Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Research Article

Structure-based Virtual Screening, Molecular Docking, Molecular Dynamics Simulation, and Metabolic Reactivity Studies of Quinazoline Derivatives for their Anti-EGFR Activity Against Tumor Angiogenesis

Author(s): Altaf Ahmad Shah, Shaban Ahmad, Manoj Kumar Yadav, Khalid Raza, Mohammad Amjad Kamal and Salman Akhtar*

Volume 31, Issue 5, 2024

Published on: 19 May, 2023

Page: [595 - 619] Pages: 25

DOI: 10.2174/0929867330666230309143711

Price: $65

conference banner
Abstract

Background: Epidermal growth factor receptor (EGFR/HER-1) and its role in tumor development and progression through the mechanism of tumor angiogenesis is prevalent in non-small lung cancer, head and neck cancer, cholangiocarcinoma & glioblastoma. Previous treatments targeting the oncogenic activity of EGFR's kinase domain have been hindered by acquired mutational resistance and side effects from existing drugs like erlotinib, highlighting the need for new EGFR inhibitors through structure- based drug designing.

Objective: The research aims to develop novel quinazoline derivatives through structure-based virtual screening, molecular docking, and molecular dynamics simulation to potentially interact with EGFR's kinase domain and impede tumor angiogenic phenomenon.

Methods: Quinazoline derivatives were retrieved and filtered from the PubChem database using structure- based virtual screening and the Lipinski rule of five drug-likeness studies. Molecular docking-based virtual screening methods and molecular dynamics simulation were then carried out to identify top leads.

Results: A total of 1000 quinazoline derivatives were retrieved, with 671 compounds possessing druglike properties after applying Lipinski filters. Further filtration using ADME and toxicity filters yielded 28 compounds with good pharmacokinetic profiles. Docking-based virtual screening identified seven compounds with better binding scores than the control drug, dacomitinib. After cross-checking binding scores, three top compounds QU524, QU571, and QU297 were selected for molecular dynamics simulation study of 100 ns interval using Desmond module of Schrodinger maestro to understand their conformational stability.

Conclusion: The research results showed that the selected quinazoline leads exhibited better binding affinity and conformational stability than the control drug, erlotinib. These compounds also had good pharmacokinetic and pharmacodynamic profiles and did not violate Lipinski’s rule of five limits. The findings suggest that these leads have the potential to target EGFR's kinase domain and inhibit the EGFR-associated phenomenon of tumor angiogenesis.

Keywords: Tumour angiogenesis, T790M mutation, C797S mutation, drug resistance, metabolic reactivity, hERG inhibition.

[1]
Ellis, L.M. Epidermal growth factor receptor in tumor angiogenesis. Hematol. Oncol. Clin. North Am., 2004, 18(5), 1007-1021, viii.
[http://dx.doi.org/10.1016/j.hoc.2004.06.002] [PMID: 15474332]
[2]
Salomon, D.S.; Brandt, R.; Ciardiello, F.; Normanno, N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit. Rev. Oncol. Hematol., 1995, 19(3), 183-232.
[http://dx.doi.org/10.1016/1040-8428(94)00144-I] [PMID: 7612182]
[3]
Shah, A.A.; Kamal, M.A.; Akhtar, S. Tumor angiogenesis and VEGFR-2: Mechanism, pathways and current biological therapeutic interventions. Curr. Drug Metab., 2021, 22(1), 50-59.
[http://dx.doi.org/10.2174/18755453MTEwxNzQ0x] [PMID: 33076807]
[4]
Minder, P.; Zajac, E.; Quigley, J.P.; Deryugina, E.I. EGFR regulates the development and microarchitecture of intratumoral angiogenic vasculature capable of sustaining cancer cell intravasation. Neoplasia, 2015, 17(8), 634-649.
[http://dx.doi.org/10.1016/j.neo.2015.08.002] [PMID: 26408256]
[5]
Sasaki, T.; Hiroki, K.; Yamashita, Y. The role of epidermal growth factor receptor in cancer metastasis and microenvironment. Bio. Med. Res. Int., 2013, 2013, 1-8.
[http://dx.doi.org/10.1155/2013/546318] [PMID: 23986907]
[6]
De Jong, K.P.; Stellema, R.; Karrenbeld, A.; Koudstaal, J.; Gouw, A.S.; Sluiter, W.J.; Peeters, P.M.J.G.; Slooff, M.J.H.; De Vries, E.G.E. Clinical relevance of transforming growth factor? epidermal growth factor receptor, p53, and Ki67 in colorectal liver metastases and corresponding primary tumors. Hepatology, 1998, 28(4), 971-979.
[http://dx.doi.org/10.1002/hep.510280411] [PMID: 9755233]
[7]
Mendelsohn, J. The epidermal growth factor receptor as a target for cancer therapy. Endocr. Relat. Cancer, 2001, 8(1), 3-9.
[http://dx.doi.org/10.1677/erc.0.0080003] [PMID: 11350723]
[8]
Herbst, R.S. Review of epidermal growth factor receptor biology. Int. J. Radiat. Oncol. Biol. Phys., 2004, 59(2)(Suppl.), S21-S26.
[http://dx.doi.org/10.1016/j.ijrobp.2003.11.041] [PMID: 15142631]
[9]
Harris, A.L. Hypoxia - a key regulatory factor in tumour growth. Nat. Rev. Cancer, 2002, 2(1), 38-47.
[http://dx.doi.org/10.1038/nrc704] [PMID: 11902584]
[10]
Suhardja, A.; Hoffman, H. Role of growth factors and their receptors in proliferation of microvascular endothelial cells. Microsc. Res. Tech., 2003, 60(1), 70-75.
[http://dx.doi.org/10.1002/jemt.10245] [PMID: 12500263]
[11]
Ellis, L.; Liu, W.; Ahmad, S.A.; Fan, F.; Jung, Y.D.; Shaheen, R.M.; Reinmuth, N. Overview of angiogenesis: Biologic implications for antiangiogenic therapy. Semin. Oncol., 2001, 28(5)(Suppl. 16), 94-104.
[http://dx.doi.org/10.1016/S0093-7754(01)90287-8] [PMID: 11706401]
[12]
Fidler, I.J.; Yano, S.; Zhang, R.; Fujimaki, T.; Bucana, C.D. The seed and soil hypothesis: vascularisation and brain metastases. Lancet Oncol., 2002, 3(1), 53-57.
[http://dx.doi.org/10.1016/S1470-2045(01)00622-2] [PMID: 11905606]
[13]
Iqbal, S.; Lenz, H.J. Integration of novel agents in the treatment of colorectal cancer. Cancer Chemother. Pharmacol., 2004, 54(Suppl. 1), S32-S39.
[http://dx.doi.org/10.1007/s00280-004-0884-0] [PMID: 15309512]
[14]
Langley, R.R.; Fan, D.; Tsan, R.Z.; Rebhun, R.; He, J.; Kim, S.J.; Fidler, I.J. Activation of the platelet-derived growth factor-receptor enhances survival of murine bone endothelial cells. Cancer Res., 2004, 64(11), 3727-3730.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3863] [PMID: 15172974]
[15]
Kim, S.J.; Uehara, H.; Karashima, T.; Shepherd, D.L.; Killion, J.J.; Fidler, I.J. Blockade of epidermal growth factor receptor signaling in tumor cells and tumor-associated endothelial cells for therapy of androgen-independent human prostate cancer growing in the bone of nude mice. Clin. Cancer Res., 2003, 9(3), 1200-1210.
[PMID: 12631626]
[16]
Sasaki, T.; Nakamura, T.; Rebhun, R.B.; Cheng, H.; Hale, K.S.; Tsan, R.Z.; Fidler, I.J.; Langley, R.R. Modification of the primary tumor microenvironment by transforming growth factor alpha-epidermal growth factor receptor signaling promotes metastasis in an orthotopic colon cancer model. Am. J. Pathol., 2008, 173(1), 205-216.
[http://dx.doi.org/10.2353/ajpath.2008.071147] [PMID: 18583324]
[17]
Liu, T.C.; Jin, X.; Wang, Y.; Wang, K. Role of epidermal growth factor receptor in lung cancer and targeted therapies. Am. J. Cancer Res., 2017, 7(2), 187-202.
[PMID: 28337370]
[18]
Larsen, A.K.; Ouaret, D.; El Ouadrani, K.; Petitprez, A. Targeting EGFR and VEGF(R) pathway cross-talk in tumor survival and angiogenesis. Pharmacol. Ther., 2011, 131(1), 80-90.
[http://dx.doi.org/10.1016/j.pharmthera.2011.03.012] [PMID: 21439312]
[19]
Niu, G.; Wright, K.L.; Huang, M.; Song, L.; Haura, E.; Turkson, J.; Zhang, S.; Wang, T.; Sinibaldi, D.; Coppola, D.; Heller, R.; Ellis, L.M.; Karras, J.; Bromberg, J.; Pardoll, D.; Jove, R.; Yu, H. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene, 2002, 21(13), 2000-2008.
[http://dx.doi.org/10.1038/sj.onc.1205260] [PMID: 11960372]
[20]
Forsythe, J.A.; Jiang, B.H.; Iyer, N.V.; Agani, F.; Leung, S.W.; Koos, R.D.; Semenza, G.L. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol., 1996, 16(9), 4604-4613.
[http://dx.doi.org/10.1128/MCB.16.9.4604] [PMID: 8756616]
[21]
Corrado, C.; Fontana, S. Hypoxia and HIF signaling: One axis with divergent effects. Int. J. Mol. Sci., 2020, 21(16), 5611.
[http://dx.doi.org/10.3390/ijms21165611] [PMID: 32764403]
[22]
Del Re, M.; Crucitta, S.; Gianfilippo, G.; Passaro, A.; Petrini, I.; Restante, G.; Michelucci, A.; Fogli, S.; de Marinis, F.; Porta, C.; Chella, A.; Danesi, R. Understanding the mechanisms of resistance in EGFR-positive NSCLC: From tissue to liquid biopsy to guide treatment strategy. Int. J. Mol. Sci., 2019, 20(16), 3951.
[http://dx.doi.org/10.3390/ijms20163951] [PMID: 31416192]
[23]
Harvey, R.D.; Adams, V.R.; Beardslee, T.; Medina, P. Afatinib for the treatment of EGFR mutation-positive NSCLC: A review of clinical findings. J. Oncol. Pharm. Pract., 2020, 26(6), 1461-1474.
[http://dx.doi.org/10.1177/1078155220931926] [PMID: 32567494]
[24]
Pan, P.C.; Magge, R.S. Mechanisms of EGFR resistance in glioblastoma. Int. J. Mol. Sci., 2020, 21(22), 8471.
[http://dx.doi.org/10.3390/ijms21228471] [PMID: 33187135]
[25]
Fu, K.; Xie, F.; Wang, F.; Fu, L. Therapeutic strategies for EGFR-mutated non-small cell lung cancer patients with osimertinib resistance. J. Hematol. Oncol., 2022, 15(1), 173.
[http://dx.doi.org/10.1186/s13045-022-01391-4] [PMID: 36482474]
[26]
Yun, C.H.; Mengwasser, K.E.; Toms, A.V.; Woo, M.S.; Greulich, H.; Wong, K.K.; Meyerson, M.; Eck, M.J. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl. Acad. Sci. USA, 2008, 105(6), 2070-2075.
[http://dx.doi.org/10.1073/pnas.0709662105] [PMID: 18227510]
[27]
Hossam, M.; Lasheen, D.S.; Abouzid, K.A.M. Covalent EGFR inhibitors: Binding mechanisms, synthetic approaches, and clinical profiles. Arch. Pharm., 2016, 349(8), 573-593.
[http://dx.doi.org/10.1002/ardp.201600063] [PMID: 27258393]
[28]
Arrieta, O.; Vega-González, M.T.; López-Macías, D.; Martínez-Hernández, J.N.; Bacon-Fonseca, L.; Macedo-Pérez, E.O.; Ramírez-Tirado, L.A.; Flores-Estrada, D.; de la Garza-Salazar, J. Randomized, open-label trial evaluating the preventive effect of tetracycline on afatinib induced-skin toxicities in non-small cell lung cancer patients. Lung Cancer, 2015, 88(3), 282-288.
[http://dx.doi.org/10.1016/j.lungcan.2015.03.019] [PMID: 25882778]
[29]
Piotrowska, Z.; Isozaki, H.; Lennerz, J.K.; Gainor, J.F.; Lennes, I.T.; Zhu, V.W.; Marcoux, N.; Banwait, M.K.; Digumarthy, S.R.; Su, W.; Yoda, S.; Riley, A.K.; Nangia, V.; Lin, J.J.; Nagy, R.J.; Lanman, R.B.; Dias-Santagata, D.; Mino-Kenudson, M.; Iafrate, A.J.; Heist, R.S.; Shaw, A.T.; Evans, E.K.; Clifford, C.; Ou, S.I.; Wolf, B.; Hata, A.N.; Sequist, L.V. Landscape of acquired resistance to osimertinib in EGFR-Mutant NSCLC and clinical validation of combined EGFR and RET inhibition with osimertinib and BLU-667 for acquired RET fusion. Cancer Discov., 2018, 8(12), 1529-1539.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1022] [PMID: 30257958]
[30]
Wang, S.; Song, Y.; Liu, D. EAI045: The fourth-generation EGFR inhibitor overcoming T790M and C797S resistance. Cancer Lett., 2017, 385, 51-54.
[http://dx.doi.org/10.1016/j.canlet.2016.11.008] [PMID: 27840244]
[31]
Grabe, T.; Lategahn, J.; Rauh, D. C797S resistance: The undruggable EGFR mutation in non-small cell lung cancer? ACS Med. Chem. Lett., 2018, 9(8), 779-782.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00314] [PMID: 30128066]
[32]
Bowers, K.J. Scalable algorithms for molecular dynamics simulations on commodity clusters. SC ’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, Tampa, FL, USA, 2006.
[http://dx.doi.org/10.1109/SC.2006.54]
[33]
Bharadwaj, S.; El-Kafrawy, S.A.; Alandijany, T.A.; Bajrai, L.H.; Shah, A.A.; Dubey, A.; Sahoo, A.K.; Yadava, U.; Kamal, M.A.; Azhar, E.I.; Kang, S.G.; Dwivedi, V.D. Structure-based identification of natural products as SARS-CoV-2 Mpro antagonist from Echinacea angustifolia using computational approaches. Viruses, 2021, 13(2), 305.
[http://dx.doi.org/10.3390/v13020305] [PMID: 33672054]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy