Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

泛癌分析证实前列腺肿瘤过表达-1在人类癌症中的预后和免疫作用

卷 24, 期 1, 2024

发表于: 19 April, 2023

页: [28 - 45] 页: 18

弟呕挨: 10.2174/1568009623666230316153813

价格: $65

conference banner
摘要

背景:前列腺肿瘤过表达-1 (PTOV1)是一种保守的与癌症进展相关的致癌接头蛋白,可能是几种恶性肿瘤的独立预后标志物。因此,利用泛癌症研究来探索PTOV1的意义是有价值的,并可能揭示癌症治疗的新靶点。 方法:进行了全面的生物信息学分析。利用qRT-PCR技术证实了几种肿瘤细胞系中PTOV1的异常表达。 结果:我们观察到,在18种癌症组织中,PTOV1 mRNA的高表达与一系列恶性肿瘤的生存预后差有关。14种恶性肿瘤的免疫亚型和6种恶性肿瘤的分子亚型与PTOV1相关。还观察到PTOV1与免疫检查点(ICP)基因之间存在实质性关联。肿瘤突变负荷(TMB)、微卫星不稳定性(MSI)和DNA甲基化分析表明,PTOV1在一系列肿瘤中起促癌作用。此外,对PTOV1及其相关基因的富集研究表明,RNA剪接可能参与了PTOV1在癌症中的作用。最后,我们还通过qRT-PCR验证了PTOV1在膀胱癌、乳腺癌、CESC、LIHC细胞系中的表达升高。 结论:我们的生物信息学研究表明,PTOV1可能参与肿瘤免疫。此外,发现差异表达的PTOV1与癌症预后不良有关,RNA剪接可能是这种影响的具体机制。因此,PTOV1 mRNA和相应的蛋白可能在多种癌症中作为潜在的预后指标和治疗靶点。

关键词: 前列腺肿瘤过表达-1,肿瘤,生物信息学,预后,肿瘤,免疫浸润。

图形摘要
[1]
Benedit, P.; Paciucci, R.; Thomson, T.M.; Valeri, M.; Nadal, M.; Càceres, C.; de Torres, I.; Estivill, X.; Lozano, J.J.; Morote, J.; Reventós, J. PTOV1, a novel protein overexpressed in prostate cancer containing a new class of protein homology blocks. Oncogene, 2001, 20(12), 1455-1464.
[http://dx.doi.org/10.1038/sj.onc.1204233] [PMID: 11313889]
[2]
Santamaría, A.; Fernández, P.L.; Farré, X.; Benedit, P.; Reventós, J.; Morote, J.; Paciucci, R.; Thomson, T.M. PTOV-1, a novel protein overexpressed in prostate cancer, shuttles between the cytoplasm and the nucleus and promotes entry into the S phase of the cell division cycle. Am. J. Pathol., 2003, 162(3), 897-905.
[http://dx.doi.org/10.1016/S0002-9440(10)63885-0] [PMID: 12598323]
[3]
Cánovas, V.; Lleonart, M.; Morote, J.; Paciucci, R. The role of prostate tumor overexpressed 1 in cancer progression. Oncotarget, 2017, 8(7), 12451-12471.
[http://dx.doi.org/10.18632/oncotarget.14104] [PMID: 28029646]
[4]
Youn, H.S.; Park, U.H.; Kim, E.J.; Um, S.J. PTOV1 antagonizes MED25 in RAR transcriptional activation. Biochem. Biophys. Res. Commun., 2011, 404(1), 239-244.
[http://dx.doi.org/10.1016/j.bbrc.2010.11.100] [PMID: 21110951]
[5]
Shilkaitis, A.; Green, A.; Christov, K. Retinoids induce cellular senescence in breast cancer cells by RAR-β dependent and independent pathways: Potential clinical implications. (Review). Int. J. Oncol., 2015, 47(1), 35-42.
[http://dx.doi.org/10.3892/ijo.2015.3013] [PMID: 25997921]
[6]
Artavanis-Tsakonas, S.; Rand, M.D.; Lake, R.J. Notch signaling: Cell fate control and signal integration in development. Science, 1999, 284(5415), 770-776.
[http://dx.doi.org/10.1126/science.284.5415.770] [PMID: 10221902]
[7]
Kolev, V.; Mandinova, A.; Guinea-Viniegra, J.; Hu, B.; Lefort, K.; Lambertini, C.; Neel, V.; Dummer, R.; Wagner, E.F.; Dotto, G.P. EGFR signalling as a negative regulator of Notch1 gene transcription and function in proliferating keratinocytes and cancer. Nat. Cell Biol., 2008, 10(8), 902-911.
[http://dx.doi.org/10.1038/ncb1750] [PMID: 18604200]
[8]
Alaña, L.; Sesé, M.; Cánovas, V.; Punyal, Y.; Fernández, Y.; Abasolo, I.; de Torres, I.; Ruiz, C.; Espinosa, L.; Bigas, A.; y Cajal, S.R.; Fernández, P.L.; Serras, F.; Corominas, M.; Thomson, T.M.; Paciucci, R. Prostate tumor OVerexpressed-1 (PTOV1) down-regulates HES1 and HEY1 notch targets genes and promotes prostate cancer progression. Mol. Cancer, 2014, 13(1), 74.
[http://dx.doi.org/10.1186/1476-4598-13-74] [PMID: 24684754]
[9]
Li, R.; Leng, A.; Liu, X.; Hu, T.; Zhang, L.; Li, M.; Jiang, X.; Zhou, Y.; Xu, C. Overexpressed PTOV1 associates with tumorigenesis and progression of esophageal squamous cell carcinoma. Tumour Biol., 2017, 39(6), 1-10.
[http://dx.doi.org/10.1177/1010428317705013] [PMID: 28651486]
[10]
Guo, F.; Feng, L.; Hu, J.L.; Wang, M.L.; Luo, P.; Zhong, X.M.; Deng, A.M. Increased PTOV1 expression is related to poor prognosis in epithelial ovarian cancer. Tumour Biol., 2015, 36(1), 453-458.
[http://dx.doi.org/10.1007/s13277-014-2662-x] [PMID: 25270739]
[11]
Yang, Q.; Lin, H.; Wu, S.; Lei, F.; Zhu, X.; Song, L.; Hong, M.; Guo, L. Prostate tumor overexpressed 1 (PTOV1) is a novel prognostic marker for nasopharyngeal carcinoma progression and poor survival outcomes. PLoS One, 2015, 10(8), e0136448.
[http://dx.doi.org/10.1371/journal.pone.0136448] [PMID: 26305455]
[12]
Shen, H.; Liao, B.; Wan, Z.; Zhao, Y.; You, Z.; Liu, J.; Lan, J.; He, S. PTOV1 promotes cisplatin-induced chemotherapy resistance by activating the nuclear factor kappa B pathway in ovarian cancer. Mol. Ther. Oncolytics, 2021, 20, 499-507.
[http://dx.doi.org/10.1016/j.omto.2021.02.008] [PMID: 33738336]
[13]
Cánovas, V.; Puñal, Y.; Maggio, V.; Redondo, E.; Marín, M.; Mellado, B.; Olivan, M.; Lleonart, M.; Planas, J.; Morote, J.; Paciucci, R. Prostate tumor overexpressed-1 (PTOV1) promotes docetaxel-resistance and survival of castration resistant prostate cancer cells. Oncotarget, 2017, 8(35), 59165-59180.
[http://dx.doi.org/10.18632/oncotarget.19467] [PMID: 28938627]
[14]
Wu, Z.; Liu, Z.; Jiang, X.; Mi, Z.; Meng, M.; Wang, H.; Zhao, J.; Zheng, B.; Yuan, Z. Depleting PTOV1 sensitizes non-small cell lung cancer cells to chemotherapy through attenuating cancer stem cell traits. J. Exp. Clin. Cancer Res., 2019, 38(1), 341.
[http://dx.doi.org/10.1186/s13046-019-1349-y] [PMID: 31387622]
[15]
Allina, D.O.; Andreeva, Y.Y.; Zavalishina, L.E.; Moskvina, L.V.; Frank, G.A. Estimation of the diagnostic potential of APOD, PTOV1, and EPHA4 for prostatic neoplasms. Arkh. Patol., 2016, 78(5), 9-14.
[http://dx.doi.org/10.17116/patol20167859-14] [PMID: 27804940]
[16]
Li, T.; Fu, J.; Zeng, Z.; Cohen, D.; Li, J.; Chen, Q.; Li, B.; Liu, X.S. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res., 2020, 48(W1), W509-W514.
[http://dx.doi.org/10.1093/nar/gkaa407] [PMID: 32442275]
[17]
Tang, Z.; Kang, B.; Li, C.; Chen, T.; Zhang, Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res., 2019, 47(W1), W556-W560.
[http://dx.doi.org/10.1093/nar/gkz430] [PMID: 31114875]
[18]
Wu, C.; MacLeod, I.; Su, A.I. BioGPS and MyGene.info: Organizing online, gene-centric information. Nucleic Acids Res., 2013, 41(D1), D561-D565.
[http://dx.doi.org/10.1093/nar/gks1114] [PMID: 23175613]
[19]
Nagy, Á.; Munkácsy, G.; Győrffy, B. Pancancer survival analysis of cancer hallmark genes. Sci. Rep., 2021, 11(1), 6047.
[http://dx.doi.org/10.1038/s41598-021-84787-5] [PMID: 33723286]
[20]
Mizuno, H.; Kitada, K.; Nakai, K.; Sarai, A. PrognoScan: A new database for meta-analysis of the prognostic value of genes. BMC Med. Genomics, 2009, 2(1), 18.
[http://dx.doi.org/10.1186/1755-8794-2-18] [PMID: 19393097]
[21]
Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; Cerami, E.; Sander, C.; Schultz, N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal., 2013, 6(269), 11.
[http://dx.doi.org/10.1126/scisignal.2004088] [PMID: 23550210]
[22]
Ru, B.; Wong, C.N.; Tong, Y.; Zhong, J.Y.; Zhong, S.S.W.; Wu, W.C.; Chu, K.C.; Wong, C.Y.; Lau, C.Y.; Chen, I.; Chan, N.W.; Zhang, J. TISIDB: An integrated repository portal for tumor–immune system interactions. Bioinformatics, 2019, 35(20), 4200-4202.
[http://dx.doi.org/10.1093/bioinformatics/btz210] [PMID: 30903160]
[23]
Hu, J.; Qiu, D.; Yu, A.; Hu, J.; Deng, H.; Li, H.; Yi, Z.; Chen, J.; Zu, X. YTHDF1 is a potential pan-cancer biomarker for prognosis and immunotherapy. Front. Oncol., 2021, 11, 607224.
[http://dx.doi.org/10.3389/fonc.2021.607224] [PMID: 34026603]
[24]
Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 2021, 49(D1), D605-D612.
[http://dx.doi.org/10.1093/nar/gkaa1074] [PMID: 33237311]
[25]
Cui, X.; Zhang, X.; Liu, M.; Zhao, C.; Zhang, N.; Ren, Y.; Su, C.; Zhang, W.; Sun, X.; He, J.; Gao, X.; Yang, J. A pan-cancer analysis of the oncogenic role of staphylococcal nuclease domain-containing protein 1 (SND1) in human tumors. Genomics, 2020, 112(6), 3958-3967.
[http://dx.doi.org/10.1016/j.ygeno.2020.06.044] [PMID: 32645525]
[26]
Sun, Y.; Sun, X.; Liu, S.; Liu, L.; Chen, J. The overlap between regeneration and fibrosis in injured skeletal muscle is regulated by phosphatidylinositol 3-kinase/Akt signaling pathway - A bioinformatic analysis based on lncRNA microarray. Gene, 2018, 672, 79-87.
[http://dx.doi.org/10.1016/j.gene.2018.06.001] [PMID: 29870770]
[27]
Loizides, S.; Constantinidou, A. Triple negative breast cancer: Immunogenicity, tumor microenvironment, and immunotherapy. Front. Genet., 2023, 13, 1095839-1095839.
[http://dx.doi.org/10.3389/fgene.2022.1095839] [PMID: 36712858]
[28]
Wang, L.H.; Wu, C.F.; Rajasekaran, N.; Shin, Y.K. Loss of tumor suppressor gene function in human cancer: An overview. Cell. Physiol. Biochem., 2018, 51(6), 2647-2693.
[http://dx.doi.org/10.1159/000495956] [PMID: 30562755]
[29]
Xu, D.; Liu, X.; Wang, Y.; Zhou, K.; Wu, J.; Chen, J.; Chen, C.; Chen, L.; Zheng, J. Identification of immune subtypes and prognosis of hepatocellular carcinoma based on immune checkpoint gene expression profile. Biomed. Pharmacother., 2020, 126, 109903.
[http://dx.doi.org/10.1016/j.biopha.2020.109903] [PMID: 32113055]
[30]
Dostert, C.; Grusdat, M.; Letellier, E.; Brenner, D. The TNF family of ligands and receptors: Communication modules in the immune system and beyond. Physiol. Rev., 2019, 99(1), 115-160.
[http://dx.doi.org/10.1152/physrev.00045.2017] [PMID: 30354964]
[31]
D’Assoro, A.; Leon-Ferre, R.; Braune, E.B.; Lendahl, U. Roles of notch signaling in the tumor microenvironment. Int. J. Mol. Sci., 2022, 23(11), 6241.
[http://dx.doi.org/10.3390/ijms23116241] [PMID: 35682918]
[32]
Cui, Y.; Ma, W.; Lei, F.; Li, Q.; Su, Y.; Lin, X.; Lin, C.; Zhang, X.; Ye, L.; Wu, S.; Li, J.; Yuan, Z.; Song, L. Prostate tumour overexpressed-1 promotes tumourigenicity in human breast cancer via activation of Wnt/β-catenin signalling. J. Pathol., 2016, 239(3), 297-308.
[http://dx.doi.org/10.1002/path.4725] [PMID: 27060981]
[33]
Chen, Y.; McAndrews, K.M.; Kalluri, R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat. Rev. Clin. Oncol., 2021, 18(12), 792-804.
[http://dx.doi.org/10.1038/s41571-021-00546-5] [PMID: 34489603]
[34]
Ganesh, S.K.; Subathra Devi, C. Molecular and therapeutic insights of rapamycin: A multi-faceted drug from Streptomyces hygroscopicus. Mol. Biol. Rep., 2023, 50, 1-19.
[http://dx.doi.org/10.1007/s11033-023-08283-x] [PMID: 36696023]
[35]
Yang, R.; Yu, Y. Glucocorticoids are double-edged sword in the treatment of COVID-19 and cancers. Int. J. Biol. Sci., 2021, 17(6), 1530-1537.
[http://dx.doi.org/10.7150/ijbs.58695] [PMID: 33907516]
[36]
Edelman, G.; Rodon, J.; Lager, J.; Castell, C.; Jiang, J.; Van Allen, E.M.; Wagle, N.; Lindeman, N.I.; Sholl, L.M.; Shapiro, G.I.; Phase, I. Phase I trial of a tablet formulation of pilaralisib, a Pan-Class I PI3K inhibitor, in patients with advanced solid tumors. Oncologist, 2018, 23(4), 401-e38.
[http://dx.doi.org/10.1634/theoncologist.2017-0691] [PMID: 29593099]
[37]
Lim, J.S.; Ibaseta, A.; Fischer, M.M.; Cancilla, B.; O’Young, G.; Cristea, S.; Luca, V.C.; Yang, D.; Jahchan, N.S.; Hamard, C.; Antoine, M.; Wislez, M.; Kong, C.; Cain, J.; Liu, Y.W.; Kapoun, A.M.; Garcia, K.C.; Hoey, T.; Murriel, C.L.; Sage, J. Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer. Nature, 2017, 545(7654), 360-364.
[http://dx.doi.org/10.1038/nature22323] [PMID: 28489825]
[38]
Marqués, N.; Sesé, M.; Cánovas, V.; Valente, F.; Bermudo, R.; de Torres, I.; Fernández, Y.; Abasolo, I.; Fernández, P.L.; Contreras, H.; Castellón, E.; Celià-Terrassa, T.; Méndez, R.; Ramón y Cajal, S.; Thomson, T.M.; Paciucci, R. Regulation of protein translation and c-Jun expression by prostate tumor overexpressed 1. Oncogene, 2014, 33(9), 1124-1134.
[http://dx.doi.org/10.1038/onc.2013.51] [PMID: 23455324]
[39]
Karna, S.K.L.; Ahmad, F.; Lone, B.A.; Pokharel, Y.R. Knockdown of PTOV1 and PIN1 exhibit common phenotypic anti-cancer effects in MDA-MB-231 cells. PLoS One, 2019, 14(5), e0211658.
[http://dx.doi.org/10.1371/journal.pone.0211658] [PMID: 31083670]
[40]
Lei, F.; Zhang, L.; Li, X.; Lin, X.; Wu, S.; Li, F.; Liu, J. Overexpression of prostate tumor overexpressed 1 correlates with tumor progression and predicts poor prognosis in breast cancer. BMC Cancer, 2014, 14(1), 457.
[http://dx.doi.org/10.1186/1471-2407-14-457] [PMID: 24947166]
[41]
Ziani, L.; Chouaib, S.; Thiery, J. Alteration of the antitumor immune response by cancer-associated fibroblasts. Front. Immunol., 2018, 9, 414.
[http://dx.doi.org/10.3389/fimmu.2018.00414] [PMID: 29545811]
[42]
Liu, T.; Han, C.; Wang, S.; Fang, P.; Ma, Z.; Xu, L.; Yin, R. Cancer-associated fibroblasts: An emerging target of anti-cancer immunotherapy. J. Hematol. Oncol., 2019, 12(1), 86.
[http://dx.doi.org/10.1186/s13045-019-0770-1] [PMID: 31462327]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy