Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Erythrocyte-based Drug Delivery: How Far from Clinical Application?

Author(s): Yuan Jiang*, Yi Yuan, Feng Peng, Yi Deng, Chao Ren, Chongzhi Liu, Hai Dong* and Tao Tu*

Volume 21, Issue 1, 2024

Published on: 05 April, 2023

Page: [52 - 64] Pages: 13

DOI: 10.2174/1567201820666230320103529

Price: $65

conference banner
Abstract

Erythrocytes are responsible for delivering oxygen throughout the body. They have become suitable drug carriers due to outstanding advantages, such as a long lifespan in circulation, high biosafety, and low immunogenicity. Although erythrocyte-based drug delivery has good application prospects and has become a research hotspot in related fields, the application of erythrocyte-based drug delivery systems is rare in the clinic now. In this review, we discuss the characteristics of erythrocytes, diverse drug-loading approaches, and research progress of erythrocyte-based drug delivery systems. Finally, we explore the challenges of erythrocyte-based drug delivery in clinical application.

Keywords: Erythrocytes, cell membrane biomimetic, nanomedicine, drug delivery, erythrocyte membrane, immunogenicity.

Graphical Abstract
[1]
Sun, Y.; Su, J.; Liu, G.; Chen, J.; Zhang, X.; Zhang, R.; Jiang, M.; Qiu, M. Advances of blood cell-based drug delivery systems. Eur. J. Pharm. Sci., 2017, 96, 115-128.
[http://dx.doi.org/10.1016/j.ejps.2016.07.021] [PMID: 27496050]
[2]
Millán, C.G.; Marinero, M.L.S.; Castañeda, A.Z.; Lanao, J.M. Drug, enzyme and peptide delivery using erythrocytes as carriers. J. Control. Rel., 2004, 95(1), 27-49.
[http://dx.doi.org/10.1016/j.jconrel.2003.11.018] [PMID: 15013230]
[3]
Zhang, H. Erythrocytes in nanomedicine: An optimal blend of natural and synthetic materials. Biomater. Sci., 2016, 4(7), 1024-1031.
[http://dx.doi.org/10.1039/C6BM00072J] [PMID: 27090487]
[4]
Yaman, S.; Chintapula, U.; Rodriguez, E.; Ramachandramoorthy, H.; Nguyen, K.T. Cell-mediated and cell membrane-coated nanoparticles for drug delivery and cancer therapy. Cancer Drug Resist., 2020, 3(4), 879-911.
[http://dx.doi.org/10.20517/cdr.2020.55] [PMID: 33796822]
[5]
Ihler, G.M.; Glew, R.H.; Schnure, F.W. Enzyme loading of erythrocytes. Proc. Natl. Acad. Sci., 1973, 70(9), 2663-2666.
[http://dx.doi.org/10.1073/pnas.70.9.2663] [PMID: 4354859]
[6]
Li, R.; He, Y.; Zhang, S.; Qin, J.; Wang, J. Cell membrane-based nanoparticles: A new biomimetic platform for tumor diagnosis and treatment. Acta Pharm. Sin. B, 2018, 8(1), 14-22.
[http://dx.doi.org/10.1016/j.apsb.2017.11.009] [PMID: 29872619]
[7]
Du, Y.; Wang, S.; Zhang, M.; Chen, B.; Shen, Y. Cells-based drug delivery for cancer applications. Nanoscale Res. Lett., 2021, 16(1), 139.
[http://dx.doi.org/10.1186/s11671-021-03588-x] [PMID: 34478000]
[8]
Rossi, L.; Serafini, S.; Pierigé, F.; Antonelli, A.; Cerasi, A.; Fraternale, A.; Chiarantini, L.; Magnani, M. Erythrocyte-based drug delivery. Expert Opin. Drug Deliv., 2005, 2(2), 311-322.
[http://dx.doi.org/10.1517/17425247.2.2.311] [PMID: 16296756]
[9]
Tzounakas, V.L.; Karadimas, D.G.; Papassideri, I.S.; Seghatchian, J.; Antonelou, M.H. Erythrocyte-based drug delivery in Transfusion medicine: Wandering questions seeking answers. Transfus. Apheresis Sci., 2017, 56(4), 626-634.
[http://dx.doi.org/10.1016/j.transci.2017.07.015] [PMID: 28774826]
[10]
Rossi, L.; Fraternale, A.; Bianchi, M.; Magnani, M. Red blood cell membrane processing for biomedical applications. Front. Physiol., 2019, 10, 1070.
[http://dx.doi.org/10.3389/fphys.2019.01070] [PMID: 31481901]
[11]
Della Pelle, G.; Kostevšek, N. Nucleic acid delivery with red-blood-cell-based carriers. Int. J. Mol. Sci., 2021, 22(10), 5264.
[http://dx.doi.org/10.3390/ijms22105264] [PMID: 34067699]
[12]
Asaro, R.J.; Zhu, Q. Vital erythrocyte phenomena: What can theory, modeling, and simulation offer? Biomech. Model. Mechanobiol., 2020, 19(5), 1361-1388.
[http://dx.doi.org/10.1007/s10237-020-01302-x] [PMID: 32040651]
[13]
Pierigè, F.; Serafini, S.; Rossi, L.; Magnani, M. Cell-based drug delivery. Adv. Drug Deliv. Rev., 2008, 60(2), 286-295.
[http://dx.doi.org/10.1016/j.addr.2007.08.029] [PMID: 17997501]
[14]
Jiang, X.; Wang, K.; Zhou, Z.; Zhang, Y.; Sha, H.; Xu, Q.; Wu, J.; Wang, J.; Wu, J.; Hu, Y.; Liu, B. Erythrocyte membrane nanoparticles improve the intestinal absorption of paclitaxel. Biochem. Biophys. Res. Commun., 2017, 488(2), 322-328.
[http://dx.doi.org/10.1016/j.bbrc.2017.05.042] [PMID: 28495530]
[15]
Antonio, E.; dos Reis Antunes, Junior O.; Marcano, R.G.D.J.V.; Diedrich, C.; da Silva Santos, J.; Machado, C.S.; Khalil, N.M.; Mainardes, R.M. Chitosan modified poly (lactic acid) nanoparticles increased the ursolic acid oral bioavailability. Int. J. Biol. Macromol., 2021, 172, 133-142.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.01.041] [PMID: 33450338]
[16]
Han, X.; Wang, C.; Liu, Z. Red blood cells as smart delivery systems. Bioconjug. Chem., 2018, 29(4), 852-860.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00758] [PMID: 29298380]
[17]
Kwon, Y.M.; Chung, H.S.; Moon, C.; Yockman, J.; Park, Y.J.; Gitlin, S.D.; David, A.E.; Yang, V.C. L-Asparaginase encapsulated intact erythrocytes for treatment of acute lymphoblastic leukemia (ALL). J. Control. Release, 2009, 139(3), 182-189.
[http://dx.doi.org/10.1016/j.jconrel.2009.06.027] [PMID: 19577600]
[18]
Rodriguez, P.L.; Harada, T.; Christian, D.A.; Pantano, D.A.; Tsai, R.K.; Discher, D.E. Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science, 2013, 339(6122), 971-975.
[http://dx.doi.org/10.1126/science.1229568] [PMID: 23430657]
[19]
Zinger, A.; Cooke, J.P.; Taraballi, F. Biomimetic nano drug delivery carriers for treating cardiovascular diseases. Nanomedicine, 2021, 33, 102360.
[http://dx.doi.org/10.1016/j.nano.2021.102360] [PMID: 33476763]
[20]
Bhateria, M.; Rachumallu, R.; Singh, R.; Bhatta, R.S. Erythrocytes-based synthetic delivery systems: Transition from conventional to novel engineering strategies. Expert Opin. Drug Deliv., 2014, 11(8), 1219-1236.
[http://dx.doi.org/10.1517/17425247.2014.927436] [PMID: 24912015]
[21]
Zarrin, A.; Foroozesh, M.; Hamidi, M. Carrier erythrocytes: Recent advances, present status, current trends and future horizons. Expert Opin. Drug Deliv., 2014, 11(3), 433-447.
[http://dx.doi.org/10.1517/17425247.2014.880422] [PMID: 24456118]
[22]
Fang, R.H.; Kroll, A.V.; Gao, W.; Zhang, L. Cell membrane coating nanotechnology. Adv. Mater., 2018, 30(23), 1706759.
[http://dx.doi.org/10.1002/adma.201706759] [PMID: 29582476]
[23]
Jin, C.; He, J.; Zou, J.; Xuan, W.; Fu, T.; Wang, R.; Tan, W. Phosphorylated lipid-conjugated oligonucleotide selectively anchors on cell membranes with high alkaline phosphatase expression. Nat. Commun., 2019, 10(1), 2704.
[http://dx.doi.org/10.1038/s41467-019-10639-6] [PMID: 31221964]
[24]
Fang, R.H.; Hu, C.M.J.; Chen, K.N.H.; Luk, B.T.; Carpenter, C.W.; Gao, W.; Li, S.; Zhang, D.E.; Lu, W.; Zhang, L. Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles. Nanoscale, 2013, 5(19), 8884-8888.
[http://dx.doi.org/10.1039/c3nr03064d] [PMID: 23907698]
[25]
Zhang, Z.; Qian, H.; Huang, J.; Sha, H.; Zhang, H.; Yu, L.; Liu, B.; Hua, D.; Qian, X. Anti-EGFR-iRGD recombinant protein modified biomimetic nanoparticles loaded with gambogic acid to enhance targeting and antitumor ability in colorectal cancer treatment. Int. J. Nanomedicine, 2018, 13, 4961-4975.
[http://dx.doi.org/10.2147/IJN.S170148] [PMID: 30214200]
[26]
Sun, D.; Chen, J.; Wang, Y.; Ji, H.; Peng, R.; Jin, L.; Wu, W. Advances in refunctionalization of erythrocyte-based nanomedicine for enhancing cancer-targeted drug delivery. Theranostics, 2019, 9(23), 6885-6900.
[http://dx.doi.org/10.7150/thno.36510] [PMID: 31660075]
[27]
Magnani, M.; Rossi, L.; Brandi, G.; Schiavano, G.F.; Montroni, M.; Piedimonte, G. Targeting antiretroviral nucleoside analogues in phosphorylated form to macrophages: in vitro and in vivo studies. Proc. Natl. Acad. Sci., 1992, 89(14), 6477-6481.
[http://dx.doi.org/10.1073/pnas.89.14.6477] [PMID: 1631145]
[28]
Villa, C.H.; Cines, D.B.; Siegel, D.L.; Muzykantov, V. Erythrocytes as carriers for drug delivery in blood transfusion and beyond. Transfus. Med. Rev., 2017, 31(1), 26-35.
[http://dx.doi.org/10.1016/j.tmrv.2016.08.004] [PMID: 27707522]
[29]
Villa, C.H.; Anselmo, A.C.; Mitragotri, S.; Muzykantov, V. Red blood cells: Supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems. Adv. Drug Deliv. Rev., 2016, 106(Pt A), 88-103.
[http://dx.doi.org/ 10.1016/j.addr.2016.02.007] [PMID: 26941164]
[30]
Di Gregorio, E.; Ferrauto, G.; Gianolio, E.; Aime, S. Gd loading by hypotonic swelling: An efficient and safe route for cellular labeling. Contrast Media Mol. Imag., 2013, 8(6), 475-486.
[http://dx.doi.org/10.1002/cmmi.1574] [PMID: 24375903]
[31]
Sabatino, R.; Antonelli, A.; Battistelli, S.; Schwendener, R.; Magnani, M.; Rossi, L. Macrophage depletion by free bisphosphonates and zoledronate-loaded red blood cells. PLoS One, 2014, 9(6), e101260.
[http://dx.doi.org/10.1371/journal.pone.0101260] [PMID: 24968029]
[32]
Magnani, M.; Chiarantini, L.; Mancini, U. Preparation and characterization of biotinylated red blood cells. Biotechnol. Appl. Biochem., 1994, 20(3), 335-345.
[http://dx.doi.org/10.1111/j.1470-8744.1994.tb00321.x] [PMID: 7818803]
[33]
Luk, B.T.; Jack Hu, C-M.; Fang, R.H.; Dehaini, D.; Carpenter, C.; Gao, W.; Zhang, L. Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles. Nanoscale, 2014, 6(5), 2730-2737.
[http://dx.doi.org/10.1039/C3NR06371B] [PMID: 24463706]
[34]
Wibroe, P.P.; Anselmo, A.C.; Nilsson, P.H.; Sarode, A.; Gupta, V.; Urbanics, R.; Szebeni, J.; Hunter, A.C.; Mitragotri, S.; Mollnes, T.E.; Moghimi, S.M. Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes. Nat. Nanotechnol., 2017, 12(6), 589-594.
[http://dx.doi.org/10.1038/nnano.2017.47] [PMID: 28396605]
[35]
Brenner, J.S.; Pan, D.C.; Myerson, J.W.; Marcos-Contreras, O.A.; Villa, C.H.; Patel, P.; Hekierski, H.; Chatterjee, S.; Tao, J.Q.; Parhiz, H.; Bhamidipati, K.; Uhler, T.G.; Hood, E.D.; Kiseleva, R.Y.; Shuvaev, V.S.; Shuvaeva, T.; Khoshnejad, M.; Johnston, I.; Gregory, J.V.; Lahann, J.; Wang, T.; Cantu, E.; Armstead, W.M.; Mitragotri, S.; Muzykantov, V. Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Nat. Commun., 2018, 9(1), 2684.
[http://dx.doi.org/10.1038/s41467-018-05079-7] [PMID: 29992966]
[36]
Brenner, J.S.; Mitragotri, S.; Muzykantov, V.R. Red blood cell hitchhiking: A novel approach for vascular delivery of nanocarriers. Annu. Rev. Biomed. Eng., 2021, 23(1), 225-248.
[http://dx.doi.org/10.1146/annurev-bioeng-121219-024239] [PMID: 33788581]
[37]
Ye, H.; Shen, Z.; Wei, M.; Li, Y. Red blood cell hitchhiking enhances the accumulation of nano- and micro-particles in the constriction of a stenosed microvessel. Soft Matter, 2021, 17(1), 40-56.
[http://dx.doi.org/10.1039/D0SM01637C] [PMID: 33285555]
[38]
Krivić H.; Himbert, S.; Rheinstädter, M.C. Perspective on the application of erythrocyte liposome-based drug delivery for infectious diseases. Membranes, 2022, 12(12), 1226.
[http://dx.doi.org/10.3390/membranes12121226] [PMID: 36557133]
[39]
Izzati Mat Rani, N.N.; Alzubaidi, Z.M.; Azhari, H.; Mustapa, F.; Iqbal Mohd Amin, M.C. Novel engineering: Biomimicking erythrocyte as a revolutionary platform for drugs and vaccines delivery. Eur. J. Pharmacol., 2021, 900, 174009.
[http://dx.doi.org/10.1016/j.ejphar.2021.174009]
[40]
Javed, S.; Alshehri, S.; Shoaib, A.; Ahsan, W.; Sultan, M.H.; Alqahtani, S.S.; Kazi, M.; Shakeel, F. Chronicles of nanoerythrosomes: An erythrocyte-based biomimetic smart drug delivery system as a therapeutic and diagnostic tool in cancer therapy. Pharmaceutics, 2021, 13(3), 368.
[http://dx.doi.org/10.3390/pharmaceutics13030368] [PMID: 33802156]
[41]
Shabalala, S.; Muller, C.J.F.; Louw, J.; Johnson, R. Polyphenols, autophagy and doxorubicin-induced cardiotoxicity. Life Sci., 2017, 180, 160-170.
[http://dx.doi.org/10.1016/j.lfs.2017.05.003] [PMID: 28478263]
[42]
Meredith, A.M.; Dass, C.R. Increasing role of the cancer chemotherapeutic doxorubicin in cellular metabolism. J. Pharm. Pharmacol., 2016, 68(6), 729-741.
[http://dx.doi.org/10.1111/jphp.12539] [PMID: 26989862]
[43]
Lucas, A.; Lam, D.; Cabrales, P. Doxorubicin-loaded red blood cells reduced cardiac toxicity and preserved anticancer activity. Drug Deliv., 2019, 26(1), 433-442.
[http://dx.doi.org/10.1080/10717544.2019.1591544] [PMID: 30929538]
[44]
Song, M.; Dong, S.; An, X.; Zhang, W.; Shen, N.; Li, Y.; Guo, C.; Liu, C.; Li, X.; Chen, S. Erythrocyte-biomimetic nanosystems to improve antitumor effects of paclitaxel on epithelial cancers. J. Control. Release, 2022, 345, 744-754.
[http://dx.doi.org/10.1016/j.jconrel.2022.03.060] [PMID: 35381274]
[45]
Xia, Q.; Zhang, Y.; Li, Z.; Hou, X.; Feng, N. Red blood cell membrane-camouflaged nanoparticles: A novel drug delivery system for antitumor application. Acta Pharm. Sin. B, 2019, 9(4), 675-689.
[http://dx.doi.org/10.1016/j.apsb.2019.01.011] [PMID: 31384529]
[46]
Li, L.L.; Xu, J.H.; Qi, G.B.; Zhao, X.; Yu, F.; Wang, H. Core-shell supramolecular gelatin nanoparticles for adaptive and “on-demand” antibiotic delivery. ACS Nano, 2014, 8(5), 4975-4983.
[http://dx.doi.org/10.1021/nn501040h] [PMID: 24716550]
[47]
Berikkhanova, K.; Omarbaev, R.; Gulyayev, A.; Shulgau, Z.; Ibrasheva, D.; Adilgozhina, G.; Sergazy, S.; Zhumadilov, Z.; Askarova, S. Red blood cell ghosts as promising drug carriers to target wound infections. Med. Eng. Phys., 2016, 38(9), 877-884.
[http://dx.doi.org/10.1016/j.medengphy.2016.02.014] [PMID: 27062487]
[48]
Krivić H.; Himbert, S.; Sun, R.; Feigis, M.; Rheinstädter, M.C. Erythro-PmBs: A selective polymyxin b delivery system using antibody-conjugated hybrid erythrocyte liposomes. ACS Infect. Dis., 2022, 8(10), 2059-2072.
[http://dx.doi.org/10.1021/acsinfecdis.2c00017] [PMID: 36173819]
[49]
Schleimer, R.P. Effects of glucocorticosteroids on inflammatory cells relevant to their therapeutic applications in asthma. Am. Rev. Respir. Dis., 1990, 141(2 Pt 2), S59-S69.
[PMID: 2178515]
[50]
Zhang, R.; Wu, S.; Ding, Q.; Fan, Q.; Dai, Y.; Guo, S.; Ye, Y.; Li, C.; Zhou, M. Recent advances in cell membrane-camouflaged nanoparticles for inflammation therapy. Drug Deliv., 2021, 28(1), 1109-1119.
[http://dx.doi.org/10.1080/10717544.2021.1934188] [PMID: 34121563]
[51]
Rossi, L.; Serafini, S.; Cenerini, L.; Picardi, F.; Bigi, L.; Panzani, I.; Magnani, M. Erythrocyte-mediated delivery of dexamethasone in patients with chronic obstructive pulmonary disease. Biotechnol. Appl. Biochem., 2001, 33(2), 85-89.
[http://dx.doi.org/10.1042/BA20000087] [PMID: 11277860]
[52]
Rossi, L.; Castro, M.; D’Orio, F.; Damonte, G.; Serafini, S.; Bigi, L.; Panzani, I.; Novelli, G.; Dallapiccola, B.; Panunzi, S.; Di Carlo, P.; Bella, S.; Magnani, M. Low doses of dexamethasone constantly delivered by autologous erythrocytes slow the progression of lung disease in cystic fibrosis patients. Blood Cells Mol. Dis., 2004, 33(1), 57-63.
[http://dx.doi.org/10.1016/j.bcmd.2004.04.004] [PMID: 15223012]
[53]
Coker, S.A.; Szczepiorkowski, Z.M.; Siegel, A.H.; Ferrari, A.; Mambrini, G.; Anand, R.; Hartman, R.D.; Benatti, L.; Dumont, L.J. A study of the pharmacokinetic properties and the in vivo kinetics of erythrocytes loaded with dexamethasone sodium phosphate in healthy volunteers. Transfus. Med. Rev., 2018, 32(2), 102-110.
[http://dx.doi.org/10.1016/j.tmrv.2017.09.001] [PMID: 29031409]
[54]
Bossa, F.; Annese, V.; Valvano, M.R.; Latiano, A.; Martino, G.; Rossi, L.; Magnani, M.; Palmieri, O.; Serafini, S.; Damonte, G.; De Santo, E.; Andriulli, A. Erythrocytes-mediated delivery of dexamethasone 21-phosphate in steroid-dependent ulcerative colitis: A randomized, double-blind Sham-controlled study. Inflamm. Bowel Dis., 2013, 19(9), 1.
[http://dx.doi.org/10.1097/MIB.0b013e3182874065] [PMID: 23714676]
[55]
Qiang, L.; Hu, J.; Tian, M.; Li, Y.; Ren, C.; Deng, Y.; Jiang, Y. Extracellular vesicles from helicobacter pylori-infected cells and helicobacter pylori outer membrane vesicles in atherosclerosis. Helicobacter, 2022, 27(2), e12877.
[http://dx.doi.org/10.1111/hel.12877] [PMID: 35099837]
[56]
Liu, Y.; Yang, F.; Zou, S.; Qu, L. Rapamycin: A bacteria-derived immunosuppressant that has anti-atherosclerotic effects and its clinical application. Front. Pharmacol., 2019, 9, 1520.
[http://dx.doi.org/10.3389/fphar.2018.01520] [PMID: 30666207]
[57]
Wang, Y.; Zhang, K.; Qin, X.; Li, T.; Qiu, J.; Yin, T.; Huang, J.; McGinty, S.; Pontrelli, G.; Ren, J.; Wang, Q.; Wu, W.; Wang, G. Biomimetic nanotherapies: Red blood cell based core–shell structured nanocomplexes for atherosclerosis management. Adv. Sci., 2019, 6(12), 1900172.
[http://dx.doi.org/10.1002/advs.201900172] [PMID: 31380165]
[58]
Han, J.Y.; Fan, J.Y.; Horie, Y.; Miura, S.; Cui, D.H.; Ishii, H.; Hibi, T.; Tsuneki, H.; Kimura, I. Ameliorating effects of compounds derived from Salvia miltiorrhiza root extract on microcirculatory disturbance and target organ injury by ischemia and reperfusion. Pharmacol. Ther., 2008, 117(2), 280-295.
[http://dx.doi.org/10.1016/j.pharmthera.2007.09.008] [PMID: 18048101]
[59]
Dong, X.; Niu, Y.; Ding, Y.; Wang, Y.; Zhao, J.; Leng, W.; Qin, L. Formulation and drug loading features of nano-erythrocytes. Nanoscale Res. Lett., 2017, 12(1), 202.
[http://dx.doi.org/10.1186/s11671-017-1980-5] [PMID: 28314369]
[60]
Hershfield, M. Adenosine Deaminase Deficiency. GeneReviews ®; Adam, M.P.; Everman, D.B.; Mirzaa, G.M.; Pagon, R.A.; Wallace, S.E.; Bean, L.J.H.; Gripp, K.W.; Amemiya, A., Eds.; University of Washington, Seattle: Seattle, WA,; , 2006, p. 1993-2023.
[61]
Kohn, D.B.; Hershfield, M.S.; Puck, J.M.; Aiuti, A.; Blincoe, A.; Gaspar, H.B.; Notarangelo, L.D.; Grunebaum, E. Consensus approach for the management of severe combined immune deficiency caused by adenosine deaminase deficiency. J. Allergy Clin. Immunol., 2019, 143(3), 852-863.
[http://dx.doi.org/10.1016/j.jaci.2018.08.024] [PMID: 30194989]
[62]
Flinn, A.M.; Gennery, A.R. Adenosine deaminase deficiency: A review. Orphanet J. Rare Dis., 2018, 13(1), 65.
[http://dx.doi.org/10.1186/s13023-018-0807-5] [PMID: 29690908]
[63]
Bax, B.E.; Bain, M.D.; Fairbanks, L.D.; Webster, A.D.B.; Ind, P.W.; Hershfield, M.S.; Chalmers, R.A. A 9-yr evaluation of carrier erythrocyte encapsulated adenosine deaminase (ADA) therapy in a patient with adult-type ADA deficiency. Eur. J. Haematol., 2007, 79(4), 338-348.
[http://dx.doi.org/10.1111/j.1600-0609.2007.00927.x] [PMID: 17680812]
[64]
Kohler, L.; Puertollano, R.; Raben, N. Pompe disease: From basic science to therapy. Neurotherapeutics, 2018, 15(4), 928-942.
[http://dx.doi.org/10.1007/s13311-018-0655-y] [PMID: 30117059]
[65]
Taverna, S.; Cammarata, G.; Colomba, P.; Sciarrino, S.; Zizzo, C.; Francofonte, D.; Zora, M.; Scalia, S.; Brando, C.; Curto, A.L.; Marsana, E.M.; Olivieri, R.; Vitale, S.; Duro, G. Pompe disease: Pathogenesis, molecular genetics and diagnosis. Aging , 2020, 12(15), 15856-15874.
[http://dx.doi.org/10.18632/aging.103794] [PMID: 32745073]
[66]
Meena, N.K.; Raben, N. Pompe disease: New developments in an old lysosomal storage disorder. Biomolecules, 2020, 10(9), 1339.
[http://dx.doi.org/10.3390/biom10091339] [PMID: 32962155]
[67]
Cremel, M.; Guerin, N.; Campello, G.; Barthe, Q.; Berlier, W.; Horand, F.; Godfrin, Y. Innovative approach in Pompe disease therapy: Induction of immune tolerance by antigen-encapsulated red blood cells. Int. J. Pharm., 2015, 491(1-2), 69-77.
[http://dx.doi.org/10.1016/j.ijpharm.2015.05.062] [PMID: 26056928]
[68]
Filosto, M.; Cotti Piccinelli, S.; Caria, F.; Gallo Cassarino, S.; Baldelli, E.; Galvagni, A.; Volonghi, I.; Scarpelli, M.; Padovani, A. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE-MTDPS1). J. Clin. Med., 2018, 7(11), 389.
[http://dx.doi.org/10.3390/jcm7110389] [PMID: 30373120]
[69]
Hirano, M.; Carelli, V.; De Giorgio, R.; Pironi, L.; Accarino, A.; Cenacchi, G.; D’Alessandro, R.; Filosto, M.; Martí, R.; Nonino, F.; Pinna, A.D.; Baldin, E.; Bax, B.E.; Bolletta, A.; Bolletta, R.; Boschetti, E.; Cescon, M.; D’Angelo, R.; Dotti, M.T.; Giordano, C.; Gramegna, L.L.; Levene, M.; Lodi, R.; Mandel, H.; Morelli, M.C.; Musumeci, O.; Pugliese, A.; Scarpelli, M.; Siniscalchi, A.; Spinazzola, A.; Tal, G.; Torres-Torronteras, J.; Vignatelli, L.; Zaidman, I.; Zoller, H.; Rinaldi, R.; Zeviani, M. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): Position paper on diagnosis, prognosis, and treatment by the MNGIE International Network. J. Inherit. Metab. Dis., 2021, 44(2), 376-387.
[http://dx.doi.org/10.1002/jimd.12300] [PMID: 32898308]
[70]
Hirano, M.; Nishigaki, Y.; Martí, R. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): A disease of two genomes. Neurologist, 2004, 10(1), 8-17.
[http://dx.doi.org/10.1097/01.nrl.0000106919.06469.04] [PMID: 14720311]
[71]
Levene, M.; Coleman, D.G.; Kilpatrick, H.C.; Fairbanks, L.D.; Gangadharan, B.; Gasson, C.; Bax, B.E. Preclinical toxicity evaluation of erythrocyte-encapsulated thymidine phosphorylase in BALB/c mice and beagle dogs: An enzyme-replacement therapy for mitochondrial neurogastrointestinal encephalomyopathy. Toxicol. Sci., 2013, 131(1), 311-324.
[http://dx.doi.org/10.1093/toxsci/kfs278] [PMID: 22977166]
[72]
Levene, M.; Bain, M.; Moran, N.; Nirmalananthan, N.; Poulton, J.; Scarpelli, M.; Filosto, M.; Mandel, H.; MacKinnon, A.; Fairbanks, L.; Pacitti, D.; Bax, B. Safety and efficacy of erythrocyte encapsulated thymidine phosphorylase in mitochondrial neurogastrointestinal encephalomyopathy. J. Clin. Med., 2019, 8(4), 457.
[http://dx.doi.org/10.3390/jcm8040457] [PMID: 30959750]
[73]
Bax, B.E.; Levene, M.; Bain, M.D.; Fairbanks, L.D.; Filosto, M. Uçar; Klopstock, T.; Kornblum, C.; Mandel, H.; Rahman, S.; Roubertie, A.; Scarpelli, M.; Sedgwick, P.M.; Baru, M.; Sellos-Moura, M.; Price, J.; Horn, P.; Nirmalananthan, N. Erythrocyte encapsulated thymidine phosphorylase for the treatment of patients with mitochondrial neurogastrointestinal encephalomyopathy: Study protocol for a multi-centre, multiple dose, open label trial. J. Clin. Med., 2019, 8(8), 1096.
[http://dx.doi.org/10.3390/jcm8081096] [PMID: 31344955]
[74]
Gao, W.; Hu, C.M.J.; Fang, R.H.; Luk, B.T.; Su, J.; Zhang, L. Surface functionalization of gold nanoparticles with red blood cell membranes. Adv. Mater., 2013, 25(26), 3549-3553.
[http://dx.doi.org/10.1002/adma.201300638] [PMID: 23712782]
[75]
Brähler, M.; Georgieva, R.; Buske, N.; Müller, A.; Müller, S.; Pinkernelle, J.; Teichgräber, U.; Voigt, A.; Bäumler, H. Magnetite-loaded carrier erythrocytes as contrast agents for magnetic resonance imaging. Nano Lett., 2006, 6(11), 2505-2509.
[http://dx.doi.org/10.1021/nl0618501] [PMID: 17090081]
[76]
Zhu, R.; Avsievich, T.; Popov, A.; Bykov, A.; Meglinski, I. in vivo nano-biosensing element of red blood cell-mediated delivery. Biosens. Bioelectron., 2021, 175, 112845.
[http://dx.doi.org/10.1016/j.bios.2020.112845] [PMID: 33262059]
[77]
Vincy, A.; Mazumder, S. Amrita; Banerjee, I.; Hwang, K.C.; Vankayala, R. Recent progress in red blood cells-derived particles as novel bioinspired drug delivery systems: Challenges and strategies for clinical translation. Front Chem., 2022, 10, 905256.
[http://dx.doi.org/10.3389/fchem.2022.905256] [PMID: 35572105]
[78]
Lynggaard, L.S.; Vaitkeviciene, G.; Langenskiöld, C.; Lehmann, A.K.; Lähteenmäki, P.M.; Lepik, K.; El Hariry, I.; Schmiegelow, K.; Albertsen, B.K. Asparaginase encapsulated in erythrocytes as second-line treatment in hypersensitive patients with acute lymphoblastic leukaemia. Br. J. Haematol., 2022, 197(6), 745-754.
[http://dx.doi.org/10.1111/bjh.18152] [PMID: 35344210]
[79]
Bachet, J.B.; Gay, F.; Maréchal, R.; Galais, M.P.; Adenis, A. Asparagine synthetase expression and phase i study with l-asparaginase encapsulated in red blood cells in patients with pancreatic adenocarcinoma. Pancreas, 2015, 44, 1141-1147.
[http://dx.doi.org/10.1097/MPA.0000000000000394] [PMID: 26355551]
[80]
Hammel, P.; Fabienne, P.; Mineur, L.; Metges, J.P.; Andre, T.; De La Fouchardiere, C.; Louvet, C.; El Hajbi, F.; Faroux, R.; Guimbaud, R.; Tougeron, D.; Bouche, O.; Lecomte, T.; Rebischung, C.; Tournigand, C.; Cros, J.; Kay, R.; Hamm, A.; Gupta, A.; Bachet, J.B.; El Hariry, I. Erythrocyte-encapsulated asparaginase (eryaspase) combined with chemotherapy in second-line treatment of advanced pancreatic cancer: An open-label, randomized Phase IIb trial. Eur. J. Cancer, 2020, 124, 91-101.
[http://dx.doi.org/10.1016/j.ejca.2019.10.020] [PMID: 31760314]
[81]
Hammel, P.; Berardi, R.; Creemers, G.; Cutsem, E.V.; Cubillo, A.; Greil, R.; Wasan, H.; Metges, J.; Noel, M.; Nygren, P.; Osterlund, P.; Seufferlein, T.; Macarulla, T.; Fountzilas, C.; Gupta, A.; Grummer, L.; Kacel, S.; Biswas-Baldwin, N.; Kay, R.; Youssoufian, H.; El-Hariry, I.; Hidalgo, M. P-80 TRYbeCA-1: A randomized, phase 3 study of eryaspase in combination with chemotherapy versus chemotherapy alone as second-line treatment in patients with pancreatic adenocarcinoma. Ann. Oncol., 2020, 31, S115.
[http://dx.doi.org/10.1016/j.annonc.2020.04.162]
[82]
Gholami, S.; Abidalhassan, M.; Cho, M.; Saeed, A.; Rocha, F.G. Current progress and advances in gastrointestinal cancers: Highlights from the 2022 annual American society of clinical oncology (ASCO) gastrointestinal meeting. J Gastrointest Cancer 2022. Epub ahead of print.
[http://dx.doi.org/10.1007/s12029-022-00849-5] [PMID: 35856132]
[83]
Chessa, L.; Leuzzi, V.; Plebani, A.; Soresina, A.; Micheli, R.; D’Agnano, D.; Venturi, T.; Molinaro, A.; Fazzi, E.; Marini, M.; Ferremi Leali, P.; Quinti, I.; Cavaliere, F.M.; Girelli, G.; Pietrogrande, M.C.; Finocchi, A.; Tabolli, S.; Abeni, D.; Magnani, M. Intra-erythrocyte infusion of dexamethasone reduces neurological symptoms in ataxia teleangiectasia patients: Results of a phase 2 trial. Orphanet J. Rare Dis., 2014, 9(1), 5.
[http://dx.doi.org/10.1186/1750-1172-9-5] [PMID: 24405665]
[84]
Wang, L.Y.; Shi, X.Y.; Yang, C.S.; Huang, D.M. Versatile RBC-derived vesicles as nanoparticle vector of photosensitizers for photodynamic therapy. Nanoscale, 2013, 5(1), 416-421.
[http://dx.doi.org/10.1039/C2NR32506C] [PMID: 23187860]
[85]
Wiegmann, L.; de Zélicourt, D.A.; Speer, O.; Muller, A.; Goede, J.S.; Seifert, B.; Kurtcuoglu, V. Influence of standard laboratory procedures on measures of erythrocyte damage. Front. Physiol., 2017, 8, 731.
[http://dx.doi.org/10.3389/fphys.2017.00731] [PMID: 29042854]
[86]
Remigante, A.; Morabito, R.; Marino, A. Band 3 protein function and oxidative stress in erythrocytes. J. Cell. Physiol., 2021, 236(9), 6225-6234.
[http://dx.doi.org/10.1002/jcp.30322] [PMID: 33559172]
[87]
Badior, K.E.; Casey, J.R. Large conformational dynamics in Band 3 protein: Significance for erythrocyte senescence signalling. Biochim. Biophys. Acta Biomembr., 2021, 1863(10), 183678.
[http://dx.doi.org/10.1016/j.bbamem.2021.183678] [PMID: 34175296]
[88]
Huang, Y.X.; Tuo, W.W.; Wang, D.; Kang, L.L.; Chen, X.Y.; Luo, M. Restoring the youth of aged red blood cells and extending their lifespan in circulation by remodelling membrane sialic acid. J. Cell. Mol. Med., 2016, 20(2), 294-301.
[http://dx.doi.org/10.1111/jcmm.12721] [PMID: 26576513]
[89]
Oldenborg, P.A.; Zheleznyak, A.; Fang, Y.F.; Lagenaur, C.F.; Gresham, H.D.; Lindberg, F.P. Role of CD47 as a marker of self on red blood cells. Science, 2000, 288(5473), 2051-2054.
[http://dx.doi.org/10.1126/science.288.5473.2051] [PMID: 10856220]
[90]
Tajerzadeh, H.; Hamidi, M. Evaluation of hypotonic preswelling method for encapsulation of enalaprilat in intact human erythrocytes. Drug Dev. Ind. Pharm., 2000, 26(12), 1247-1257.
[http://dx.doi.org/10.1081/DDC-100102306] [PMID: 11147125]
[91]
Mancardi, D.; Mezzanotte, M.; Arrigo, E.; Barinotti, A.; Roetto, A. Iron overload, oxidative stress, and ferroptosis in the failing heart and liver. Antioxidants, 2021, 10(12), 1864.
[http://dx.doi.org/10.3390/antiox10121864] [PMID: 34942967]
[92]
Caocci, G.; Simula, M.P.; Ghiani, S.; Mulas, O.; Mainas, G.; Atzeni, S.; Pettinau, M.; Usala, E.; La Nasa, G. Increased incidence of infection in patients with myelofibrosis and transfusion-associated iron overload in the clinical setting. Int. J. Hematol., 2020, 111(5), 614-618.
[http://dx.doi.org/10.1007/s12185-020-02861-6] [PMID: 32207052]
[93]
García-Roa, M.; Del Carmen Vicente-Ayuso, M.; Bobes, A.M.; Pedraza, A.C.; González-Fernández, A.; Martín, M.P.; Sáez, I.; Seghatchian, J.; Gutiérrez, L. Red blood cell storage time and transfusion: Current practice, concerns and future perspectives. Blood Transfus., 2017, 15(3), 222-231.
[PMID: 28518049]
[94]
da Silveira Cavalcante, L.; Feng, Q.; Chin-Yee, I.; Acker, J.P.; Holovati, J.L. Effect of liposome-treated red blood cells in an anemic rat model. J. Liposome Res., 2017, 27(1), 56-63.
[http://dx.doi.org/10.3109/08982104.2016.1149867]
[95]
Henkelman, S.; Noorman, F.; Badloe, J.F.; Lagerberg, J.W.M. Utilization and quality of cryopreserved red blood cells in transfusion medicine. Vox Sang., 2015, 108(2), 103-112.
[http://dx.doi.org/10.1111/vox.12218] [PMID: 25471135]
[96]
Burns, J.M.; Yoshida, T.; Dumont, L.J.; Yang, X.; Piety, N.Z.; Shevkoplyas, S.S. Deterioration of red blood cell mechanical properties is reduced in anaerobic storage. Blood Transfus., 2016, 14(1), 80-88.
[PMID: 26674833]
[97]
Eades, B. Freezing and recovering rare red blood cells using glycerol. Immunohematology, 2020, 36(3), 85-88.
[http://dx.doi.org/10.21307/immunohematology-2020-045] [PMID: 33112631]
[98]
Eades, B. Freezing and recovering rare red blood cells using liquid nitrogen. Immunohematology, 2021, 37(4), 157-159.
[http://dx.doi.org/10.21307/immunohematology-2021-025] [PMID: 34964316]
[99]
Ito, Y.; Ogiso, T.; Iwaki, M.; Yoneda, I.; Okuda, Y. In vitro stability of insulin-loaded erythrocytes after freezing storage. J. Pharmacobiodyn., 1989, 12(4), 201-207.
[http://dx.doi.org/10.1248/bpb1978.12.201] [PMID: 2677306]
[100]
Drew, V.J.; Barro, L.; Seghatchian, J.; Burnouf, T. Towards pathogen inactivation of red blood cells and whole blood targeting viral DNA/RNA: design, technologies, and future prospects for developing countries. Blood Transfus., 2017, 15(6), 512-521.
[http://dx.doi.org/10.2450/2017.0344-16] [PMID: 28488960]
[101]
Bax, B.E. Erythrocytes as carriers of therapeutic enzymes. Pharmaceutics, 2020, 12(5), 435.
[http://dx.doi.org/10.3390/pharmaceutics12050435] [PMID: 32397259]
[102]
Wagstaff, W. GMP in blood collection and processing. Vox Sang., 1998, 74(S2), 513-521.
[http://dx.doi.org/10.1111/j.1423-0410.1998.tb05467.x] [PMID: 9704492]
[103]
Smit-Sibinga, C.T. Total quality management in blood transfusion. Vox Sang., 2000, 78(S2), 281-286.
[PMID: 10938970]
[104]
Hanley, T.; Vankayala, R.; Lee, C.H.; Tang, J.C.; Burns, J.M.; Anvari, B. Phototheranostics using erythrocyte-based particles. Biomolecules, 2021, 11(5), 729.
[http://dx.doi.org/10.3390/biom11050729] [PMID: 34068081]
[105]
Wang, F.; Zong, R.; Chen, G. Erythrocyte-enabled immunomodulation for vaccine delivery. J. Control. Release, 2022, 341, 314-328.
[http://dx.doi.org/10.1016/j.jconrel.2021.11.035] [PMID: 34838929]
[106]
Lægreid, I.J.; Wilson, T.; Næss, K.H.; Ernstsen, S.L.; Schou, V.; Arsenovic, M.G. Whole blood transfusion and paroxysmal nocturnal haemoglobinuria meet again: Minor incompatibility, major trouble. Vox Sang., 2022, 117(11), 1323-1326.
[http://dx.doi.org/10.1111/vox.13354] [PMID: 36102159]
[107]
Porter, J. Blood transfusion: Quality and safety issues in thalassemia, basic requirements and new trends. Hemoglobin, 2009, 33(S1), S28-S36.
[http://dx.doi.org/10.3109/03630260903346593] [PMID: 20001630]
[108]
Linder, G.E.; Chou, S.T. Red cell transfusion and alloimmunization in sickle cell disease. Haematologica, 2021, 106(7), 1805-1815.
[http://dx.doi.org/10.3324/haematol.2020.270546] [PMID: 33792218]
[109]
Xu, L.; Liang, Y.; Xu, X.; Xia, J.; Wen, C.; Zhang, P.; Duan, L. Blood cell-derived extracellular vesicles: diagnostic biomarkers and smart delivery systems. Bioengineered, 2021, 12(1), 7929-7940.
[http://dx.doi.org/10.1080/21655979.2021.1982320] [PMID: 34622717]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy