Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Inhibition of Neuromyelitis Optica Immunoglobulin G Binding to Aquaporin-4 by the Small Molecule Blocker Melanthioidine

Author(s): Huijing Xu, Yushuang Gong, Yang Jiao, Jian Guo, Ling Zhao, Juechen Yang, Haibin Tong, Meiyan Sun* and Miao Li*

Volume 29, Issue 10, 2023

Published on: 05 April, 2023

Page: [793 - 802] Pages: 10

DOI: 10.2174/1381612829666230330090953

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Background: Neuromyelitis optica (NMO) is a severe neurological demyelinating autoimmune disease affecting the optic nerves and spinal cord. The binding of neuromyelitis optica immunoglobulin G (NMO- IgG) and aquaporin-4 (AQP4) on the surface of astrocytes in the serum and cerebrospinal fluid is the main pathogenesis of NMO. Currently, therapeutic strategies for NMO include a reduction of the secondary inflammation response and the number of NMO-IgG, which can only alleviate clinical symptoms rather than fundamentally preventing a series of pathological processes caused by NMO-IgG binding to AQP4.

Objective: The purpose of this study was to investigate the blocking effect of melanthioidine on the binding of NMO-IgG to AQP4 and its potential cytotoxicity.

Methods: The current study developed a cell-based high-throughput screening approach to identify a molecular blocker of NMO-IgG binding to AQP4 using the Chinese hamster lung fibroblast (V79) cells expressing M23- AQP4. By screening ~400 small molecules, we identified melanthioidine with blocking effects without affecting AQP4 expression or its water permeability.

Results: Melanthioidine effectively blocked the binding of NMO-IgG to AQP4 in immunofluorescence assays and reduced complement-dependent cytotoxicity against both NMO-IgG/complement-treated Fischer rat thyroid- AQP4 cells and primary astrocytes. The docking computations identified the putative sites of blocker binding at the extracellular surface of AQP4.

Conclusion: This study serves as proof of a potential NMO therapy by using a small-molecule blocker to target NMO pathogenesis.

Keywords: Neuromyelitis optica, autoimmune disease, aquaporin 4, high-throughput screening, melanthioidine, molecular blocker, NMOimmunoglobulin G.

« Previous
[1]
Pandit L, Asgari N, Apiwattanakul M, et al. GJCF International clinical consortium & biorepository for neuromyelitis optica. Demographic and clinical features of neuromyelitis optica: A review. Mult Scler 2015; 21(7): 845-53.
[http://dx.doi.org/10.1177/1352458515572406] [PMID: 25921037]
[2]
Flanagan EP, Cabre P, Weinshenker BG, et al. Epidemiology of aquaporin-4 autoimmunity and neuromyelitis optica spectrum. Ann Neurol 2016; 79(5): 775-83.
[http://dx.doi.org/10.1002/ana.24617] [PMID: 26891082]
[3]
Gross C, Fiedler B, Meuth S, Kurlemann G, Elpers C. A case report on juvenile neuromyelitis optica: Early onset, long remission period, and atypical treatment response. Neuropediatrics 2015; 46(4): 292-5.
[http://dx.doi.org/10.1055/s-0035-1554101] [PMID: 26058738]
[4]
Jagtap SA, Mandliya A, Sarada C, Nair MD. Neuromyelitis optica and neuromyelitis optica spectrum disorder: Natural history and long-term outcome, an Indian experience. J Neurosci Rural Pract 2015; 6(3): 331-5.
[http://dx.doi.org/10.4103/0976-3147.158755] [PMID: 26167014]
[5]
Jarius S, Wildemann B. The case of the Marquis de Causan (1804): An early account of visual loss associated with spinal cord inflammation. J Neurol 2012; 259(7): 1354-7.
[http://dx.doi.org/10.1007/s00415-011-6355-8] [PMID: 22237820]
[6]
Jarius S, Wildemann B. The history of neuromyelitis optica. J Neuroinflammation 2013; 10(1): 797.
[http://dx.doi.org/10.1186/1742-2094-10-8] [PMID: 23320783]
[7]
Jarius S, Paul F, Franciotta D, et al. Revised diagnostic criteria for neuromyelitis optica—incorporation of NMO-IgG status. Nat Clin Pract Neurol 2007; 3(5): E1-1.
[http://dx.doi.org/10.1038/ncpneuro0501] [PMID: 17479069]
[8]
Wingerchuk DM, Lennon VA, Pittock SJ, Lucchinetti CF, Weinshenker BG. Revised diagnostic criteria for neuromyelitis optica. Neurology 2006; 66(10): 1485-9.
[http://dx.doi.org/10.1212/01.wnl.0000216139.44259.74] [PMID: 16717206]
[9]
Jarius S, Wildemann B. Aquaporin-4 antibodies (NMO-IgG) as a serological marker of neuromyelitis optica: A critical review of the literature. Brain Pathol 2013; 23(6): 661-83.
[http://dx.doi.org/10.1111/bpa.12084] [PMID: 24118483]
[10]
Wingerchuk DM, Banwell B, Bennett JL, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015; 85(2): 177-89.
[http://dx.doi.org/10.1212/WNL.0000000000001729] [PMID: 26092914]
[11]
Ai N, Liu H, Zhou H, et al. Cytokines and chemokines expression in serum of patients with neuromyelitis optica. Neuropsychiatr Dis Treat 2019; 15: 303-10.
[http://dx.doi.org/10.2147/NDT.S185336] [PMID: 30718956]
[12]
Duan T, Smith AJ, Verkman AS. Complement-independent bystander injury in AQP4-IgG seropositive neuromyelitis optica produced by antibody-dependent cellular cytotoxicity. Acta Neuropathol Commun 2019; 7(1): 112.
[http://dx.doi.org/10.1186/s40478-019-0766-7] [PMID: 31296268]
[13]
Jasiak-Zatonska M, Kalinowska-Lyszczarz A, Michalak S, Kozubski W. The immunology of neuromyelitis optica—current knowledge, clinical implications, controversies and future perspectives. Int J Mol Sci 2016; 17(3): 273.
[http://dx.doi.org/10.3390/ijms17030273] [PMID: 26950113]
[14]
Soltys J, Liu Y, Ritchie A, et al. Membrane assembly of aquaporin-4 autoantibodies regulates classical complement activation in neuromyelitis optica. J Clin Invest 2019; 129(5): 2000-13.
[http://dx.doi.org/10.1172/JCI122942] [PMID: 30958797]
[15]
Kitley J, Palace J. Therapeutic options in neuromyelitis optica spectrum disorders. Expert Rev Neurother 2016; 16(3): 319-29.
[http://dx.doi.org/10.1586/14737175.2016.1150178] [PMID: 26840802]
[16]
Kuroda H, Fujihara K. Current status and prospects of complement-targeting therapy for neuromyelitis optica. Brain Nerve 2019; 71(6): 573-80.
[17]
Kurosawa K, Misu T, Takai Y, et al. Severely exacerbated neuromyelitis optica rat model with extensive astrocytopathy by high affinity anti-aquaporin-4 monoclonal antibody. Acta Neuropathol Commun 2015; 3(1): 82.
[http://dx.doi.org/10.1186/s40478-015-0259-2] [PMID: 26637322]
[18]
Papadopoulos MC, Bennett JL, Verkman AS. Treatment of neuromyelitis optica: State-of-the-art and emerging therapies. Nat Rev Neurol 2014; 10(9): 493-506.
[http://dx.doi.org/10.1038/nrneurol.2014.141] [PMID: 25112508]
[19]
Sahraian MA, Moghadasi AN, Azimi AR, et al. Diagnosis and management of Neuromyelitis Optica Spectrum Disorder (NMOSD) in Iran: A consensus guideline and recommendations. Mult Scler Relat Disord 2017; 18: 144-51.
[http://dx.doi.org/10.1016/j.msard.2017.09.015] [PMID: 29141797]
[20]
Tradtrantip L, Zhang H, Saadoun S, et al. Anti-Aquaporin-4 monoclonal antibody blocker therapy for neuromyelitis optica. Ann Neurol 2012; 71(3): 314-22.
[http://dx.doi.org/10.1002/ana.22657] [PMID: 22271321]
[21]
Verkman AS, Smith AJ, Phuan P, Tradtrantip L, Anderson MO. The aquaporin-4 water channel as a potential drug target in neurological disorders. Expert Opin Ther Targets 2017; 21(12): 1161-70.
[http://dx.doi.org/10.1080/14728222.2017.1398236] [PMID: 29072508]
[22]
Tradtrantip L, Zhang H, Anderson MO, et al. Small-molecule inhibitors of NMO-IgG binding to aquaporin-4 reduce astrocyte cytotoxicity in neuromyelitis optica. FASEB J 2012; 26(5): 2197-208.
[http://dx.doi.org/10.1096/fj.11-201608] [PMID: 22319008]
[23]
Phuan PW, Ratelade J, Rossi A, Tradtrantip L, Verkman AS. Complement-dependent cytotoxicity in neuromyelitis optica requires aquaporin-4 protein assembly in orthogonal arrays. J Biol Chem 2012; 287(17): 13829-39.
[http://dx.doi.org/10.1074/jbc.M112.344325] [PMID: 22393049]
[24]
Sun M, Wang J, Zhou Y, Wang Z, Jiang Y, Li M. Isotetrandrine reduces astrocyte cytotoxicity in neuromyelitis optica by blocking the binding of NMO-IgG to aquaporin 4. Neuroimmunomodulation 2016; 23(2): 98-108.
[http://dx.doi.org/10.1159/000444530] [PMID: 27064690]
[25]
Bennett JL, Lam C, Kalluri SR, et al. Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann Neurol 2009; 66(5): 617-29.
[http://dx.doi.org/10.1002/ana.21802] [PMID: 19938104]
[26]
Owens GP, Ritchie AM, Burgoon MP, Williamson RA, Corboy JR, Gilden DH. Single-cell repertoire analysis demonstrates that clonal expansion is a prominent feature of the B cell response in multiple sclerosis cerebrospinal fluid. J Immunol 2003; 171(5): 2725-33.
[http://dx.doi.org/10.4049/jimmunol.171.5.2725] [PMID: 12928426]
[27]
Bogum J, Faust D, Zühlke K, et al. Small-molecule screening identifies modulators of aquaporin-2 trafficking. J Am Soc Nephrol 2013; 24(5): 744-58.
[http://dx.doi.org/10.1681/ASN.2012030295] [PMID: 23559583]
[28]
a) Phuan PW, Anderson MO, Tradtrantip L, et al. A small- molecule screen yields idiotype-specific blockers of neuromyelitis optica immunoglobulin G binding to aquaporin-4. J Biol Chem 2012; 287(44): 36837-44.
[http://dx.doi.org/10.1074/jbc.M112.408716] [PMID: 22989877];
b) Wang J, Evano G. Total synthesis of (−)-Melanthioidine by copper-mediated cyclodimerization. Org Lett 2016; 18(15): 3542-5.
[http://dx.doi.org/10.1021/acs.orglett.6b01496] [PMID: 27434527]
[29]
Crane JM, Lam C, Rossi A, Gupta T, Bennett JL, Verkman AS. Binding affinity and specificity of neuromyelitis optica autoantibodies to aquaporin-4 M1/M23 isoforms and orthogonal arrays. J Biol Chem 2011; 286(18): 16516-24.
[http://dx.doi.org/10.1074/jbc.M111.227298] [PMID: 21454592]
[30]
Solenov E, Watanabe H, Manley GT, Verkman AS. Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am J Physiol Cell Physiol 2004; 286(2): C426-32.
[http://dx.doi.org/10.1152/ajpcell.00298.2003] [PMID: 14576087]
[31]
Swanson RA, Liu J, Miller JW, et al. Neuronal regulation of glutamate transporter subtype expression in astrocytes. J Neurosci 1997; 17(3): 932-40.
[http://dx.doi.org/10.1523/JNEUROSCI.17-03-00932.1997] [PMID: 8994048]
[32]
Li S, Uno Y, Rudolph U, et al. Astrocytes in primary cultures express serine racemase, synthesize d-serine and acquire A1 reactive astrocyte features. Biochem Pharmacol 2018; 151: 245-51.
[http://dx.doi.org/10.1016/j.bcp.2017.12.023] [PMID: 29305854]
[33]
Verkman AS, Ratelade J, Rossi A, Zhang H, Tradtrantip L. Aquaporin-4: Orthogonal array assembly, CNS functions, and role in neuromyelitis optica. Acta Pharmacol Sin 2011; 32(6): 702-10.
[http://dx.doi.org/10.1038/aps.2011.27] [PMID: 21552296]
[34]
Wang J, Wang S, Sun M, et al. Identification of geraldol as an inhibitor of aquaporin-4 binding by NMO-IgG. Mol Med Rep 2020; 22(2): 1111-8.
[http://dx.doi.org/10.3892/mmr.2020.11212] [PMID: 32626958]
[35]
Bi C, Tham DKL, Perronnet C, Joshi B, Nabi IR, Moukhles H. The oxidative stress-induced increase in the membrane expression of the water-permeable channel aquaporin-4 in astrocytes is regulated by caveolin-1 phosphorylation. Front Cell Neurosci 2017; 11: 412.
[http://dx.doi.org/10.3389/fncel.2017.00412] [PMID: 29326556]
[36]
Willermain F, Janssens S, Arsenijevic T, et al. Osmotic stress decreases aquaporin-4 expression in the human retinal pigment epithelial cell line, ARPE-19. Int J Mol Med 2014; 34(2): 533-8.
[http://dx.doi.org/10.3892/ijmm.2014.1791] [PMID: 24888368]
[37]
Chu H, Xiang J, Wu P, et al. The role of aquaporin 4 in apoptosis after intracerebral hemorrhage. J Neuroinflammation 2014; 11(1): 184.
[http://dx.doi.org/10.1186/s12974-014-0184-5] [PMID: 25359421]
[38]
Ding T, Zhou Y, Sun K, et al. Knockdown a water channel protein, aquaporin-4, induced glioblastoma cell apoptosis. PLoS One 2013; 8(8): e66751.
[http://dx.doi.org/10.1371/journal.pone.0066751] [PMID: 23950863]
[39]
Iorio R, Fryer JP, Hinson SR, et al. Astrocytic autoantibody of neuromyelitis optica (NMO-IgG) binds to aquaporin-4 extracellular loops, monomers, tetramers and high order arrays. J Autoimmun 2013; 40: 21-7.
[http://dx.doi.org/10.1016/j.jaut.2012.07.008] [PMID: 22906356]
[40]
Owens GP, Ritchie A, Rossi A, et al. Mutagenesis of the aquaporin 4 extracellular domains defines restricted binding patterns of pathogenic neuromyelitis optica IgG. J Biol Chem 2015; 290(19): 12123-34.
[http://dx.doi.org/10.1074/jbc.M115.647149] [PMID: 25792738]
[41]
Son M, Kim D, Park KS, Hong S, Park TH. Detection of aquaporin-4 antibody using aquaporin-4 extracellular loop-based carbon nanotube biosensor for the diagnosis of neuromyelitis optica. Biosens Bioelectron 2016; 78: 87-91.
[http://dx.doi.org/10.1016/j.bios.2015.11.029] [PMID: 26594890]
[42]
Tuller F, Holzer H, Schanda K, et al. Characterization of the binding pattern of human aquaporin-4 autoantibodies in patients with neuromyelitis optica spectrum disorders. J Neuroinflammation 2016; 13(1): 176.
[http://dx.doi.org/10.1186/s12974-016-0642-3] [PMID: 27371173]
[43]
Hinson SR, Pittock SJ, Lucchinetti CF, et al. Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurology 2007; 69(24): 2221-31.
[http://dx.doi.org/10.1212/01.WNL.0000289761.64862.ce] [PMID: 17928579]
[44]
Marignier R, Nicolle A, Watrin C, et al. Oligodendrocytes are damaged by neuromyelitis optica immunoglobulin G via astrocyte injury. Brain 2010; 133(9): 2578-91.
[http://dx.doi.org/10.1093/brain/awq177] [PMID: 20688809]
[45]
Parratt JDE, Prineas JW. Neuromyelitis optica: A demyelinating disease characterized by acute destruction and regeneration of perivascular astrocytes. Mult Scler 2010; 16(10): 1156-72.
[http://dx.doi.org/10.1177/1352458510382324] [PMID: 20823059]
[46]
Hrbek J Jr, Šantavý F. Substanzen der Pflanzen der Unterfamilie Wurmbaeoideae und ihre Derivate LI. Isolierung der Alkaloide vom Colchicintypus aus einigen afrikanischen Arten der Unterfamilie Wurmbaeoideae. Collect Czech Chem Commun 1962; 27(1): 255-67.
[http://dx.doi.org/10.1135/cccc19620255]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy