395-7.
[http://dx.doi.org/10.1038/nn1987] [PMID: 17934457]
[133]
Quintana A, Sanz E, Wang W, et al. Lack of GPR88 enhances medium spiny neuron activity and alters motor- and cue-dependent behaviors. Nat Neurosci 2012; 15(11): 1547-55.
[http://dx.doi.org/10.1038/nn.3239] [PMID: 23064379]
[134]
Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989; 12(10): 366-75.
[http://dx.doi.org/10.1016/0166-2236(89)90074-X] [PMID: 2479133]
[135]
DeLong M, Wichmann T. Changing views of basal ganglia circuits and circuit disorders. Clin EEG Neurosci 2010; 41(2): 61-7.
[http://dx.doi.org/10.1177/155005941004100204] [PMID: 20521487]
[136]
Komatsu H, Fukuchi M, Habata Y. Potential utility of biased GPCR signaling for treatment of psychiatric disorders. Int J Mol Sci 2019; 20(13): 3207.
[http://dx.doi.org/10.3390/ijms20133207] [PMID: 31261897]
[137]
Nishiyama K, Suzuki H, Harasawa T, et al. FTBMT, a novel and selective GPR52 agonist, demonstrates antipsychotic-like and procognitive effects in rodents, revealing a potential therapeutic agent for schizophrenia. J Pharmacol Exp Ther 2017; 363(2): 253-64.
[http://dx.doi.org/10.1124/jpet.117.242925] [PMID: 28851764]
[138]
Nishiyama K, Suzuki H, Maruyama M, Yoshihara T, Ohta H. Genetic deletion of GPR52 enhances the locomotor-stimulating effect of an adenosine A 2A receptor antagonist in mice: A potential role of GPR52 in the function of striatopallidal neurons. Brain Res 2017; 1670: 24-31.
[http://dx.doi.org/10.1016/j.brainres.2017.05.031] [PMID: 28583861]
[139]
Dudman JT, Eaton ME, Rajadhyaksha A, et al. Dopamine D1 receptors mediate CREB phosphorylation via phosphorylation of the NMDA receptor at Ser897-NR1. J Neurochem 2003; 87(4): 922-34.
[http://dx.doi.org/10.1046/j.1471-4159.2003.02067.x] [PMID: 14622123]
[140]
Chen G, Greengard P, Yan Z. Potentiation of NMDA receptor currents by dopamine D1 receptors in prefrontal cortex. Proc Natl Acad Sci USA 2004; 101(8): 2596-600.
[http://dx.doi.org/10.1073/pnas.0308618100] [PMID: 14983054] [PMCID: PMC356995]
[141]
Stępnicki P, Kondej M, Kaczor AA. Current concepts and treatments of schizophrenia. Molecules 2018; 23(8): 2087.
[http://dx.doi.org/10.3390/molecules23082087] [PMID: 30127324]
[142]
Stark AD, Jordan S, Allers KA, et al. Interaction of the novel antipsychotic aripiprazole with 5-HT1A and 5-HT2A receptors: functional receptor-binding and in vivo electrophysiological studies. Psychopharmacology 2007; 190(3): 373-82.
[http://dx.doi.org/10.1007/s00213-006-0621-y] [PMID: 17242925]
[143]
Chernoloz O, El Mansari M, Blier P. Electrophysiological studies in the rat brain on the basis for aripiprazole augmentation of antidepressants in major depressive disorder. Psychopharmacology 2009; 206(2): 335-44.
[http://dx.doi.org/10.1007/s00213-009-1611-7] [PMID: 19641901]
[144]
Oosterhof CA, Mansari ME, Bundgaard C, Blier P. Brexpiprazole alters monoaminergic systems following repeated administration: An in vivo electrophysiological study. Int J Neuropsychopharmacol 2016; 19(3): pyv111.
[http://dx.doi.org/10.1093/ijnp/pyv111] [PMID: 26428352]
[145]
Oosterhof CA, El Mansari M, Blier P. Asenapine alters the activity of monoaminergic systems following its subacute and long-term administration: An in vivo electrophysiological characterization. Eur Neuropsychopharmacol 2015; 25(4): 531-43.
[http://dx.doi.org/10.1016/j.euroneuro.2015.01.006] [PMID: 25656272]
[146]
Kamińska K, Górska A, Noworyta-Sokołowska K, Wojtas A, Rogóż Z, Gołembiowska K. The effect of chronic co-treatment with risperidone and novel antidepressant drugs on the dopamine and serotonin levels in the rats frontal cortex. Pharmacol Rep 2018; 70(5): 1023-31.
[http://dx.doi.org/10.1016/j.pharep.2018.04.009] [PMID: 30144663]
[147]
Hereta M. Kamińska K, Białoń M, Wąsik A, Lorenc-Koci E, Rogóż Z. Effect of combined treatment with aripiprazole and antidepressants on the MK-801-induced deficits in recognition memory in novel recognition test and on the release of monoamines in the rat frontal cortex. Behav Brain Res 2020; 393: 112769.
[http://dx.doi.org/10.1016/j.bbr.2020.112769] [PMID: 32535184]
[148]
Kaminska K, Rogoz Z. The antidepressant- and anxiolytic-like effects following co-treatment with escitalopram and risperidone in rats. J Physiol Pharmacol 2016; 67(3): 471-80.
[PMID: 27512008]
[149]
El Mansari M, Sánchez C, Chouvet G, Renaud B, Haddjeri N. Effects of acute and long-term administration of escitalopram and citalopram on serotonin neurotransmission: an in vivo electrophysiological study in rat brain. Neuropsychopharmacology 2005; 30(7): 1269-77.
[http://dx.doi.org/10.1038/sj.npp.1300686] [PMID: 15702136]
[150]
Mørk A, Kreilgaard M, Sánchez C. The R-enantiomer of citalopram counteracts escitalopram-induced increase in extracellular 5-HT in the frontal cortex of freely moving rats. Neuropharmacology 2003; 45(2): 167-73.
[http://dx.doi.org/10.1016/S0028-3908(03)00138-2] [PMID: 12842122]
[151]
Chernoloz O, El Mansari M, Blier P. Effects of sustained administration of quetiapine alone and in combination with a serotonin reuptake inhibitor on norepinephrine and serotonin transmission. Neuropsychopharmacology 2012; 37(7): 1717-28.
[http://dx.doi.org/10.1038/npp.2012.18] [PMID: 22373941]
[152]
Dremencov E, El Mansari M, Blier P. Noradrenergic augmentation of escitalopram response by risperidone: Electrophysiologic studies in the rat brain. Biol Psychiatry 2007; 61(5): 671-8.
[http://dx.doi.org/10.1016/j.biopsych.2006.05.015] [PMID: 16934772]
[153]
Dawe GS, Huff KD, Vandergriff JL, Sharp T, O’Neill MJ, Rasmussen K. Olanzapine activates the rat locus coeruleus: In vivo electrophysiology and c-Fos immunoreactivity. Biol Psychiatry 2001; 50(7): 510-20.
[http://dx.doi.org/10.1016/S0006-3223(01)01171-4] [PMID: 11600104]
[154]
Flik G, Dremencov E, Cremers TIHF, Folgering JHA, Westerink BHC. The role of cortical and hypothalamic histamine-3 receptors in the modulation of central histamine neurotransmission: An in vivo electrophysiology and microdialysis study. Eur J Neurosci 2011; 34(11): 1747-55.
[http://dx.doi.org/10.1111/j.1460-9568.2011.07893.x] [PMID: 22050612]
[155]
Flik G, Folgering JHA, Cremers TIHF, Westerink BHC, Dremencov E. Interaction between brain histamine and serotonin, norepinephrine, and dopamine systems: In vivo microdialysis and electrophysiology study. J Mol Neurosci 2015; 56(2): 320-8.
[http://dx.doi.org/10.1007/s12031-015-0536-3] [PMID: 25820671]
[156]
Andersen MB, Fuxe K, Werge T, Gerlach J. The adenosine A2A receptor agonist CGS 21680 exhibits antipsychotic-like activity in Cebus apella monkeys. Behav Pharmacol 2002; 13(8): 636-44.
[http://dx.doi.org/10.1097/00008877-200212000-00005] [PMID: 12478214]
[157]
Yacoubi ME, Ledent C, Parmentier M, et al. Adenosine A 2A receptor antagonists are potential antidepressants: evidence based on pharmacology and A 2A receptor knockout mice. Br J Pharmacol 2001; 134(1): 68-77.
[http://dx.doi.org/10.1038/sj.bjp.0704240] [PMID: 11522598]
[158]
Kaster MP, Rosa AO, Rosso MM, Goulart EC, Santos ARS, Rodrigues ALS. Adenosine administration produces an antidepressant-like effect in mice: Evidence for the involvement of A1 and A2A receptors. Neurosci Lett 2004; 355(1-2): 21-4.
[http://dx.doi.org/10.1016/j.neulet.2003.10.040] [PMID: 14729225]
[159]
Kaster MP, Santos ARS, Rodrigues ALS. Involvement of 5-HT1A receptors in the antidepressant-like effect of adenosine in the mouse forced swimming test. Brain Res Bull 2005; 67(1-2): 53-61.
[http://dx.doi.org/10.1016/j.brainresbull.2005.05.025] [PMID: 16140163]
[160]
Kenakin T. Biased receptor signaling in drug discovery. Pharmacol Rev 2019; 71(2): 267-315.
[http://dx.doi.org/10.1124/pr.118.016790] [PMID: 30914442]
[161]
Urban JD, Clarke WP, von Zastrow M, et al. Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 2007; 320(1): 1-13.
[http://dx.doi.org/10.1124/jpet.106.104463] [PMID: 16803859]
[162]
Kenakin T, Christopoulos A. Signalling bias in new drug discovery: Detection, quantification and therapeutic impact. Nat Rev Drug Discov 2013; 12(3): 205-16.
[http://dx.doi.org/10.1038/nrd3954] [PMID: 23411724]
[163]
Smith JS, Lefkowitz RJ, Rajagopal S. Biased signalling: From simple switches to allosteric microprocessors. Nat Rev Drug Discov 2018; 17(4): 243-60.
[http://dx.doi.org/10.1038/nrd.2017.229] [PMID: 29302067]
[164]
Rudmann DG. On-target and off-target-based toxicologic effects. Toxicol Pathol 2013; 41(2): 310-4.
[http://dx.doi.org/10.1177/0192623312464311] [PMID: 23085982]
[165]
Michel MC, Charlton SJ. Biased agonism in drug discovery-is it too soon to choose a path? Mol Pharmacol 2018; 93(4): 259-65.
[http://dx.doi.org/10.1124/mol.117.110890] [PMID: 29326242]
[166]
Martin WR, Jasinski DR. Assessment of the Abuse Potential of Narcotic Analgesics in Animals. Drug Addiction I. Berlin, Heidelberg: Springer 1977; pp. 159-96.
[http://dx.doi.org/10.1007/978-3-642-66612-4_3]
[167]
Michino M, Beuming T, Donthamsetti P, Newman AH, Javitch JA, Shi L. What can crystal structures of aminergic receptors tell us about designing subtype-selective ligands? Pharmacol Rev 2015; 67(1): 198-213.
[http://dx.doi.org/10.1124/pr.114.009944] [PMID: 25527701]
[168]
Millan MJ. On ‘polypharmacy’ and multi-target agents, complementary strategies for improving the treatment of depression: A comparative appraisal. Int J Neuropsychopharmacol 2014; 17(7): 1009-37.
[http://dx.doi.org/10.1017/S1461145712001496] [PMID: 23719026]
[169]
Corvol JC, Studler JM, Schonn JS, Girault JA, Hervé D G. Gαolf is necessary for coupling D1 and A2a receptors to adenylyl cyclase in the striatum. J Neurochem 2001; 76(5): 1585-8.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00201.x] [PMID: 11238742]
[170]
Newman-Tancredi A. Biased agonism at serotonin 5-HT1A receptors: preferential postsynaptic activity for improved therapy of CNS disorders. Neuropsychiatry (London) 2011; 1(2): 149-64.
[http://dx.doi.org/10.2217/npy.11.12]
[171]
Fadul FM. Nanobody-Enabled Reverse Pharmacology on G-Protein-Coupled Receptors. Angew Chem Int Ed Engl 2019; 4(1): 1-23.
[172]
Kimura KT, Asada H, Inoue A, et al. Structures of the 5-HT2A receptor in complex with the antipsychotics risperidone and zotepine. Nat Struct Mol Biol 2019; 26(2): 121-8.
[http://dx.doi.org/10.1038/s41594-018-0180-z] [PMID: 30723326]
[173]
Wacker D, Wang S, McCorvy JD, et al. Crystal structure of an LSD-bound human serotonin receptor. Cell 2017; 168(3): 377-389.e12.
[http://dx.doi.org/10.1016/j.cell.2016.12.033] [PMID: 28129538]
[174]
Peng Y, McCorvy JD, Harpsøe K, et al. 5-HT2C receptor structures reveal the structural basis of GPCR polypharmacology. Cell 2018; 172(4): 719-730.e14.
[http://dx.doi.org/10.1016/j.cell.2018.01.001] [PMID: 29398112]
[175]
McCorvy JD, Wacker D, Wang S, et al. Structural determinants of 5-HT2B receptor activation and biased agonism. Nat Struct Mol Biol 2018; 25(9): 787-96.
[http://dx.doi.org/10.1038/s41594-018-0116-7] [PMID: 30127358]
[176]
Wu H, Wang C, Gregory KJ, Han GW, Cho HP, Xia Y. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 2014; 344(6179): 58-64.
[http://dx.doi.org/10.1126/science.1249489]
[177]
Engers DW, Lindsley CW. Allosteric modulation of Class C GPCRs: A novel approach for the treatment of CNS disorders. Drug Discov Today Technol 2013; 10(2): e269-76.
[http://dx.doi.org/10.1016/j.ddtec.2012.10.007] [PMID: 24050278]
[178]
Wootten D, Christopoulos A, Sexton PM. Emerging paradigms in GPCR allostery: Implications for drug discovery. Nat Rev Drug Discov 2013; 12(8): 630-44.
[http://dx.doi.org/10.1038/nrd4052] [PMID: 23903222]
[179]
Ehlert FJ, Roeske WR, Gee KW, Yamamura HI. An allosteric model for benzodiazepine receptor function. Biochem Pharmacol 1983; 32(16): 2375-83.
[http://dx.doi.org/10.1016/0006-2952(83)90679-2] [PMID: 6311215]
[180]
Anis NA, Berry SC, Burton NR, Lodge D. The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol 1983; 79(2): 565-75.
[http://dx.doi.org/10.1111/j.1476-5381.1983.tb11031.x] [PMID: 6317114]
[181]
Plouffe B, Thomsen ARB, Irannejad R. Emerging role of compartmentalized G protein-coupled receptor signaling in the cardiovascular field. ACS Pharmacol Transl Sci 2020; 3(2): 221-36.
[http://dx.doi.org/10.1021/acsptsci.0c00006] [PMID: 32296764]
[182]
Martin RD, Sun Y, Bourque K, et al. Receptor- and cellular compartment-specific activation of the cAMP/PKA pathway by α1-adrenergic and ETA endothelin receptors. Cell Signal 2018; 44: 43-50.
[http://dx.doi.org/10.1016/j.cellsig.2018.01.002] [PMID: 29329779]
[183]
Suofu Y, Li W, Jean-Alphonse FG, Jia J, Khattar NK, Li J. Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc Natl Acad Sci USA 114(38): E7997-8006.
[http://dx.doi.org/10.1073/pnas.1705768114]
[184]
Jensen DD, Lieu T, Halls ML, et al. Neurokinin 1 receptor signaling in endosomes mediates sustained nociception and is a viable therapeutic target for prolonged pain relief. Sci Transl Med 2017; 9(392): eaal3447.
[http://dx.doi.org/10.1126/scitranslmed.aal3447] [PMID: 28566424]
[185]
Godbole A, Lyga S, Lohse MJ, Calebiro D. Internalized TSH receptors en route to the TGN induce local Gs-protein signaling and gene transcription. Nat Commun 2017; 8(1): 443.
[http://dx.doi.org/10.1038/s41467-017-00357-2] [PMID: 28874659]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy