Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Recent Advances on the Antimicrobial Activities of Schiff Bases and their Metal Complexes: An Updated Overview

Author(s): Juliana Jorge, Kristiane Fanti Del Pino Santos, Fernanda Timóteo, Rafael Rodrigo Piva Vasconcelos, Osmar Ignacio Ayala Cáceres, Isis Juliane Arantes Granja, David Monteiro de Souza, Tiago Elias Allievi Frizon, Giancarlo Di Vaccari Botteselle, Antonio Luiz Braga, Sumbal Saba*, Haroon ur Rashid* and Jamal Rafique*

Volume 31, Issue 17, 2024

Published on: 03 May, 2023

Page: [2330 - 2344] Pages: 15

DOI: 10.2174/0929867330666230224092830

Price: $65

conference banner
Abstract

Schiff bases represent a valuable class of organic compounds, synthesized via condensation of primary amines with ketones or aldehydes. They are renowned for possessing innumerable applications in agricultural chemistry, organic synthesis, chemical and biological sensing, coating, polymer and resin industries, catalysis, coordination chemistry, and drug designing. Schiff bases contain imine or azomethine (-C=N-) functional groups which are important pharmacophores for the design and synthesis of lead bioactive compounds. In medicinal chemistry, Schiff bases have attracted immense attention due to their diverse biological activities. This review aims to encompass the recent developments on the antimicrobial activities of Schiff bases. The article summarizes the antibacterial, antifungal, antiviral, antimalarial, and antileishmanial activities of Schiff bases reported since 2011.

Keywords: Schiff base, antimicrobial activity, imine, azomethine, antibacterial, antifungal, antiviral, antimalarial.

[1]
Golbedaghi, R.; Tabanez, A.M.; Esmaeili, S.; Fausto, R. Biological applications of macrocyclic schiff base ligands and their metal complexes: A survey of the literature (2005-2019). Appl. Organomet. Chem., 2020, 34(10), 1-33.
[http://dx.doi.org/10.1002/aoc.5884]
[2]
More, M.S.; Joshi, P.G.; Mishra, Y.K.; Khanna, P.K. Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: A review. Mater. Today Chem., 2019, 14, 100195.
[http://dx.doi.org/10.1016/j.mtchem.2019.100195] [PMID: 32289101]
[3]
Rauf, A. Synthesis, pH dependent photometric and electrochemical investigation, redox mechanism and biological applications of novel Schiff base and its metallic derivatives. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 2017, 176, 155-167.
[4]
Zhang, J.; Xu, L.; Wong, W.Y. Energy materials based on metal Schiff base complexes. Coord. Chem. Rev., 2018, 355, 180-198.
[http://dx.doi.org/10.1016/j.ccr.2017.08.007]
[5]
da Silva, C.M.; da Silva, D.L.; Modolo, L.V.; Alves, R.B.; de Resende, M.A.; Martins, C.V.B.; de Fátima, Â. Schiff bases: A short review of their antimicrobial activities. J. Adv. Res., 2011, 2(1), 1-8.
[http://dx.doi.org/10.1016/j.jare.2010.05.004]
[6]
Tsantis, S.T.; Tzimopoulos, D.I. Holyńska, M.; Perlepes, S.P. Oligonuclear actinoid complexes with schiff bases as ligands—older achievements and recent progress. Int. J. Mol. Sci., 2020, 21(2), 555.
[http://dx.doi.org/10.3390/ijms21020555] [PMID: 31952278]
[7]
Fabbrizzi, L. Beauty in chemistry: Making artistic molecules with Schiff bases. J. Org. Chem., 2020, 85(19), 12212-12226.
[http://dx.doi.org/10.1021/acs.joc.0c01420] [PMID: 32864964]
[8]
Sharma, J.; Dogra, P.; Sharma, N. Applications of coordination compounds having schiff bases: A review. AIP Conf. Proc., 2019, 2142, 060002.
[9]
Berhanu, A.L. Gaurav; Mohiuddin, I.; Malik, A.K.; Aulakh, J.S.; Kumar, V.; Kim, K-H. A review of the applications of Schiff bases as optical chemical sensors. Trends Analyt. Chem., 2019, 116, 74-91.
[http://dx.doi.org/10.1016/j.trac.2019.04.025]
[10]
Kaczmarek, M.T.; Zabiszak, M.; Nowak, M.; Jastrzab, R. Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coord. Chem. Rev., 2018, 370, 42-54.
[http://dx.doi.org/10.1016/j.ccr.2018.05.012]
[11]
Golbedaghi, R.; Fausto, R. Coordination aspects in Schiff bases cocrystals. Polyhedron, 2018, 155, 1-12.
[http://dx.doi.org/10.1016/j.poly.2018.06.049]
[12]
Mahadevi, P.; Sumathi, S. Mini review on the performance of Schiff base and their metal complexes as photosensitizers in dye-sensitized solar cells. Synth. Commun., 2020, 50(15), 2237-2249.
[http://dx.doi.org/10.1080/00397911.2020.1748200]
[13]
Yin, N.; Diao, H.; Liu, W.; Wang, J.; Feng, L. Preparation, regulation and biological application of a Schiff base fluorescence probe. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 153, 1-5.
[http://dx.doi.org/10.1016/j.saa.2015.07.107] [PMID: 26282317]
[14]
Udhayakumari, D.; Inbaraj, V. A review on schiff base fluorescent chemosensors for cell imaging applications. J. Fluoresc., 2020, 30(5), 1203-1223.
[http://dx.doi.org/10.1007/s10895-020-02570-7] [PMID: 32737660]
[15]
Xin, Y.; Yuan, J. Schiff’s base as a stimuli-responsive linker in polymer chemistry. Polym. Chem., 2012, 3(11), 3045-3055.
[http://dx.doi.org/10.1039/c2py20290e]
[16]
Liu, T.T.; Tseng, Y.W.; Yang, T.S. Functionalities of conjugated compounds of γ-aminobutyric acid with salicylaldehyde or cinnamaldehyde. Food Chem., 2016, 190, 1102-1108.
[http://dx.doi.org/10.1016/j.foodchem.2015.06.077] [PMID: 26213082]
[17]
Gao, W.W.; Gopala, L.; Bheemanaboina, R.R.Y.; Zhang, G.B.; Li, S.; Zhou, C.H. Discovery of 2-aminothiazolyl berberine derivatives as effectively antibacterial agents toward clinically drug-resistant Gram-negative Acinetobacter baumanii. Eur. J. Med. Chem., 2018, 146, 15-37.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.038] [PMID: 29396362]
[18]
Patel, D.; Kumari, P.; Patel, N. Synthesis and biological evaluation of some thiazolidinones as antimicrobial agents. Eur. J. Med. Chem., 2012, 48, 354-362.
[http://dx.doi.org/10.1016/j.ejmech.2011.11.041] [PMID: 22182927]
[19]
Mahyavanshi, V.; Marjadi, S.I.; Yadav, R. Synthesis and pharmacological studies of 1-(2-amino-1-(4-methoxyphenyl) ethyl) cyclohexanol analogs as potential microbial agents. Arab. J. Chem., 2017, 10, S804-S813.
[http://dx.doi.org/10.1016/j.arabjc.2012.12.009]
[20]
Panigrahi, A.; Are, V.N.; Jain, S.; Nayak, D.; Giri, S.; Sarma, T.K. Cationic organic nanoaggregates as aie luminogens for wash-free imaging of bacteria and broad-spectrum antimicrobial application. ACS Appl. Mater. Interfaces, 2020, 12(5), 5389-5402.
[http://dx.doi.org/10.1021/acsami.9b15629] [PMID: 31931570]
[21]
Yadav, P.; Poddar, D.; Jain, P.; Singh, A.; Sarkar, A. Chemistry of schiff base synthesis and their applications: a greener approach. In: Applications of Biodegradable and Bio-Based Polymers for Human Health and a Cleaner Environment; Stoica, I.; Mukbaniani, O.; Rawat, N.K.; Hagi, A.K., Eds.; Apple Academic Press: USA, 2021.
[http://dx.doi.org/10.1201/9781003146360-20]
[22]
Bhatti, M.P.; Sagir, M.; Naz, M.Y. Novel Schiff Bases Transition Metal Complexes;; Scholars' Press: India, 2014.
[23]
Akitsu, T. Schiff base in Organic, Inorganic and Physical Chemistry Akitsu, T., Ed.; Interopen UK, 2022.
[24]
Sahu, S.; Bharti, S.K.; Prasad, J. Synthesis and Biological Evaluation of some Novel Schiff bases Scholars. Press: India, 2021.
[25]
Patil, M.K.; Masand, V.H.; Maldhure, A.K. Schiff base metal complexes precursor for metal oxide nanomaterials: A review. Curr. Nanosci., 2021, 17(4), 634-645.
[http://dx.doi.org/10.2174/1573413716999201127112204]
[26]
Pervaiz, M.; Munir, A.; Riaz, A.; Saeed, Z.; Younas, U.; Imran, M.; Ullah, S.; Bashir, R.; Rashid, A.; Adnan, A. Review article-Amalgamation, scrutinizing, and biological evaluation of the antimicrobial aptitude of thiosemicarbazide Schiff bases derivatives metal complexes. Inorg. Chem. Commun., 2022, 141, 109459.
[http://dx.doi.org/10.1016/j.inoche.2022.109459]
[27]
Aggarwal, N.; Maji, S. Potential applicability of Schiff bases and their metal complexes during COVID-19 pandemic - a review. Rev. Inorg. Chem., 2022, 42(4), 363-383.
[http://dx.doi.org/10.1515/revic-2021-0027]
[28]
Mathur, G.; Sharma, P.K.; Nain, S. A review on isatin metal complexes derived from schiff bases. Curr. Bioact. Compd., 2018, 14(3), 211-216.
[http://dx.doi.org/10.2174/1573407213666170221154354]
[29]
Raczuk, E.; Dmochowska, B.; Samaszko-Fiertek, J.; Madaj, J. Different schiff bases—structure, importance and classification. Molecules, 2022, 27(3), 787.
[http://dx.doi.org/10.3390/molecules27030787] [PMID: 35164049]
[30]
Nair, S. Schiff base ligands: Synthesis and characterization ScholarsPress: India , 2019.
[31]
Soroceanu, A.; Bargan, A. Advanced and biomedical applications of schiff-base ligands and their metal complexes: A review. Crystals, 2022, 12(10), 1436.
[http://dx.doi.org/10.3390/cryst12101436]
[32]
Galant, L.S.; Rafique, J.; Braga, A.L.; Braga, F.C.; Saba, S.; Radi, R.; da Rocha, J.B.T.; Santi, C.; Monsalve, M.; Farina, M.; de Bem, A.F. The thiol-modifier effects of organoselenium compounds and their cytoprotective actions in neuronal cells. Neurochem. Res., 2021, 46(1), 120-130.
[http://dx.doi.org/10.1007/s11064-020-03026-x] [PMID: 32285377]
[33]
Godoi, M.; Botteselle, G.V.; Rafique, J.; Rocha, M.S.T.; Pena, J.M.; Braga, A.L. Solvent-free fmoc protection of amines under microwave irradiation. Asian J. Org. Chem., 2013, 2(9), 746-749.
[http://dx.doi.org/10.1002/ajoc.201300092]
[34]
Rafique, J.; Farias, G.; Saba, S.; Zapp, E.; Casagrande, I.B.; Salla, C.A.M.; Bechtold, I.H.; Scheide, M.R.; Neto, J.S.S.; Souza, D.M., Jr; Braga, H.C.; Ribeiro, L.F.B.; Gastaldon, F.; Pich, C.T.; Frizon, T.E.A. Selenylated-oxadiazoles as promising DNA intercalators: Synthesis, electronic structure, DNA interaction and cleavage. Dyes Pigm., 2020, 180, 108519.
[http://dx.doi.org/10.16/j.dyepig.2020.108519 ] [PMID: 32382200]
[35]
Saba, S.; Dos Santos, C.R.; Zavarise, B.R.; Naujorks, A.A.S.; Franco, M.S.; Schneider, A.R.; Scheide, M.R.; Affeldt, R.F.; Rafique, J.; Braga, A.L. Photoinduced, direct C(sp2)−H bond azo coupling of imidazoheteroarenes and imidazoanilines with aryl diazonium salts catalyzed by Eosin Y. Chemistry, 2020, 26(20), 4461-4466.
[http://dx.doi.org/10.1002/chem.201905308] [PMID: 31816129]
[36]
Santos, D.C.; Rafique, J.; Saba, S.; Almeida, G.M.; Siminski, T.; Pádua, C.; Filho, D.W.; Zamoner, A.; Braga, A.L.; Pedrosa, R.C.; Ourique, F. Apoptosis oxidative damage-mediated and antiproliferative effect of selenylated imidazo[1,2-a]pyridines on hepatocellular carcinoma HepG2 cells and in vivo. J. Biochem. Mol. Toxicol., 2021, 35(3), e22663.
[http://dx.doi.org/10.1002/jbt.22663] [PMID: 33125183]
[37]
Peterle, M.M.; Scheide, M.R.; Silva, L.T.; Saba, S.; Rafique, J.; Braga, A.L. Copper-catalyzed three-component reaction of oxadiazoles, elemental Se/S and aryl iodides: Synthesis of chalcogenyl (Se/S)-oxadiazoles. ChemistrySelect, 2018, 3(46), 13191-13196.
[http://dx.doi.org/10.1002/slct.201801213]
[38]
Veloso, I.C.; Delanogare, E.; Machado, A.E.; Braga, S.P.; Rosa, G.K.; De Bem, A.F.; Rafique, J.; Saba, S.; da Trindade, R.N.; Galetto, F.Z.; Moreira, E.L.G. A selanylimidazopyridine (3-SePh-IP) reverses the prodepressant- and anxiogenic-like effects of a high-fat/high-fructose diet in mice. J. Pharm. Pharmacol., 2021, 73(5), 673-681.
[http://dx.doi.org/10.1093/jpp/rgaa070] [PMID: 33772293]
[39]
Tornquist, B.L.; de Paula Bueno, G.; Manzano Willig, J.C.; de Oliveira, I.M.; Stefani, H.A.; Rafique, J.; Saba, S.; Almeida Iglesias, B.; Botteselle, G.V.; Manarin, F. Ytterbium (III) triflate/sodium dodecyl sulfate: A versatile recyclable and water-tolerant catalyst for the synthesis of bis(indolyl)methanes (BIMs). ChemistrySelect, 2018, 3(23), 6358-6363.
[http://dx.doi.org/10.1002/slct.201800673]
[40]
Frizon, T.E.A.; Vieira, A.A.; da Silva, F.N.; Saba, S.; Farias, G.; de Souza, B.; Zapp, E.; Lôpo, M.N.; Braga, H.C.; Grillo, F.; Curcio, S.F.; Cazati, T.; Rafique, J. Synthesis of 2,1,3-benzoxadiazole derivatives as new fluorophores—combined experimental, optical, electro, and theoretical study. Front Chem., 2020, 8, 360.
[http://dx.doi.org/10.3389/fchem.2020.00360] [PMID: 32478032]
[41]
Frizon, T.E.A.; Cararo, J.H.; Saba, S.; Dal-Pont, G.C.; Michels, M.; Braga, H.C.; Pimentel, T.; Dal-Pizzol, F.; Valvassori, S.S.; Rafique, J. Synthesis of novel selenocyanates and evaluation of their effect in cultured mouse neurons submitted to oxidative stress. Oxid. Med. Cell. Longev., 2020, 2020, 1-10.
[http://dx.doi.org/10.1155/2020/5417024] [PMID: 33093936]
[42]
] World Malaria Report. 2021. (Licence: CC BY-NC-SA 3.0 IGO, 2021).
[43]
Fonkui, T.Y.; Ikhile, M.I.; Njobeh, P.B.; Ndinteh, D.T. Benzimidazole Schiff base derivatives: Synthesis, characterization and antimicrobial activity. BMC Chem., 2019, 13(1), 127.
[http://dx.doi.org/10.1186/s13065-019-0642-3] [PMID: 31728454]
[44]
Okwor, I.; Uzonna, J. Social and economic burden of human leishmaniasis. Am. J. Trop. Med. Hyg., 2016, 94(3), 489-493.
[http://dx.doi.org/10.4269/ajtmh.15-0408] [PMID: 26787156]
[45]
Faheem, K.K.B. ChandraSekhar, K. V. G., Adinarayana, N. & Murugesan, S. Recent evolution on syntesis strategies and anti-leishmanial activity of β-carboline derivatives - An update. Heilyon, 2020, 6, e04916.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04916]
[46]
Chander, S.; Ashok, P.; Reguera, R.M.; Perez-Pertejo, M.Y.; Carbajo-Andres, R.; Balana-Fouce, R.; Gowri Chandra Sekhar, K.V.; Sankaranarayanan, M. Synthesis and activity of benzopiperidine, benzopyridine and phenyl piperazine based compounds against Leishmania infantum. Exp. Parasitol., 2018, 189, 49-60.
[http://dx.doi.org/10.1016/j.exppara.2018.04.017] [PMID: 29702355]
[47]
Direkel, Ş Ünver, Y.; Akdemir, C. Antileishmanial activity of new synthesized schiff and mannich (morpholine) base compounds. Turkiye Parazitol. Derg., 2020, 44(4), 216-220.
[http://dx.doi.org/10.4274/tpd.galenos.2020.6900] [PMID: 33269563]
[48]
Granato, J.D.T.; dos Santos, J.A.; Calixto, S.L.; Prado da Silva, N.; da Silva Martins, J.; da Silva, A.D.; Coimbra, E.S. Novel steroid derivatives: Synthesis, antileishmanial activity, mechanism of action, and in silico physicochemical and pharmacokinetics studies. Biomed. Pharmacother., 2018, 106, 1082-1090.
[http://dx.doi.org/10.1016/j.biopha.2018.07.056] [PMID: 30119174]
[49]
Khattab, S.N.; Haiba, N.S.; Asal, A.M.; Bekhit, A.A.; Guemei, A.A.; Amer, A.; El-Faham, A. Study of antileishmanial activity of 2-aminobenzoyl amino acid hydrazides and their quinazoline derivatives. Bioorg. Med. Chem. Lett., 2017, 27(4), 918-921.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.003] [PMID: 28087274]
[50]
Mangwegape, D.K.; Zuma, N.H.; Aucamp, J.; N’Da, D.D. Synthesis and in vitro antileishmanial efficacy of novel benzothiadiazine-1,1-dioxide derivatives. Arch. Pharm. (Weinheim), 2021, 354(5), 2000280.
[http://dx.doi.org/10.1002/ardp.202000280] [PMID: 33491807]
[51]
Taha, M.; Sain, A.A.; Ali, M.; Anouar, E.H.; Rahim, F.; Ismail, N.H.; Adenan, M.I.; Imran, S.; Al-Harrasi, A.; Nawaz, F.; Iqbal, N.; Khan, K.M. Synthesis of symmetrical bis-Schiff base-disulfide hybrids as highly effective anti-leishmanial agents. Bioorg. Chem., 2020, 99, 103819.
[http://dx.doi.org/10.1016/j.bioorg.2020.103819] [PMID: 32325334]
[52]
Ünver, Y.; Tuluk, M.; Kahriman, N.; Emirik, M. Bektaş, E.; Direkel, Ş. New chalcone derivatives with schiff base-thiophene: Synthesis, biological activity, and molecular docking studies. Russ. J. Gen. Chem., 2019, 89(4), 794-799.
[http://dx.doi.org/10.1134/S107036321904025X]
[53]
Ünver, Y.; Ünlüer, D. Dı̇ rekel, Ş.; Durdaği, S. Bis benzothiophene Schiff bases: Synthesis and in silico-guided biological activity studies. Turk. J. Chem., 2020, 44(4), 1164-1176.
[http://dx.doi.org/10.3906/kim-2004-78] [PMID: 33488220]
[54]
Süleymanoğlu, N.; Ustabaş, R.; Direkel, Ş.; Alpaslan, Y.B.; Ünver , Y. 1,2,4-triazole derivative with Schiff base; thiol-thione tautomerism, DFT study and antileishmanial activity. J. Mol. Struct., 2017, 1150, 82-87.
[http://dx.doi.org/10.1016/j.molstruc.2017.08.075]
[55]
Tahir, M.; Sirajuddin, M.; Haider, A.; Ali, S.; Nadhman, A.; Rizzoli, C. Synthesis, spectroscopic characterization, crystal structure, interaction with DNA, CTAB as well as evaluation of biological potency, docking and molecular dynamics studies of N-(3,4,5-trimethoxybenzylidene)-2, 3-dimethylbenzenamine. J. Mol. Struct., 2019, 1178, 29-38.
[http://dx.doi.org/10.1016/j.molstruc.2018.10.014]
[56]
Vicini, P.; Geronikaki, A.; Incerti, M.; Busonera, B.; Poni, G.; Cabras, C.A.; La Colla, P. Synthesis and biological evaluation of benzo[d]isothiazole, benzothiazole and thiazole Schiff bases. Bioorg. Med. Chem., 2003, 11(22), 4785-4789.
[http://dx.doi.org/10.1016/S0968-0896(03)00493-0] [PMID: 14556794]
[57]
Maryam, M.; Tan, S.L.; Crouse, K.A.; Mohamed Tahir, M.I.; Chee, H.Y. Synthesis, characterization and evaluation of antidengue activity of enantiomeric Schiff bases derived from S-substituted dithiocarbazate. Turk. J. Chem., 2020, 44(5), 1395-1409.
[http://dx.doi.org/10.3906/kim-2006-22] [PMID: 33488239]
[58]
Jarrahpour, A.; Sheikh, J.; Mounsi, I.E.; Juneja, H.; Hadda, T.B. Computational evaluation and experimental in vitro antibacterial, antifungal and antiviral activity of bis-Schiff bases of isatin and its derivatives. Med. Chem. Res., 2013, 22(3), 1203-1211.
[http://dx.doi.org/10.1007/s00044-012-0127-6]
[59]
Kumar, K.S.; Ganguly, S.; Veerasamy, R.; De Clercq, E. Synthesis, antiviral activity and cytotoxicity evaluation of Schiff bases of some 2-phenyl quinazoline-4(3)H-ones. Eur. J. Med. Chem., 2010, 45(11), 5474-5479.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.058] [PMID: 20724039]
[60]
Jarrahpour, A.; Khalili, D.; De Clercq, E.; Salmi, C.; Brunel, J. Synthesis, antibacterial, antifungal and antiviral activity evaluation of some new bis-Schiff bases of isatin and their derivatives. Molecules, 2007, 12(8), 1720-1730.
[http://dx.doi.org/10.3390/12081720] [PMID: 17960083]
[61]
Ali, P.; Meshram, J.; Sheikh, J.; Tiwari, V.; Dongre, R.; Hadda, T.B. Predictions and correlations of structure activity relationship of some aminoantipyrine derivatives on the basis of theoretical and experimental ground. Med. Chem. Res., 2012, 21(2), 157-164.
[http://dx.doi.org/10.1007/s00044-010-9505-0]
[62]
Abbas, S.Y.; Farag, A.A.; Ammar, Y.A.; Atrees, A.A.; Mohamed, A.F.; El-Henawy, A.A. Synthesis, characterization, and antiviral activity of novel fluorinated isatin derivatives. Monatsh. Chem., 2013, 144(11), 1725-1733.
[http://dx.doi.org/10.1007/s00706-013-1034-3] [PMID: 32214479]
[63]
Madni, M.; Hameed, S.; Ahmed, M.N.; Tahir, M.N.; Al-Masoudi, N.A.; Pannecouque, C. Synthesis, crystal structure, anti-HIV, and antiproliferative activity of new pyrazolylthiazole derivatives. Med. Chem. Res., 2017, 26(10), 2653-2665.
[http://dx.doi.org/10.1007/s00044-017-1963-1]
[64]
Johnson, J.; Yardily, A. Synthesis, spectral investigation, thermal, molecular modeling and bio-molecular docking studies of a thiazole derived chalcone and its metal complexes. J. Coord. Chem., 2020, 73(11), 1712-1729.
[http://dx.doi.org/10.1080/00958972.2020.1795145]
[65]
Zhang, B.; Liu, Y.; Wang, Z.; Li, Y.; Wang, Q. Antiviral activity and mechanism of gossypols: Effects of the O 2 ˙- production rate and the chirality. RSC Advances, 2017, 7(17), 10266-10277.
[http://dx.doi.org/10.1039/C6RA28625A]
[66]
Ligon, B.L. Penicillin: its discovery and early development. Semin. Pediatr. Infect. Dis., 2004, 15(1), 52-57.
[http://dx.doi.org/10.1053/j.spid.2004.02.001] [PMID: 15175995]
[67]
Kong, K.F.; Schneper, L.; Mathee, K. Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. Acta Pathol. Microbiol. Scand. Suppl., 2010, 118(1), 1-36.
[http://dx.doi.org/10.1111/j.1600-0463.2009.02563.x] [PMID: 20041868]
[68]
Majiduddin, F.K.; Materon, I.C.; Palzkill, T.G. Molecular analysis of beta-lactamase structure and function. Int. J. Med. Microbiol., 2002, 292(2), 127-137.
[http://dx.doi.org/10.1078/1438-4221-00198] [PMID: 12195735]
[69]
Knowles, J.R. Penicillin resistance: The chemistry of. β-lactamase inhibition. Acc. Chem. Res., 1985, 18(4), 97-104.
[http://dx.doi.org/10.1021/ar00112a001]
[70]
Kumar, S.; Lim, S.M.; Ramasamy, K.; Vasudevan, M.; Shah, S.A.A.; Selvaraj, M.; Narasimhan, B. Synthesis, molecular docking and biological evaluation of bis-pyrimidine Schiff base derivatives. Chem. Cent. J., 2017, 11(1), 89.
[http://dx.doi.org/10.1186/s13065-017-0322-0] [PMID: 29086867]
[71]
Duan, J.R.; Liu, H.B.; Jeyakkumar, P.; Gopala, L.; Li, S.; Geng, R.X.; Zhou, C.H. Design, synthesis and biological evaluation of novel Schiff base-bridged tetrahydroprotoberberine triazoles as a new type of potential antimicrobial agents. MedChemComm, 2017, 8(5), 907-916.
[http://dx.doi.org/10.1039/C6MD00688D] [PMID: 30108806]
[72]
Gong, H.H.; Baathulaa, K.; Lv, J.S.; Cai, G.X.; Zhou, C.H. Synthesis and biological evaluation of Schiff base-linked imidazolyl naphthalimides as novel potential anti-MRSA agents. MedChemComm, 2016, 7(5), 924-931.
[http://dx.doi.org/10.1039/C5MD00574D]
[73]
Kajal, A.; Bala, S.; Kamboj, S.; Sharma, N.; Saini, V. Schiff bases: A versatile pharmacophore. J. Catal., 2013, 2013, 893512.
[74]
Chavan, R.R.; Hosamani, K.M. Microwave-assisted synthesis, computational studies and antibacterial/anti-inflammatory activities of compounds based on coumarin-pyrazole hybrid. R. Soc. Open Sci., 2018, 5(5), 172435.
[http://dx.doi.org/10.1098/rsos.172435] [PMID: 29892430]
[75]
Ling, L.L.; Schneider, T.; Peoples, A.J.; Spoering, A.L.; Engels, I.; Conlon, B.P.; Mueller, A.; Schäberle, T.F.; Hughes, D.E.; Epstein, S.; Jones, M.; Lazarides, L.; Steadman, V.A.; Cohen, D.R.; Felix, C.R.; Fetterman, K.A.; Millett, W.P.; Nitti, A.G.; Zullo, A.M.; Chen, C.; Lewis, K. A new antibiotic kills pathogens without detectable resistance. Nature, 2015, 517(7535), 455-459.
[http://dx.doi.org/10.1038/nature14098] [PMID: 25561178]
[76]
Ng, V.; Kuehne, S.A.; Chan, W.C. Rational design and synthesis of modified teixobactin analogues: in vitro antibacterial activity against Staphylococcus aureus, Propionibacterium acnes and Pseudomonas aeruginosa. Chemistry, 2018, 24(36), 9136-9147.
[http://dx.doi.org/10.1002/chem.201801423] [PMID: 29741277]
[77]
Amnerkar, N.D.; Bhongade, B.A.; Bhusari, K.P. Synthesis and biological evaluation of some 4-(6-substituted-1,3-benzothiazol-2-yl)amino-1,3-thiazole-2-amines and their Schiff bases. Arab. J. Chem., 2015, 8(4), 545-552.
[http://dx.doi.org/10.1016/j.arabjc.2014.11.034]
[78]
Prakash, C.R.; Raja, S. Synthesis, characterization and in vitro antimicrobial activity of some novel 5-substituted Schiff and Mannich base of isatin derivatives. J. Saudi Chem. Soc., 2013, 17(3), 337-344.
[http://dx.doi.org/10.1016/j.jscs.2011.10.022]
[79]
Mallikarjunaswamy, C.; Bhadregowda, D.G.; Mallesha, L. Synthesis of novel ( E )- N ′-(-(2-chloropyrimidin-4-yl)- N -(5-cyano-2-hydroxy-6-phenylpyrimidin-4-yl) formamidine derivatives and their antimicrobial activity. J. Saudi Chem. Soc., 2016, 20, S606-S614.
[http://dx.doi.org/10.1016/j.jscs.2013.04.005]
[80]
Chen, Y.; Mi, Y.; Sun, X.; Zhang, J.; Li, Q.; Ji, N.; Guo, Z. Novel inulin derivatives modified with schiff bases: Synthesis, characterization, and antifungal activity. Polymers (Basel), 2019, 11(6), 998.
[http://dx.doi.org/10.3390/polym11060998] [PMID: 31167475]
[81]
Wei, L.; Tan, W.; Zhang, J.; Mi, Y.; Dong, F.; Li, Q.; Guo, Z. Synthesis, characterization, and antifungal activity of schiff bases of inulin bearing pyridine ring. Polymers (Basel), 2019, 11(2), 371.
[http://dx.doi.org/10.3390/polym11020371] [PMID: 30960355]
[82]
Carreño, A.; Gacitúa, M.; Páez-Hernández, D.; Polanco, R.; Preite, M.; Fuentes, J.A.; Mora, G.C.; Chávez, I.; Arratia-Pérez, R. Spectral, theoretical characterization and antifungal properties of two phenol derivative Schiff bases with an intramolecular hydrogen bond. New J. Chem., 2015, 39(10), 7822-7831.
[http://dx.doi.org/10.1039/C5NJ01469G]
[83]
Carreño, A.; Zúñiga, C.; Páez-Hernández, D.; Gacitúa, M.; Polanco, R.; Otero, C.; Arratia-Pérez, R.; Fuentes, J.A. Study of the structure-bioactivity relationship of three new pyridine Schiff bases: Synthesis, spectral characterization, DFT calculations and biological assays. New J. Chem., 2018, 42(11), 8851-8863.
[http://dx.doi.org/10.1039/C8NJ00390D]
[84]
Sabaa, M.W.; Elzanaty, A.M.; Abdel-Gawad, O.F.; Arafa, E.G. Synthesis, characterization and antimicrobial activity of Schiff bases modified chitosan-graft-poly(acrylonitrile). Int. J. Biol. Macromol., 2018, 109, 1280-1291.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.129] [PMID: 29169941]
[85]
Anush, S.M.; Vishalakshi, B.; Kalluraya, B.; Manju, N. Synthesis of pyrazole-based Schiff bases of Chitosan: Evaluation of antimicrobial activity. Int. J. Biol. Macromol., 2018, 119, 446-452.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.129] [PMID: 30036622]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy