Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Review Article

Liposomal Drug Delivery System as an Emerging Technique for Treatment of “Neurodegenerative Diseases”

Author(s): Bharat Tukaram Agiwale, Abhish Bhagwan Jadhav*, Sanjay Jayprakash Kshirsagar, Mrudula Hemant Bele, Chetan Ramrao Sonawane, Smita Prakash Kakad and Sapana Prabhakar Ahirrao

Volume 13, Issue 1, 2023

Published on: 07 April, 2023

Page: [17 - 26] Pages: 10

DOI: 10.2174/2468187313666230228102211

Open Access Journals Promotions 2
conference banner
Abstract

In the last decade, the onset of neurodegenerative diseases (ND) has been strongly widespread due to the rapid increase in the world population. There are many neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, spinal muscular atrophy, Levy body disease, etc. Alzheimer’s disease and Parkinson’s disease are most commonly found. Neurodegenerative diseases occur due to the degradation of neurons in the brain and the spinal cord. The diagnosis of both diseases has increased, however, the successful treatment is still very limited because of the lower ability of the drug to cross the blood-brain barrier (BBB). It is a big challenge to deliver the drug to the brain, because only small and lipid-soluble agents cross the BBB, by considering this assumption, the liposomal drug delivery system is considered one of the effective treatments in neurodegenerative diseases. Liposomes are considered to be an ideal carrier as they are flexible, biocompatible, and can carry different types of therapeutic molecules across the BBB. This review focus on the potential use of lipid delivery system in the treatment of neurodegenerative diseases and the application of liposomes in Alzheimer's disease and Parkinson’s disease.

Keywords: Liposomes, lipid delivery system, alzheimer's disease, parkinson’s disease, blood-brain barrier.

Graphical Abstract
[1]
Spuch C, Navarro C. Liposomes for targeted delivery of active agents against neurodegenerative diseases (Alzheimer's disease and Parkinson's disease). J Drug Deliv 2011; 2011.
[2]
Bertram L, Tanzi RE. The genetic epidemiology of neurodegenerative disease. J Clin Invest 2005; 115(6): 1449-57.
[http://dx.doi.org/10.1172/JCI24761] [PMID: 15931380]
[3]
Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39(1): 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[4]
Melo A, Monteiro L, Lima RM, de Oliveira DM, de Cerqueira MD, El-Bachá RS. Oxidative stress in neurodegenerative diseases: Mechanisms and therapeutic perspectives. Oxid Med Cell Longev 2011; 2011: 467180.
[http://dx.doi.org/10.1155/2011/467180]
[5]
Citron M. Alzheimer’s disease: Strategies for disease modification. Nat Rev Drug Discov 2010; 9(5): 387-98.
[http://dx.doi.org/10.1038/nrd2896] [PMID: 20431570]
[6]
Smith DJK. Parkinson’s Disease: A Webliography. J Consum Health Internet 2016; 20(3): 130-8.
[http://dx.doi.org/10.1080/15398285.2016.1202017]
[7]
Teixeira MI, Lopes CM, Amaral MH, Costa PC. Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. Eur J Pharm Biopharm 2020; 149: 192-217.
[http://dx.doi.org/10.1016/j.ejpb.2020.01.005] [PMID: 31982574]
[8]
Seo MW, Park TE. Recent advances with liposomes as drug carriers for treatment of neurodegenerative diseases. Biomed Eng Lett 2021; 11(3): 211-6.
[http://dx.doi.org/10.1007/s13534-021-00198-5] [PMID: 34350048]
[9]
Denora N, Trapani A, Laquintana V, Lopedota A, Trapani G. Recent advances in medicinal chemistry and pharmaceutical technology--strategies for drug delivery to the brain. Curr Top Med Chem 2009; 9(2): 182-96.
[http://dx.doi.org/10.2174/156802609787521571] [PMID: 19200004]
[10]
Xiao W, Fu Q, Zhao Y, et al. Ascorbic acid-modified brain-specific liposomes drug delivery system with “lock-in” function. Chem Phys Lipids 2019; 224: 104727.
[http://dx.doi.org/10.1016/j.chemphyslip.2019.01.005] [PMID: 30660746]
[11]
Shobo A, Pamreddy A, Kruger HG, et al. Enhanced brain penetration of pretomanid by intranasal administration of an oil-in-water nanoemulsion. Nanomedicine 2018; 13(9): 997-1008.
[http://dx.doi.org/10.2217/nnm-2017-0365] [PMID: 29790418]
[12]
Gitler AD, Dhillon P, Shorter J. Neurodegenerative disease: Models, mechanisms, and a new hope. Dis Model Mech 2017; 10(5): 499-502.
[http://dx.doi.org/10.1242/dmm.030205] [PMID: 28468935]
[13]
Karande P, Trasatti JP, Chandra D. Chapter 4 - Novel Approaches for the Delivery of Biologics to the Central Nervous System. In: Novel Approaches and Strategies for Biologics. Vaccines and Cancer Therapies. 2015; pp. 59-88.
[http://dx.doi.org/10.1016/B978-0-12-416603-5.00004-3]
[14]
Yacoubian TA. Neurodegenerative disorders: Why do we need new therapies? In: Drug discovery approaches for the treatment of neurodegenerative disorders. Academic Press 2017; pp. 1-16.
[15]
Sweeney MD, Sagare AP, Zlokovic BV. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 2018; 14(3): 133-50.
[http://dx.doi.org/10.1038/nrneurol.2017.188] [PMID: 29377008]
[16]
Abbott NJ, Friedman A. Overview and introduction: The blood-brain barrier in health and disease. Epilepsia 2012; 53(6): 1-6.
[http://dx.doi.org/10.1111/j.1528-1167.2012.03696.x] [PMID: 23134489]
[17]
Cenini G, Lloret A, Cascella R. Oxidative stress in neurodegenerative diseases: From a mitochondrial point of view. Oxid Med Cell Longev 2019; 2019: 2105607.
[http://dx.doi.org/10.1155/2019/2105607]
[18]
Jones DT, Graff-Radford J, Lowe VJ, et al. Tau, amyloid, and cascading network failure across the Alzheimer’s disease spectrum. Cortex 2017; 97: 143-59.
[http://dx.doi.org/10.1016/j.cortex.2017.09.018] [PMID: 29102243]
[19]
Krstic D, Knuesel I. Deciphering the mechanism underlying late-onset Alzheimer disease. Nat Rev Neurol 2013; 9(1): 25-34.
[http://dx.doi.org/10.1038/nrneurol.2012.236] [PMID: 23183882]
[20]
Murphy MP, LeVine H III. Alzheimer’s disease and the amyloid-β peptide. J Alzheimers Dis 2010; 19(1): 311-23.
[http://dx.doi.org/10.3233/JAD-2010-1221] [PMID: 20061647]
[21]
Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 2007; 8(2): 101-12.
[http://dx.doi.org/10.1038/nrm2101] [PMID: 17245412]
[22]
Yu JT, Dou KX, Tan MS, et al. Comparative safety and effectiveness of cholinesterase inhibitors and memantine for Alzheimer’s disease: A network meta-analysis of 41 randomized controlled trials. Alz Res Therapy 2018; 10: 126.
[23]
Torrez VR, Zimmer ER, Kalinine E, et al. Memantine mediates astrocytic activity in response to excitotoxicity induced by PP2A inhibition. Neurosci Lett 2019; 696: 179-83.
[http://dx.doi.org/10.1016/j.neulet.2018.12.034] [PMID: 30586637]
[24]
Zambon F, Cherubini M, Fernandes HJR, et al. Cellular α-synuclein pathology is associated with bioenergetic dysfunction in Parkinson’s iPSC-derived dopamine neurons. Hum Mol Genet 2019; 28(12): 2001-13.
[http://dx.doi.org/10.1093/hmg/ddz038] [PMID: 30753527]
[25]
Parkinson’s Foundation. What Is Parkinson’s? 2018.
[26]
Lang AE, Lozano AM. Parkinson’s Disease. N Engl J Med 1998; 339(15): 1044-53.
[http://dx.doi.org/10.1056/NEJM199810083391506] [PMID: 9761807]
[27]
Ahmadinejad F, Geir Møller S, Hashemzadeh-Chaleshtori M, Bidkhori G, Jami MS. Molecular mechanisms behind free radical scavengers function against oxidative stress. Antioxidants 2017; 6(3): 51.
[http://dx.doi.org/10.3390/antiox6030051] [PMID: 28698499]
[28]
Martínez JH, Fuentes F, Vanasco V, et al. Alpha-synuclein mitochondrial interaction leads to irreversible translocation and complex I impairment. Arch Biochem Biophys 2018; 651: 1-12.
[http://dx.doi.org/10.1016/j.abb.2018.04.018] [PMID: 29702063]
[29]
Oertel WH. Recent advances in treating Parkinson’s disease. F1000 Res 2017; 6: 260.
[http://dx.doi.org/10.12688/f1000research.10100.1] [PMID: 28357055]
[30]
Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. J Control Release 2016; 235: 34-47.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.044] [PMID: 27208862]
[31]
Neuwelt E, Abbott NJ, Abrey L, et al. Strategies to advance translational research into brain barriers. Lancet Neurol 2008; 7(1): 84-96.
[http://dx.doi.org/10.1016/S1474-4422(07)70326-5] [PMID: 18093565]
[32]
Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. J Control Release 2008; 127(2): 97-109.
[http://dx.doi.org/10.1016/j.jconrel.2007.12.018] [PMID: 18313785]
[33]
ElBayoumi TA, Torchilin VP. Current trends in liposome research.In: Liposomes. Humana Press 2010; pp. 1-27.
[34]
Szoka F Jr, Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng 1980; 9(1): 467-508.
[http://dx.doi.org/10.1146/annurev.bb.09.060180.002343] [PMID: 6994593]
[35]
Barar J, Rafi MA, Pourseif MM, Omidi Y. Blood-brain barrier transport machineries and targeted therapy of brain diseases. Bioimpacts 2016; 6(4): 225-48.
[http://dx.doi.org/10.15171/bi.2016.30] [PMID: 28265539]
[36]
Brasnjevic I, Steinbusch HWM, Schmitz C, Martinez-Martinez P. Delivery of peptide and protein drugs over the blood–brain barrier. Prog Neurobiol 2009; 87(4): 212-51.
[http://dx.doi.org/10.1016/j.pneurobio.2008.12.002] [PMID: 19395337]
[37]
de Lange ECM. The mastermind approach to CNS drug therapy: translational prediction of human brain distribution, target site kinetics, and therapeutic effects. Fluids Barriers CNS 2013; 10(1): 12.
[http://dx.doi.org/10.1186/2045-8118-10-12] [PMID: 23432852]
[38]
Tajes Orduña M, Ramos Fernández E, Weng-Jiang X, et al. The blood-brain barrier: Structure, function and therapeutic approaches to cross it. Mol Membr Biol 2014; 31(5): 152-67.
[39]
Deli MA. Drug Transport and the Blood-Brain Barrier. In: Solubility, Delivery, and ADME problems of drugs and drug-candidates. 2011; p. 144-65.
[40]
Lawther BK, Kumar S, Krovvidi H. Blood–brain barrier. Contin Educ Anaesth Crit Care Pain 2011; 11(4): 128-32.
[http://dx.doi.org/10.1093/bjaceaccp/mkr018]
[41]
Serlin Y, Shelef I, Knyazer B, Friedman A. Anatomy and physiology of the blood-brain barrier. Semin Cell Dev Biol 2015; 38: 2-6.
[http://dx.doi.org/10.1016/j.semcdb.2015.01.002]
[42]
Mikitsh JL, Chacko AM. Pathways for small molecule delivery to the central nervous system across the blood-brain barrier. Perspect Medicin Chem 2014; 6: 11-24.
[http://dx.doi.org/10.4137/PMC.S13384]
[43]
Vlieghe P, Khrestchatisky M. Peptide-based vectors for blood–brain barrier targeting and delivery of drugs to the central nervous system. Ther Deliv 2010; 1(4): 489-94.
[http://dx.doi.org/10.4155/tde.10.44] [PMID: 22833961]
[44]
Correale J, Villa A. Cellular elements of the blood-brain barrier. Neurochem Res 2009; 34(12): 2067-77.
[http://dx.doi.org/10.1007/s11064-009-0081-y] [PMID: 19856206]
[45]
Chen Y, Liu L. Modern methods for delivery of drugs across the blood–brain barrier. Adv Drug Deliv Rev 2012; 64(7): 640-65.
[http://dx.doi.org/10.1016/j.addr.2011.11.010] [PMID: 22154620]
[46]
Jouyban A, Fakhree MA, Acree WE Jr. Toxicity and drug testing. New York: Intech Co. 2012.
[47]
Upadhyay RK. Drug delivery systems, CNS protection, and the blood brain barrier. Biomed Res Int 2014; 2014: 869269.
[48]
Begley DJ. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther 2004; 104(1): 29-45.
[http://dx.doi.org/10.1016/j.pharmthera.2004.08.001] [PMID: 15500907]
[49]
Strazielle N, Ghersi-Egea JF. Potential pathways for CNS drug delivery across the blood-cerebrospinal fluid barrier. Curr Pharm Des 2016; 22(35): 5463-76.
[http://dx.doi.org/10.2174/1381612822666160726112115] [PMID: 27464721]
[50]
Chen C, Han D, Cai C, Tang X. An overview of liposome lyophilization and its future potential. J Control Release 2010; 142(3): 299-311.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.024] [PMID: 19874861]
[51]
Fang JY, Hwang TL, Huang YL. Liposomes as vehicles for enhancing drug delivery via skin routes. Curr Nanosci 2006; 2(1): 55-70.
[http://dx.doi.org/10.2174/157341306775473791]
[52]
Kozubek A, Gubernator J, Przeworska E, Stasiuk M. Liposomal drug delivery, a novel approach: PLARosomes. Acta Biochim Pol 2000; 47(3): 639-49.
[http://dx.doi.org/10.18388/abp.2000_3985] [PMID: 11310966]
[53]
Shukla S, Hernandez C. Liposome based drug delivery as a potential treatment option for Alzheimer’s disease. Neural Regen Res 2022; 17(6): 1190-8.
[http://dx.doi.org/10.4103/1673-5374.327328] [PMID: 34782553]
[54]
Ross C, Taylor M, Fullwood N, Allsop D. Liposome delivery systems for the treatment of Alzheimer’s disease. Int J Nanomedicine 2018; 13: 8507-22.
[http://dx.doi.org/10.2147/IJN.S183117] [PMID: 30587974]
[55]
Kong L, Li X, Ni Y, et al. Transferrin-modified osthole PEGylated liposomes travel the blood-brain barrier and mitigate Alzheimer’s disease-related pathology in APP/PS-1 mice. Int J Nanomedicine 2020; 15: 2841-58.
[http://dx.doi.org/10.2147/IJN.S239608] [PMID: 32425521]
[56]
Kuo YC, Wang CT. Protection of SK-N-MC cells against β-amyloid peptide-induced degeneration using neuron growth factor-loaded liposomes with surface lactoferrin. Biomaterials 2014; 35(22): 5954-64.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.082] [PMID: 24746790]
[57]
Tang S, Wang A, Yan X, et al. Brain-targeted intranasal delivery of dopamine with borneol and lactoferrin co-modified nanoparticles for treating Parkinson’s disease. Drug Deliv 2019; 26(1): 700-7.
[http://dx.doi.org/10.1080/10717544.2019.1636420] [PMID: 31290705]
[58]
Yang ZZ, Zhang YQ, Wang ZZ, Wu K, Lou JN, Qi XR. Enhanced brain distribution and pharmacodynamics of rivastigmine by liposomes following intranasal administration. Int J Pharm 2013; 452(1-2): 344-54.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.009] [PMID: 23680731]
[59]
Malekpour-Galogahi F, Hatamian-Zarmi A, Ganji F, et al. Preparation and optimization of rivastigmine-loaded tocopherol succinate-based solid lipid nanoparticles. J Liposome Res 2018; 28(3): 226-35.
[http://dx.doi.org/10.1080/08982104.2017.1349143] [PMID: 28670949]
[60]
Mutlu NB, Değim Z, Yılmaz Ş, Eşsiz D, Nacar A. New perspective for the treatment of Alzheimer diseases: Liposomal rivastigmine formulations. Drug Dev Ind Pharm 2011; 37(7): 775-89.
[http://dx.doi.org/10.3109/03639045.2010.541262] [PMID: 21231901]
[61]
Morgan D. Immunotherapy for Alzheimer’s disease. J Intern Med 2011; 269(1): 54-63.
[http://dx.doi.org/10.1111/j.1365-2796.2010.02315.x] [PMID: 21158978]
[62]
Davtyan H, Bacon A, Petrushina I, et al. Immunogenicity of DNA- and recombinant protein-based Alzheimer Disease epitope vaccines. Hum Vaccin Immunother 2014; 10(5): 1248-55.
[http://dx.doi.org/10.4161/hv.27882] [PMID: 24525778]
[63]
Qi Z, Wu M, Fu Y, et al. Palmitic acid curcumin ester facilitates protection of neuroblastoma against oligomeric Aβ40 insult. Cell Physiol Biochem 2017; 44(2): 618-33.
[http://dx.doi.org/10.1159/000485117] [PMID: 29161719]
[64]
Chen Y, Lu Y, Lee RJ, Xiang G. Nano encapsulated curcumin: And its potential for biomedical applications. Int J Nanomedicine 2020; 15: 3099-120.
[http://dx.doi.org/10.2147/IJN.S210320] [PMID: 32431504]
[65]
Ball N, Teo WP, Chandra S, Chapman J. Parkinson’s disease and the environment. Front Neurol 2019; 10: 218.
[http://dx.doi.org/10.3389/fneur.2019.00218] [PMID: 30941085]
[66]
Björklund A, Dunnett SB. Dopamine neuron systems in the brain: An update. Trends Neurosci 2007; 30(5): 194-202.
[http://dx.doi.org/10.1016/j.tins.2007.03.006] [PMID: 17408759]
[67]
Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson’s disease. Science 2003; 302(5646): 819-22.
[http://dx.doi.org/10.1126/science.1087753] [PMID: 14593166]
[68]
Goedert M. Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2001; 2(7): 492-501.
[http://dx.doi.org/10.1038/35081564] [PMID: 11433374]
[69]
Choonara Y, Pillay V, Du Toit L, et al. Trends in the molecular pathogenesis and clinical therapeutics of common neurodegenerative disorders. Int J Mol Sci 2009; 10(6): 2510-57.
[http://dx.doi.org/10.3390/ijms10062510] [PMID: 19582217]
[70]
Modi G, Pillay V, Choonara YE. Advances in the treatment of neurodegenerative disorders employing nanotechnology. Ann N Y Acad Sci 2010; 1184(1): 154-72.
[http://dx.doi.org/10.1111/j.1749-6632.2009.05108.x] [PMID: 20146696]
[71]
Md S, Haque S, Sahni JK, Baboota S, Ali J. New non-oral drug delivery systems for Parkinson’s disease treatment. Expert Opin Drug Deliv 2011; 8(3): 359-74.
[http://dx.doi.org/10.1517/17425247.2011.556616] [PMID: 21314492]
[72]
Qu M, Lin Q, He S, et al. A brain targeting functionalized liposomes of the dopamine derivative N -3,4-bis(pivaloyloxy)-dopamine for treatment of Parkinson’s disease. J Control Release 2018; 277: 173-82.
[http://dx.doi.org/10.1016/j.jconrel.2018.03.019] [PMID: 29588159]
[73]
Kahana M, Weizman A, Gabay M, et al. Liposome-based targeting of dopamine to the brain: A novel approach for the treatment of Parkinson’s disease. Mol Psychiatry 2021; 26(6): 2626-32.
[http://dx.doi.org/10.1038/s41380-020-0742-4] [PMID: 32372010]
[74]
Ji B, Wang M, Gao D, et al. Combining nanoscale magnetic nimodipine liposomes with magnetic resonance image for Parkinson’s disease targeting therapy. Nanomedicine 2017; 12(3): 237-53.
[http://dx.doi.org/10.2217/nnm-2016-0267] [PMID: 28093036]
[75]
Wang M, Li L, Zhang X, et al. Magnetic resveratrol liposomes as a new theranostic platform for magnetic resonance imaging guided Parkinson’s disease targeting therapy. ACS Sustain Chem& Eng 2018; 6(12): 17124-33.
[http://dx.doi.org/10.1021/acssuschemeng.8b04507]
[76]
Arumugam K, Subramanian GS, Mallayasamy SR, et al. A study of rivastigmine liposomes for delivery into the brain through intranasal route. Acta Pharm 2008; 58(3): 287-97.
[PMID: 19103565]
[77]
Nageeb El-Helaly S, Abd Elbary A, Kassem MA, El-Nabarawi MA. Electrosteric stealth Rivastigmine loaded liposomes for brain targeting: Preparation, characterization, ex vivo, bio-distribution and in vivo pharmacokinetic studies. Drug Deliv 2017; 24(1): 692-700.
[http://dx.doi.org/10.1080/10717544.2017.1309476] [PMID: 28415883]
[78]
Al Asmari AK, Ullah Z, Tariq M, Fatani A. Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil. Drug Des Devel Ther 2016; 10: 205-15.
[PMID: 26834457]
[79]
Cao X, Hou D, Wang L, et al. Effects and molecular mechanism of chitosan-coated levodopa nanoliposomes on behavior of dyskinesia rats. Biol Res 2016; 49(1): 32.
[http://dx.doi.org/10.1186/s40659-016-0093-4] [PMID: 27378167]
[80]
Joshi S, Singh-Moon R, Wang M, et al. Cationic surface charge enhances early regional deposition of liposomes after intracarotid injection. J Neurooncol 2014; 120(3): 489-97.
[http://dx.doi.org/10.1007/s11060-014-1584-1] [PMID: 25195130]
[81]
Cascione M, De Matteis V, Leporatti S, Rinaldi R. The new frontiers in neurodegenerative diseases treatment: Liposomal-based strategies. Front Bioeng Biotechnol 2020; 8: 566767.
[http://dx.doi.org/10.3389/fbioe.2020.566767] [PMID: 33195128]
[82]
Nisini R, Poerio N, Mariotti S, De Santis F, Fraziano M. The multirole of liposomes in therapy and prevention of infectious diseases. Front Immunol 2018; 9: 155.
[http://dx.doi.org/10.3389/fimmu.2018.00155] [PMID: 29459867]
[83]
Gupta S, Dhanda S, Sandhir R. Brain Targeted Drug Delivery System A Focus on Nanotechnology and Nanoparticulates. Elsevier Ltd 2018.

© 2024 Bentham Science Publishers | Privacy Policy