摘要
如今,为药物输送系统(DDS)设计的纳米平台,如聚合物、脂质体和胶束,已被证明具有临床效率。持续药物释放是DDS的优势之一,尤其是基于聚合物的纳米颗粒。该配方可以增强药物的耐久性,其中可生物降解的聚合物是DDS最有趣的构建单元。 纳米载体可以通过某些内化途径(如细胞内吞作用途径和增加生物相容性)局部药物递送和释放来规避许多问题。聚合物纳米颗粒及其纳米复合材料是最重要的一类材料之一,可用于组装可以形成复杂、共轭和封装形式的纳米载体。位点特异性药物递送可能来自纳米载体通过生物屏障的能力、它们与受体的特异性相互作用以及被动靶向。更好的循环、摄取和稳定性以及靶向属性导致更少的副作用和对正常细胞的损害。因此,本文介绍了聚己内酯基或改性纳米颗粒在5-氟尿嘧啶(5-FU)药物递送系统(DDS)中的最新成果。
关键词: 聚己内酯,癌症,药物递送,5-氟尿嘧啶,聚合物纳米颗粒,药物释放。
[1]
Hanemann, T.; Szabó, D.V. Polymer-nanoparticle composites: From synthesis to modern applications. Materials, 2010, 3(6), 3468-3517.
[http://dx.doi.org/10.3390/ma3063468]
[http://dx.doi.org/10.3390/ma3063468]
[2]
Liechty, W.B.; Peppas, N.A. Expert opinion: Responsive polymer nanoparticles in cancer therapy. Eur. J. Pharm. Biopharm., 2012, 80(2), 241-246.
[http://dx.doi.org/10.1016/j.ejpb.2011.08.004] [PMID: 21888972]
[http://dx.doi.org/10.1016/j.ejpb.2011.08.004] [PMID: 21888972]
[3]
Calzoni, E.; Cesaretti, A.; Polchi, A.; Di Michele, A.; Tancini, B.; Emiliani, C. Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. J. Funct. Biomater., 2019, 10(1), 4.
[http://dx.doi.org/10.3390/jfb10010004] [PMID: 30626094]
[http://dx.doi.org/10.3390/jfb10010004] [PMID: 30626094]
[4]
Zhang, X.; Dong, Y.; Zeng, X.; Liang, X.; Li, X.; Tao, W.; Chen, H.; Jiang, Y.; Mei, L.; Feng, S.S. The effect of autophagy inhibitors on drug delivery using biodegradable polymer nanoparticles in cancer treatment. Biomaterials, 2014, 35(6), 1932-1943.
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.034] [PMID: 24315578]
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.034] [PMID: 24315578]
[5]
Xu, S.; Wang, L.; Liu, Z. Molecularly imprinted polymer nanoparticles: An emerging versatile platform for cancer therapy. Angew. Chem. Int. Ed., 2021, 60(8), 3858-3869.
[http://dx.doi.org/10.1002/anie.202005309] [PMID: 32789971]
[http://dx.doi.org/10.1002/anie.202005309] [PMID: 32789971]
[6]
Maleki, P.; Nemati, F.; Gholoobi, A.; Hashemzadeh, A.; Sabouri, Z.; Darroudi, M. Green facile synthesis of silver-doped cerium oxide nanoparticles and investigation of their cytotoxicity and antibacterial activity. Inorg. Chem. Commun., 2021, 131, 108762.
[http://dx.doi.org/10.1016/j.inoche.2021.108762]
[http://dx.doi.org/10.1016/j.inoche.2021.108762]
[7]
Hashemzadeh, A.; Drummen, G.P.C.; Avan, A.; Darroudi, M.; Khazaei, M.; Khajavian, R.; Rangrazi, A.; Mirzaei, M. When metal–organic framework mediated smart drug delivery meets gastrointestinal cancers. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(19), 3967-3982.
[http://dx.doi.org/10.1039/D1TB00155H] [PMID: 33908592]
[http://dx.doi.org/10.1039/D1TB00155H] [PMID: 33908592]
[8]
Adityan, S.; Tran, M.; Bhavsar, C.; Wu, S.Y. Nano-therapeutics for modulating the tumour microenvironment: Design, development, and clinical translation. J. Control. Release, 2020, 327, 512-532.
[http://dx.doi.org/10.1016/j.jconrel.2020.08.016] [PMID: 32800879]
[http://dx.doi.org/10.1016/j.jconrel.2020.08.016] [PMID: 32800879]
[9]
Lunova, M.; Prokhorov, A.; Jirsa, M.; Hof, M.; Olżyńska, A.; Jurkiewicz, P.; Kubinová, Š.; Lunov, O.; Dejneka, A. Nanoparticle core stability and surface functionalization drive the mTOR signaling pathway in hepatocellular cell lines. Sci. Rep., 2017, 7(1), 16049.
[http://dx.doi.org/10.1038/s41598-017-16447-6] [PMID: 29167516]
[http://dx.doi.org/10.1038/s41598-017-16447-6] [PMID: 29167516]
[10]
Hashemzadeh, A.; Avan, A.; Ferns, G.A.; Khazaei, M. Vaccines based on virus-like nano-particles for use against Middle East Respiratory Syndrome (MERS) coronavirus. Vaccine, 2020, 38(36), 5742-5746.
[http://dx.doi.org/10.1016/j.vaccine.2020.07.003] [PMID: 32684497]
[http://dx.doi.org/10.1016/j.vaccine.2020.07.003] [PMID: 32684497]
[11]
Asgharzadeh, F.; Hashemzadeh, A.; Rahmani, F.; Yaghoubi, A.; Nazari, S.E.; Avan, A.; Mehr, S.M.H.; Soleimanpour, S.; Khazaei, M. Cerium oxide nanoparticles acts as a novel therapeutic agent for ulcerative colitis through anti-oxidative mechanism. Life Sci., 2021, 278, 119500.
[http://dx.doi.org/10.1016/j.lfs.2021.119500] [PMID: 33862111]
[http://dx.doi.org/10.1016/j.lfs.2021.119500] [PMID: 33862111]
[12]
Hashemzadeh, A.; Amerizadeh, F.; Asgharzadeh, F.; Drummen, G.P.; Hassanian, S.M.; Landarani, M. Magnetic amine-functionalized UiO-66 for oxaliplatin delivery to colon cancer cells: In vitro studies. J. Clust. Sci., 2022, 33(5), 2345-2361.
[13]
Hashemzadeh, A.; Amerizadeh, F.; Asgharzadeh, F.; Darroudi, M.; Avan, A.; Hassanian, S.M.; Landarani, M.; Khazaei, M. Delivery of oxaliplatin to colorectal cancer cells by folate-targeted UiO-66-NH2. Toxicol. Appl. Pharmacol., 2021, 423, 115573.
[http://dx.doi.org/10.1016/j.taap.2021.115573] [PMID: 33991535]
[http://dx.doi.org/10.1016/j.taap.2021.115573] [PMID: 33991535]
[14]
Asgharzadeh, F.; Hashemzadeh, A.; Yaghoubi, A.; Avan, A.; Nazari, S.E.; Soleimanpour, S.; Hassanian, S.M.; Ferns, G.A.; Rahmani, F.; Khazaei, M. Therapeutic effects of silver nanoparticle containing sulfasalazine on DSS-induced colitis model. J. Drug Deliv. Sci. Technol., 2021, 61, 102133.
[http://dx.doi.org/10.1016/j.jddst.2020.102133]
[http://dx.doi.org/10.1016/j.jddst.2020.102133]
[15]
Barreto, E.F.; Larson, T.R.; Koubek, E.J. Drug Excretion. In: Reference Module in Biomedical Sciences; Elsevier, 2021.
[16]
Taft, D.R. Drug Excretion. In: Pharmacology; Hacker, M.; Messer, W.; Bachmann, K., Eds.; Academic Press: San Diego, 2009; pp. 175-199.
[http://dx.doi.org/10.1016/B978-0-12-369521-5.00009-9]
[http://dx.doi.org/10.1016/B978-0-12-369521-5.00009-9]
[17]
Li, B.; Li, Q.; Mo, J.; Dai, H. Drug-loaded polymeric nanoparticles for cancer stem cell targeting. Front. Pharmacol., 2017, 8, 51.
[http://dx.doi.org/10.3389/fphar.2017.00051] [PMID: 28261093]
[http://dx.doi.org/10.3389/fphar.2017.00051] [PMID: 28261093]
[18]
Zhao, Q.H.; Qiu, L.Y. An overview of the pharmacokinetics of polymer-based nanoassemblies and nanoparticles. Curr. Drug Metab., 2013, 14(8), 832-839.
[http://dx.doi.org/10.2174/138920021131400104] [PMID: 24016113]
[http://dx.doi.org/10.2174/138920021131400104] [PMID: 24016113]
[19]
Gagliardi, A.; Giuliano, E.; Venkateswararao, E.; Fresta, M.; Bulotta, S.; Awasthi, V.; Cosco, D. Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front. Pharmacol., 2021, 12, 601626.
[http://dx.doi.org/10.3389/fphar.2021.601626] [PMID: 33613290]
[http://dx.doi.org/10.3389/fphar.2021.601626] [PMID: 33613290]
[20]
Karlsson, J.; Vaughan, H.J.; Green, J.J. Biodegradable polymeric nanoparticles for therapeutic cancer treatments. Annu. Rev. Chem. Biomol. Eng., 2018, 9(1), 105-127.
[http://dx.doi.org/10.1146/annurev-chembioeng-060817-084055] [PMID: 29579402]
[http://dx.doi.org/10.1146/annurev-chembioeng-060817-084055] [PMID: 29579402]
[21]
Lin, G.; Zhang, H.; Huang, L. Smart polymeric nanoparticles for cancer gene delivery. Mol. Pharm., 2015, 12(2), 314-321.
[http://dx.doi.org/10.1021/mp500656v] [PMID: 25531409]
[http://dx.doi.org/10.1021/mp500656v] [PMID: 25531409]
[22]
Fluorouracil. In: Aronson, J.K., Ed.; Meyler’s Side Effects of Drugs, 16th ed; Elsevier: Oxford, 2016, pp. 382-394.
[http://dx.doi.org/10.1016/B978-0-444-53717-1.00761-7]
[http://dx.doi.org/10.1016/B978-0-444-53717-1.00761-7]
[23]
Rider, B.J. 5 Fluorouracil. In: xPharm: The Comprehensive Pharmacology Reference;; Enna, S.J.; Bylund,, D.B., Eds.; Elsevier: New York, 2007; pp. 1-5.
[24]
Sprangers, B.E.N.; Cosmai, L.; Porta, C. 16 - Conventional chemotherapy. In: Onco-Nephrology; Finkel, K.W.; Perazella, M.A.; Cohen, E.P., Eds.; Elsevier: Philadelphia, 2020; pp. 127-53.e11.
[http://dx.doi.org/10.1016/B978-0-323-54945-5.00025-4]
[http://dx.doi.org/10.1016/B978-0-323-54945-5.00025-4]
[25]
Tiwari, G.; Tiwari, R.; Bannerjee, S.K.; Bhati, L.; Pandey, S.; Pandey, P.; Sriwastawa, B. Drug delivery systems: An updated review. Int. J. Pharm. Investig., 2012, 2(1), 2-11.
[http://dx.doi.org/10.4103/2230-973X.96920] [PMID: 23071954]
[http://dx.doi.org/10.4103/2230-973X.96920] [PMID: 23071954]
[26]
Entezar-Almahdi, E.; Mohammadi-Samani, S.; Tayebi, L.; Farjadian, F. Recent advances in designing 5-fluorouracil delivery systems: A stepping stone in the safe treatment of colorectal cancer. Int. J. Nanomedicine, 2020, 15, 5445-5458.
[http://dx.doi.org/10.2147/IJN.S257700] [PMID: 32801699]
[http://dx.doi.org/10.2147/IJN.S257700] [PMID: 32801699]
[27]
Bennet, D. Kim, S Polymer Nanoparticles for Smart Drug Delivery. In: Application of Nanotechnology in Drug Delivery; InTechEditors; Ali Demir Sezer, 2014; pp. 257-310.
[http://dx.doi.org/10.5772/58422]
[http://dx.doi.org/10.5772/58422]
[28]
Calori, I.R.; Braga, G.; de Jesus, P.C.C.; Bi, H.; Tedesco, A.C. Polymer scaffolds as drug delivery systems. Eur. Polym. J., 2020, 129, 109621.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109621]
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109621]
[29]
Idrees, H.; Zaidi, S.Z.J.; Sabir, A.; Khan, R.U.; Zhang, X.; Hassan, S. A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials, 2020, 10(10), 1970.
[http://dx.doi.org/10.3390/nano10101970] [PMID: 33027891]
[http://dx.doi.org/10.3390/nano10101970] [PMID: 33027891]
[30]
Wigmore, P.M.; Mustafa, S.; El-Beltagy, M.; Lyons, L.; Umka, J.; Bennett, G. Effects of 5-FU. Chemo fog; Springer, 2010, pp. 157-164.
[http://dx.doi.org/10.1007/978-1-4419-6306-2_20]
[http://dx.doi.org/10.1007/978-1-4419-6306-2_20]
[31]
Scartozzi, M.; Maccaroni, E.; Giampieri, R.; Pistelli, M.; Bittoni, A.; Del Prete, M.; Berardi, R.; Cascinu, S. 5-fluorouracil pharmacogenomics: Still rocking after all these years? Pharmacogenomics, 2011, 12(2), 251-265.
[http://dx.doi.org/10.2217/pgs.10.167] [PMID: 21332317]
[http://dx.doi.org/10.2217/pgs.10.167] [PMID: 21332317]
[32]
Yuan, J.; Lv, H.; Peng, B.; Wang, C.; Yu, Y.; He, Z. Role of BCRP as a biomarker for predicting resistance to 5-fluorouracil in breast cancer. Cancer Chemother. Pharmacol., 2009, 63(6), 1103-1110.
[http://dx.doi.org/10.1007/s00280-008-0838-z] [PMID: 18820913]
[http://dx.doi.org/10.1007/s00280-008-0838-z] [PMID: 18820913]
[33]
Sethy, C.; Kundu, C.N. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition. Biomed. Pharmacother., 2021, 137, 111285.
[http://dx.doi.org/10.1016/j.biopha.2021.111285] [PMID: 33485118]
[http://dx.doi.org/10.1016/j.biopha.2021.111285] [PMID: 33485118]
[34]
Chalabi-Dchar, M.; Fenouil, T.; Machon, C.; Vincent, A.; Catez, F.; Marcel, V. A novel view on an old drug, 5-fluorouracil: an unexpected RNA modifier with intriguing impact on cancer cell fate. NAR Cancer, 2021, 3(3), zcab032.
[35]
Zhang, L.; Song, R.; Gu, D.; Zhang, X.; Yu, B.; Liu, B.; Xie, J. The role of GLI1 for 5-Fu resistance in colorectal cancer. Cell Biosci., 2017, 7(1), 17.
[http://dx.doi.org/10.1186/s13578-017-0145-7] [PMID: 28413604]
[http://dx.doi.org/10.1186/s13578-017-0145-7] [PMID: 28413604]
[36]
Suetsugu, T.; Mori, R.; Futamura, M.; Fukada, M.; Tanaka, H.; Yasufuku, I.; Sato, Y.; Iwata, Y.; Imai, T.; Imai, H.; Tanaka, Y.; Okumura, N.; Matsuhashi, N.; Takahashi, T.; Yoshida, K. Mechanism of acquired 5FU resistance and strategy for overcoming 5FU resistance focusing on 5FU metabolism in colon cancer cell lines. Oncol. Rep., 2021, 45(4), 27.
[http://dx.doi.org/10.3892/or.2021.7978] [PMID: 33649846]
[http://dx.doi.org/10.3892/or.2021.7978] [PMID: 33649846]
[37]
Hoffman, A.S. Stimuli-responsive polymers: Biomedical applications and challenges for clinical translation. Adv. Drug Deliv. Rev., 2013, 65(1), 10-16.
[http://dx.doi.org/10.1016/j.addr.2012.11.004] [PMID: 23246762]
[http://dx.doi.org/10.1016/j.addr.2012.11.004] [PMID: 23246762]
[38]
Li, F.; Lu, J.; Kong, X.; Hyeon, T.; Ling, D. Dynamic nanoparticle assemblies for biomedical applications. Adv. Mater., 2017, 29(14), 1605897.
[http://dx.doi.org/10.1002/adma.201605897] [PMID: 28224677]
[http://dx.doi.org/10.1002/adma.201605897] [PMID: 28224677]
[39]
Lewis, D.R.; Kamisoglu, K.; York, A.W.; Moghe, P.V. Polymer‐based therapeutics: nanoassemblies and nanoparticles for management of atherosclerosis. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2011, 3(4), 400-420.
[http://dx.doi.org/10.1002/wnan.145] [PMID: 21523920]
[http://dx.doi.org/10.1002/wnan.145] [PMID: 21523920]
[40]
Tang, Z.; He, C.; Tian, H.; Ding, J.; Hsiao, B.S.; Chu, B.; Chen, X. Polymeric nanostructured materials for biomedical applications. Prog. Polym. Sci., 2016, 60, 86-128.
[http://dx.doi.org/10.1016/j.progpolymsci.2016.05.005]
[http://dx.doi.org/10.1016/j.progpolymsci.2016.05.005]
[41]
Zhou, N.; Liu, T.; Wen, B.; Gong, C.; Wei, G.; Su, Z. Recent advances in the construction of flexible sensors for biomedical applications. Biotechnol. J., 2020, 15(12), 2000094.
[http://dx.doi.org/10.1002/biot.202000094] [PMID: 32744777]
[http://dx.doi.org/10.1002/biot.202000094] [PMID: 32744777]
[42]
Rösler, A.; Vandermeulen, G.W.M.; Klok, H.A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv. Drug Deliv. Rev., 2012, 64, 270-279.
[http://dx.doi.org/10.1016/j.addr.2012.09.026] [PMID: 11733119]
[http://dx.doi.org/10.1016/j.addr.2012.09.026] [PMID: 11733119]
[43]
Ebrahim Attia, A.B.; Ong, Z.Y.; Hedrick, J.L.; Lee, P.P.; Ee, P.L.R.; Hammond, P.T.; Yang, Y-Y. Mixed micelles self-assembled from block copolymers for drug delivery. Curr. Opin. Colloid Interface Sci., 2011, 16(3), 182-194.
[http://dx.doi.org/10.1016/j.cocis.2010.10.003]
[http://dx.doi.org/10.1016/j.cocis.2010.10.003]
[44]
Khalin, I.; Heimburger, D.; Melnychuk, N.; Collot, M.; Groschup, B.; Hellal, F.; Reisch, A.; Plesnila, N.; Klymchenko, A.S. Ultrabright fluorescent polymeric nanoparticles with a stealth pluronic shell for live tracking in the mouse brain. ACS Nano, 2020, 14(8), 9755-9770.
[http://dx.doi.org/10.1021/acsnano.0c01505] [PMID: 32680421]
[http://dx.doi.org/10.1021/acsnano.0c01505] [PMID: 32680421]
[45]
Choi, K.Y.; Liu, G.; Lee, S.; Chen, X. Theranostic nanoplatforms for simultaneous cancer imaging and therapy: Current approaches and future perspectives. Nanoscale, 2012, 4(2), 330-342.
[http://dx.doi.org/10.1039/C1NR11277E] [PMID: 22134683]
[http://dx.doi.org/10.1039/C1NR11277E] [PMID: 22134683]
[46]
Cheng, R.; Meng, F.; Deng, C.; Klok, H.A.; Zhong, Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials, 2013, 34(14), 3647-3657.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.084] [PMID: 23415642]
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.084] [PMID: 23415642]
[47]
Ghosh, P.K. Hydrophilic polymeric nanoparticles as drug carriers. Indian J. Biochem. Biophys., 2000, 37, 273-282.
[48]
Liu, X.; Yang, Y.; Urban, M.W. Stimuli‐responsive polymeric nanoparticles. Macromol. Rapid Commun., 2017, 38(13), 1700030.
[http://dx.doi.org/10.1002/marc.201700030] [PMID: 28497535]
[http://dx.doi.org/10.1002/marc.201700030] [PMID: 28497535]
[49]
Gu, W.; Meng, F.; Haag, R.; Zhong, Z. Actively targeted nanomedicines for precision cancer therapy: Concept, construction, challenges and clinical translation. J. Control. Release, 2021, 329, 676-695.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.003] [PMID: 33022328]
[http://dx.doi.org/10.1016/j.jconrel.2020.10.003] [PMID: 33022328]
[50]
Deng, C.; Zhang, Q.; Guo, J.; Zhao, X.; Zhong, Z. Robust and smart polypeptide-based nanomedicines for targeted tumor therapy. Adv. Drug Deliv. Rev., 2020, 160, 199-211.
[http://dx.doi.org/10.1016/j.addr.2020.10.019] [PMID: 33137364]
[http://dx.doi.org/10.1016/j.addr.2020.10.019] [PMID: 33137364]
[51]
Luo, G.F.; Chen, W.H.; Zeng, X.; Zhang, X.Z. Cell primitive-based biomimetic functional materials for enhanced cancer therapy. Chem. Soc. Rev., 2021, 50(2), 945-985.
[http://dx.doi.org/10.1039/D0CS00152J] [PMID: 33226037]
[http://dx.doi.org/10.1039/D0CS00152J] [PMID: 33226037]
[52]
Sánchez, A.; Mejía, S.P.; Orozco, J. Recent advances in polymeric nanoparticle-encapsulated drugs against intracellular infections. Molecules, 2020, 25(16), 3760.
[http://dx.doi.org/10.3390/molecules25163760] [PMID: 32824757]
[http://dx.doi.org/10.3390/molecules25163760] [PMID: 32824757]
[53]
Navya, P.N.; Kaphle, A.; Srinivas, S.P.; Bhargava, S.K.; Rotello, V.M.; Daima, H.K. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg., 2019, 6(1), 23.
[http://dx.doi.org/10.1186/s40580-019-0193-2] [PMID: 31304563]
[http://dx.doi.org/10.1186/s40580-019-0193-2] [PMID: 31304563]
[54]
Vasile, C.; Pamfil, D.; Stoleru, E.; Baican, M. New developments in medical applications of hybrid hydrogels containing natural polymers. Molecules, 2020, 25(7), 1539.
[http://dx.doi.org/10.3390/molecules25071539] [PMID: 32230990]
[http://dx.doi.org/10.3390/molecules25071539] [PMID: 32230990]
[55]
Coelho, J.F.; Ferreira, P.C.; Alves, P.; Cordeiro, R.; Fonseca, A.C.; Góis, J.R.; Gil, M.H. Drug delivery systems: Advanced technologies potentially applicable in personalized treatments. EPMA J., 2010, 1(1), 164-209.
[http://dx.doi.org/10.1007/s13167-010-0001-x] [PMID: 23199049]
[http://dx.doi.org/10.1007/s13167-010-0001-x] [PMID: 23199049]
[56]
Sharma, S.; Sudhakara, P.; Singh, J.; Ilyas, R.A.; Asyraf, M.R.M.; Razman, M.R. Critical review of biodegradable and bioactive polymer composites for bone tissue engineering and drug delivery applications. Polymers, 2021, 13(16), 2623.
[http://dx.doi.org/10.3390/polym13162623] [PMID: 34451161]
[http://dx.doi.org/10.3390/polym13162623] [PMID: 34451161]
[57]
Gültekin, H.E. Biodegradable polymeric nanoparticles are effective systems for controlled drug delivery. Fabad. J. Pharm. Sci., 2013, 38, 107-118.
[58]
Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; Santini, A.; Souto, E.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules, 2020, 25(16), 3731.
[http://dx.doi.org/10.3390/molecules25163731] [PMID: 32824172]
[http://dx.doi.org/10.3390/molecules25163731] [PMID: 32824172]
[59]
Lu, X-Y.; Wu, D-C.; Li, Z-J.; Chen, G-Q. Chpater 7 - Polymer nanoparticles. In: Progress in Molecular Biology and Translational Science; Villaverde, A., Ed.; Academic Press, 2011; pp. 299-323.
[60]
Soppimath, K.S.; Aminabhavi, T.M.; Kulkarni, A.R.; Rudzinski, W.E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release, 2001, 70(1-2), 1-20.
[http://dx.doi.org/10.1016/S0168-3659(00)00339-4] [PMID: 11166403]
[http://dx.doi.org/10.1016/S0168-3659(00)00339-4] [PMID: 11166403]
[61]
Zhang, S.; Wu, Y.; He, B.; Luo, K.; Gu, Z. Biodegradable polymeric nanoparticles based on amphiphilic principle: construction and application in drug delivery. Sci. China Chem., 2014, 57(4), 461-475.
[http://dx.doi.org/10.1007/s11426-014-5076-0]
[http://dx.doi.org/10.1007/s11426-014-5076-0]
[62]
Das, S.S.; Bharadwaj, P.; Bilal, M.; Barani, M.; Rahdar, A.; Taboada, P.; Bungau, S.; Kyzas, G.Z. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers, 2020, 12(6), 1397.
[http://dx.doi.org/10.3390/polym12061397] [PMID: 32580366]
[http://dx.doi.org/10.3390/polym12061397] [PMID: 32580366]
[63]
Wang, Z.; Duan, Y.; Duan, Y. Application of polydopamine in tumor targeted drug delivery system and its drug release behavior. J. Control. Release, 2018, 290, 56-74.
[http://dx.doi.org/10.1016/j.jconrel.2018.10.009] [PMID: 30312718]
[http://dx.doi.org/10.1016/j.jconrel.2018.10.009] [PMID: 30312718]
[64]
Nichols, J.W.; Bae, Y.H. Odyssey of a cancer nanoparticle: From injection site to site of action. Nano Today, 2012, 7(6), 606-618.
[http://dx.doi.org/10.1016/j.nantod.2012.10.010] [PMID: 23243460]
[http://dx.doi.org/10.1016/j.nantod.2012.10.010] [PMID: 23243460]
[65]
Friberg, S.; Nyström, A.M. Nanomedicine: will it offer possibilities to overcome multiple drug resistance in cancer? J. Nanobiotechnol., 2016, 14(1), 17.
[http://dx.doi.org/10.1186/s12951-016-0172-2] [PMID: 26955956]
[http://dx.doi.org/10.1186/s12951-016-0172-2] [PMID: 26955956]
[66]
Nichols, J.W.; Bae, Y.H. Nanotechnology for cancer treatment: Possibilities and limitations. In: Cancer targeted drug delivery; Springer, 2013; pp. 37-56.
[http://dx.doi.org/10.1007/978-1-4614-7876-8_2]
[http://dx.doi.org/10.1007/978-1-4614-7876-8_2]
[67]
Barua, S.; Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today, 2014, 9(2), 223-243.
[http://dx.doi.org/10.1016/j.nantod.2014.04.008] [PMID: 25132862]
[http://dx.doi.org/10.1016/j.nantod.2014.04.008] [PMID: 25132862]
[68]
Deepa, G.; Ashwanikumar, N.; Pillai, J.J.; Kumar, G.S. Polymer nanoparticles--a novel strategy for administration of Paclitaxel in cancer chemotherapy. Curr. Med. Chem., 2012, 19(36), 6207-6213.
[http://dx.doi.org/10.2174/0929867311209066207] [PMID: 22834822]
[http://dx.doi.org/10.2174/0929867311209066207] [PMID: 22834822]
[69]
Drozdov, A.S.; Nikitin, P.I.; Rozenberg, J.M. Systematic review of cancer targeting by nanoparticles revealed a global association between accumulation in tumors and spleen. Int. J. Mol. Sci., 2021, 22(23), 13011.
[http://dx.doi.org/10.3390/ijms222313011] [PMID: 34884816]
[http://dx.doi.org/10.3390/ijms222313011] [PMID: 34884816]
[70]
Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[71]
Ray, P.; Haideri, N.; Haque, I.; Mohammed, O.; Chakraborty, S.; Banerjee, S. The impact of nanoparticles on the immune system: A gray zone of nanomedicine. J Immunol. Sci., 2021, 5(1), 19-33.
[http://dx.doi.org/10.29245/2578-3009/2021/1.1206]
[http://dx.doi.org/10.29245/2578-3009/2021/1.1206]
[72]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol., 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[73]
Park, S.J. Protein–nanoparticle interaction: corona formation and conformational changes in proteins on nanoparticles. Int. J. Nanomed., 2020, 15, 5783-5802.
[http://dx.doi.org/10.2147/IJN.S254808] [PMID: 32821101]
[http://dx.doi.org/10.2147/IJN.S254808] [PMID: 32821101]
[74]
Corbo, C.; Molinaro, R.; Parodi, A.; Toledano Furman, N.E.; Salvatore, F.; Tasciotti, E. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine (Lond.), 2016, 11(1), 81-100.
[http://dx.doi.org/10.2217/nnm.15.188] [PMID: 26653875]
[http://dx.doi.org/10.2217/nnm.15.188] [PMID: 26653875]
[75]
Hickey, J.W.; Santos, J.L.; Williford, J.M.; Mao, H. -.Q. Control of polymeric nanoparticle size to improve therapeutic delivery. J. Control. Release, 2015, 219, 536-547.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.006]
[http://dx.doi.org/10.1016/j.jconrel.2015.10.006]
[76]
Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[77]
Gadzinowski, M.; Kasprów, M.; Basinska, T.; Slomkowski, S.; Otulakowski, Ł.; Trzebicka, B.; Makowski, T. Synthesis, Hydrophilicity and Micellization of Coil-Brush Polystyrene-b-(polyglycidol-g-polyglycidol) Copolymer—Comparison with Linear Polystyrene-b-polyglycidol. Polymers (Basel), 2022, 14(2), 253.
[http://dx.doi.org/10.3390/polym14020253] [PMID: 35054660]
[http://dx.doi.org/10.3390/polym14020253] [PMID: 35054660]
[78]
El Jundi, A.; Buwalda, S.J.; Bakkour, Y.; Garric, X.; Nottelet, B. Double hydrophilic block copolymers self-assemblies in biomedical applications. Adv. Colloid Interface Sci., 2020, 283, 102213.
[http://dx.doi.org/10.1016/j.cis.2020.102213] [PMID: 32739324]
[http://dx.doi.org/10.1016/j.cis.2020.102213] [PMID: 32739324]
[79]
Pinna, M.; Hiltl, S.; Guo, X.; Böker, A.; Zvelindovsky, A.V. Block copolymer nanocontainers. ACS Nano, 2010, 4(5), 2845-2855.
[http://dx.doi.org/10.1021/nn901853e] [PMID: 20496954]
[http://dx.doi.org/10.1021/nn901853e] [PMID: 20496954]
[80]
Park, C.; Yoon, J.; Thomas, E.L. Enabling nanotechnology with self assembled block copolymer patterns. Polymer, 2003, 44(22), 6725-6760.
[http://dx.doi.org/10.1016/j.polymer.2003.08.011]
[http://dx.doi.org/10.1016/j.polymer.2003.08.011]
[81]
Jhaveri, A.M.; Torchilin, V.P. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front. Pharmacol., 2014, 5, 77.
[http://dx.doi.org/10.3389/fphar.2014.00077] [PMID: 24795633]
[http://dx.doi.org/10.3389/fphar.2014.00077] [PMID: 24795633]
[82]
Hasannia, M.; Aliabadi, A.; Abnous, K.; Taghdisi, S.M.; Ramezani, M.; Alibolandi, M. Synthesis of block copolymers used in polymersome fabrication: Application in drug delivery. J. Control. Release, 2022, 341, 95-117.
[http://dx.doi.org/10.1016/j.jconrel.2021.11.010] [PMID: 34774891]
[http://dx.doi.org/10.1016/j.jconrel.2021.11.010] [PMID: 34774891]
[83]
Semsarilar, M.; Abetz, V. Polymerizations by RAFT: Developments of the technique and its application in the synthesis of tailored (co)polymers. Macromol. Chem. Phys., 2021, 222(1), 2000311.
[http://dx.doi.org/10.1002/macp.202000311]
[http://dx.doi.org/10.1002/macp.202000311]
[84]
Kurzhals, S.; Schroffenegger, M.; Gal, N.; Zirbs, R.; Reimhult, E. Influence of grafted block copolymer structure on thermoresponsiveness of superparamagnetic core–shell nanoparticles. Biomacromolecules, 2018, 19(5), 1435-1444.
[http://dx.doi.org/10.1021/acs.biomac.7b01403] [PMID: 29161516]
[http://dx.doi.org/10.1021/acs.biomac.7b01403] [PMID: 29161516]
[85]
Arslan, H. Block and graft copolymerization by controlled/living radical polymerization methods. In: Polymerization; InTechOpen, 2012; pp. 279-320.
[86]
Gaitzsch, J.; Messager, L.; Morecroft, E.; Meier, W. Vesicles in multiple shapes: Fine-tuning polymersomes’ shape and stability by setting membrane hydrophobicity. Polymers, 2017, 9(12), 483.
[http://dx.doi.org/10.3390/polym9100483] [PMID: 30965785]
[http://dx.doi.org/10.3390/polym9100483] [PMID: 30965785]
[87]
Hickey, R.J. Solution-phase assembly of nanoparticles and amphiphilic polymers: Controlling the morphology from vesicles to micelles; Phd Thesis, University of Pennsylvania, 2013.
[88]
Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U.S. Poly(ethylene glycol) in drug delivery: Pros and cons as well as potential alternatives. Angew. Chem. Int. Ed., 2010, 49(36), 6288-6308.
[http://dx.doi.org/10.1002/anie.200902672] [PMID: 20648499]
[http://dx.doi.org/10.1002/anie.200902672] [PMID: 20648499]
[89]
Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev., 2016, 99(Pt A), 28-51.
[http://dx.doi.org/10.1016/j.addr.2015.09.012] [PMID: 26456916]
[http://dx.doi.org/10.1016/j.addr.2015.09.012] [PMID: 26456916]
[90]
Hoang Thi, T.T.; Pilkington, E.H.; Nguyen, D.H.; Lee, J.S.; Park, K.D.; Truong, N.P. The importance of poly(ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers, 2020, 12(2), 298.
[http://dx.doi.org/10.3390/polym12020298] [PMID: 32024289]
[http://dx.doi.org/10.3390/polym12020298] [PMID: 32024289]
[91]
Douard, V.; Ferraris, R.P. Regulation of the fructose transporter GLUT5 in health and disease. Am. J. Physiol. Endocrinol. Metab., 2008, 295(2), E227-E237.
[http://dx.doi.org/10.1152/ajpendo.90245.2008] [PMID: 18398011]
[http://dx.doi.org/10.1152/ajpendo.90245.2008] [PMID: 18398011]
[92]
Navale, A.M.; Paranjape, A.N. Glucose transporters: Physiological and pathological roles. Biophys. Rev., 2016, 8(1), 5-9.
[http://dx.doi.org/10.1007/s12551-015-0186-2] [PMID: 28510148]
[http://dx.doi.org/10.1007/s12551-015-0186-2] [PMID: 28510148]
[93]
Engler, A.C.; Ke, X.; Gao, S.; Chan, J.M.W.; Coady, D.J.; Ono, R.J.; Lubbers, R.; Nelson, A.; Yang, Y.Y.; Hedrick, J.L. Hydrophilic polycarbonates: Promising degradable alternatives to poly(ethylene glycol)-based stealth materials. Macromolecules, 2015, 48(6), 1673-1678.
[http://dx.doi.org/10.1021/acs.macromol.5b00156]
[http://dx.doi.org/10.1021/acs.macromol.5b00156]
[94]
Kim, J.; Chhour, P.; Hsu, J.; Litt, H.I.; Ferrari, V.A.; Popovtzer, R.; Cormode, D.P. Use of nanoparticle contrast agents for cell tracking with computed tomography. Bioconjug. Chem., 2017, 28(6), 1581-1597.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00194] [PMID: 28485976]
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00194] [PMID: 28485976]
[95]
Yuan, Y.; Liu, B. Visualization of drug delivery processes using AIEgens. Chem. Sci. (Camb.), 2017, 8(4), 2537-2546.
[http://dx.doi.org/10.1039/C6SC05421H] [PMID: 28553485]
[http://dx.doi.org/10.1039/C6SC05421H] [PMID: 28553485]
[96]
Chinen, A.B.; Guan, C.M.; Ferrer, J.R.; Barnaby, S.N.; Merkel, T.J.; Mirkin, C.A. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev., 2015, 115(19), 10530-10574.
[http://dx.doi.org/10.1021/acs.chemrev.5b00321] [PMID: 26313138]
[http://dx.doi.org/10.1021/acs.chemrev.5b00321] [PMID: 26313138]
[97]
Rayaprolu, B.M.; Strom, J.G. Design and evaluation of D-α tocopheryl polyethylene glycol 1000 succinate emulsified poly-ϵ-caprolactone nanoparticles for protein/peptide drug delivery. Drug Dev. Ind. Pharm., 2013, 39(7), 1046-1052.
[http://dx.doi.org/10.3109/03639045.2012.699069] [PMID: 22758209]
[http://dx.doi.org/10.3109/03639045.2012.699069] [PMID: 22758209]
[98]
Salerno, A.; Domingo, C.; Saurina, J. PCL foamed scaffolds loaded with 5-fluorouracil anti-cancer drug prepared by an eco-friendly route. Mater. Sci. Eng. C, 2017, 75, 1191-1197.
[http://dx.doi.org/10.1016/j.msec.2017.03.011] [PMID: 28415406]
[http://dx.doi.org/10.1016/j.msec.2017.03.011] [PMID: 28415406]
[99]
Wang, Z.; Wei, Y.; Fang, G.; Hong, D.; An, L.; Jiao, T.; Shi, Y.; Zang, A. Colorectal cancer combination therapy using drug and gene co-delivered, targeted poly(ethylene glycol)-ϵ-poly(caprolactone) nanocarriers. Drug Des. Devel. Ther., 2018, 12, 3171-3180.
[http://dx.doi.org/10.2147/DDDT.S175614] [PMID: 30288022]
[http://dx.doi.org/10.2147/DDDT.S175614] [PMID: 30288022]
[100]
Ortiz, R.; Prados, J.; Melguizo, C.; Arias, J.L.; Ruiz, M.A.; Álvarez, P.J.; Caba, O.; Luque, R.; Segura, A.; Aránega, A. 5-Fluorouracil-loaded poly(ε-caprolactone) nanoparticles combined with phage E gene therapy as a new strategy against colon cancer. Int. J. Nanomed., 2012, 7, 95-107.
[PMID: 22275826]
[PMID: 22275826]
[101]
Yuan, M.; Xiao, Y.; Le, V.; Wei, C.; Fu, Y.; Liu, J.; Lang, M. Micelle controlled release of 5-fluorouracil: Follow the guideline for good polymer–drug compatibility. Colloids Surf. A Physicochem. Eng. Asp., 2014, 457, 116-124.
[http://dx.doi.org/10.1016/j.colsurfa.2014.04.062]
[http://dx.doi.org/10.1016/j.colsurfa.2014.04.062]
[102]
Yuan, Y.; Zhang, A.K.; Ling, J.; Yin, L.H.; Chen, Y.; Fu, G.D. Well-defined biodegradable amphiphilic conetworks. Soft Matter, 2013, 9(27), 6309-6318.
[http://dx.doi.org/10.1039/c3sm27853k]
[http://dx.doi.org/10.1039/c3sm27853k]
[103]
Ashour, A.E.; Badran, M.M.; Kumar, A.; Rishi, A.K.; Yassin, A.E. Di-block PLCL and tri-block PLCLG matrix polymeric nanoparticles enhanced the anticancer activity of loaded 5-fluorouracil. IEEE Trans. Nanobiosci., 2016, 15(7), 739-747.
[http://dx.doi.org/10.1109/TNB.2016.2612340] [PMID: 28029617]
[http://dx.doi.org/10.1109/TNB.2016.2612340] [PMID: 28029617]
[104]
Klouda, L.; Mikos, A.G. Thermoresponsive hydrogels in biomedical applications. Eur. J. Pharm. Biopharm., 2008, 68(1), 34-45.
[http://dx.doi.org/10.1016/j.ejpb.2007.02.025] [PMID: 17881200]
[http://dx.doi.org/10.1016/j.ejpb.2007.02.025] [PMID: 17881200]
[105]
Gong, C.; Shi, S.; Wu, L.; Gou, M.; Yin, Q.; Guo, Q.; Dong, P.; Zhang, F.; Luo, F.; Zhao, X.; Wei, Y.; Qian, Z. Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL–PEG–PCL hydrogel. Part 2: Sol–gel–sol transition and drug delivery behavior. Acta Biomater., 2009, 5(9), 3358-3370.
[http://dx.doi.org/10.1016/j.actbio.2009.05.025] [PMID: 19470411]
[http://dx.doi.org/10.1016/j.actbio.2009.05.025] [PMID: 19470411]
[106]
Kasiński, A.; Zielińska-Pisklak, M.; Oledzka, E.; Sobczak, M. Smart hydrogels–synthetic stimuli-responsive antitumor drug release systems. Int. J. Nanomed., 2020, 15, 4541-4572.
[http://dx.doi.org/10.2147/IJN.S248987] [PMID: 32617004]
[http://dx.doi.org/10.2147/IJN.S248987] [PMID: 32617004]
[107]
Matanović, M.R.; Kristl, J.; Grabnar, P.A. Thermoresponsive polymers: Insights into decisive hydrogel characteristics, mechanisms of gelation, and promising biomedical applications. Int. J. Pharm., 2014, 472(1-2), 262-275.
[http://dx.doi.org/10.1016/j.ijpharm.2014.06.029] [PMID: 24950367]
[http://dx.doi.org/10.1016/j.ijpharm.2014.06.029] [PMID: 24950367]
[108]
Dobrzynski, P. Synthesis of biodegradable copolymers with low-toxicity zirconium compounds. II. Copolymerization of glycolide with? -caprolactone initiated by zirconium(IV) acetylacetonate and zirconium(IV) chloride. J. Polym. Sci. A Polym. Chem., 2002, 40(10), 1379-1394.
[http://dx.doi.org/10.1002/pola.10222]
[http://dx.doi.org/10.1002/pola.10222]
[109]
Kasiński, A.; Zielińska-Pisklak, M.; Kowalczyk, S.; Plichta, A.; Zgadzaj, A.; Oledzka, E.; Sobczak, M. Synthesis and characterization of new biodegradable injectable thermosensitive smart hydrogels for 5-fluorouracil delivery. Int. J. Mol. Sci., 2021, 22(15), 8330.
[http://dx.doi.org/10.3390/ijms22158330] [PMID: 34361098]
[http://dx.doi.org/10.3390/ijms22158330] [PMID: 34361098]
[110]
Zhu, S.; Wen, L.; Xiao, Y.; Lang, M. Poly(ε-caprolactone) with pH and UCST responsiveness as a 5-fluorouracil carrier. Polym. Chem., 2020, 11(32), 5173-5180.
[http://dx.doi.org/10.1039/D0PY00865F]
[http://dx.doi.org/10.1039/D0PY00865F]
[111]
Le, V.M.; Wang, J.J.; Yuan, M.; Nguyen, T.L.; Yin, G.F.; Zheng, Y.H.; Shi, W.B.; Lang, M.D.; Xu, L.M.; Liu, J.W. An investigation of antitumor efficiency of novel sustained and targeted 5-fluorouracil nanoparticles. Eur. J. Med. Chem., 2015, 92, 882-889.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.043] [PMID: 25676729]
[http://dx.doi.org/10.1016/j.ejmech.2014.12.043] [PMID: 25676729]
[112]
Zhang, Y.; Li, J.; Lang, M.; Tang, X.; Li, L.; Shen, X. Folate-functionalized nanoparticles for controlled 5-Fluorouracil delivery. J. Colloid Interface Sci., 2011, 354(1), 202-209.
[http://dx.doi.org/10.1016/j.jcis.2010.10.054] [PMID: 21094493]
[http://dx.doi.org/10.1016/j.jcis.2010.10.054] [PMID: 21094493]
[113]
Li, J.; Zhang, Y.; Chen, J.; Wang, C.; Lang, M. Preparation, characterization and drug release behavior of 5-fluorouracil loaded carboxylic poly (ε-caprolactone) nanoparticles. Pure Appl. Chem., 2009, 46, 1103-1113.
[114]
Sengel-Turk, C.T.; Hascicek, C. Design of lipid-polymer hybrid nanoparticles for therapy of BPH: Part I. Formulation optimization using a design of experiment approach. J. Drug Deliv. Sci. Technol., 2017, 39, 16-27.
[http://dx.doi.org/10.1016/j.jddst.2017.02.012]
[http://dx.doi.org/10.1016/j.jddst.2017.02.012]
[115]
Khan, S.; Aamir, M.N.; Madni, A.; Jan, N.; Khan, A.; Jabar, A.; Shah, H.; Rahim, M.A.; Ali, A. Lipid poly (ɛ-caprolactone) hybrid nanoparticles of 5-fluorouracil for sustained release and enhanced anticancer efficacy. Life Sci., 2021, 284, 119909.
[http://dx.doi.org/10.1016/j.lfs.2021.119909] [PMID: 34450169]
[http://dx.doi.org/10.1016/j.lfs.2021.119909] [PMID: 34450169]
[116]
Wang, M.; Hsieh, A.J.; Rutledge, G.C. Electrospinning of poly(MMA-co-MAA) copolymers and their layered silicate nanocomposites for improved thermal properties. Polymer (Guildf.), 2005, 46(10), 3407-3418.
[http://dx.doi.org/10.1016/j.polymer.2005.02.099]
[http://dx.doi.org/10.1016/j.polymer.2005.02.099]
[117]
Yu, D.G.; Zhu, L.M.; White, K.; Branford-White, C. Electrospun nanofiber-based drug delivery systems. Health (Irvine Calif.), 2009, 1(2), 67-75.
[http://dx.doi.org/10.4236/health.2009.12012]
[http://dx.doi.org/10.4236/health.2009.12012]
[118]
Chakrapani, V.Y.; Gnanamani, A.; Giridev, V.R.; Madhusoothanan, M.; Sekaran, G. Electrospinning of type I collagen and PCL nano-fibers using acetic acid. J. Appl. Polym. Sci., 2012, 125(4), 3221-3227.
[http://dx.doi.org/10.1002/app.36504]
[http://dx.doi.org/10.1002/app.36504]
[119]
Li, Z.; Wang, C. One-dimensional nanostructures: electrospinning technique and unique nanofibers; Springer, 2013.
[http://dx.doi.org/10.1007/978-3-642-36427-3]
[http://dx.doi.org/10.1007/978-3-642-36427-3]
[120]
Zeng, J.; Yang, L.; Liang, Q.; Zhang, X.; Guan, H.; Xu, X.; Chen, X.; Jing, X. Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. J. Control. Release, 2005, 105(1-2), 43-51.
[http://dx.doi.org/10.1016/j.jconrel.2005.02.024] [PMID: 15908033]
[http://dx.doi.org/10.1016/j.jconrel.2005.02.024] [PMID: 15908033]
[121]
Dash, T.K.; Konkimalla, V.B. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. J. Control. Release, 2012, 158(1), 15-33.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.064] [PMID: 21963774]
[http://dx.doi.org/10.1016/j.jconrel.2011.09.064] [PMID: 21963774]
[122]
Reichert, J.C.; Cipitria, A.; Epari, D.R.; Saifzadeh, S.; Krishnakanth, P.; Berner, A. A tissue engineering solution for segmental defect regeneration in load-bearing long bones. Sci. Transl. Med., 2012, 4, 141ra93.
[http://dx.doi.org/10.1126/scitranslmed.3003720]
[http://dx.doi.org/10.1126/scitranslmed.3003720]
[123]
Feng, B.; Tu, H.; Yuan, H.; Peng, H.; Zhang, Y. Acetic-acid-mediated miscibility toward electrospinning homogeneous composite nano-fibers of GT/PCL. Biomacromolecules, 2012, 13(12), 3917-3925.
[http://dx.doi.org/10.1021/bm3009389] [PMID: 23131188]
[http://dx.doi.org/10.1021/bm3009389] [PMID: 23131188]
[124]
Sahoo, N.; Sahoo, R.K.; Biswas, N.; Guha, A.; Kuotsu, K. Recent advancement of gelatin nanoparticles in drug and vaccine delivery. Int. J. Biol. Macromol., 2015, 81, 317-331.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.08.006] [PMID: 26277745]
[http://dx.doi.org/10.1016/j.ijbiomac.2015.08.006] [PMID: 26277745]
[125]
Kai, D.; Prabhakaran, M.P.; Stahl, B.; Eblenkamp, M.; Wintermantel, E.; Ramakrishna, S. Mechanical properties and in vitro behavior of nanofiber–hydrogel composites for tissue engineering applications. Nanotechnology, 2012, 23(9), 095705.
[http://dx.doi.org/10.1088/0957-4484/23/9/095705] [PMID: 22322583]
[http://dx.doi.org/10.1088/0957-4484/23/9/095705] [PMID: 22322583]
[126]
Zheng, R.; Duan, H.; Xue, J.; Liu, Y.; Feng, B.; Zhao, S.; Zhu, Y.; Liu, Y.; He, A.; Zhang, W.; Liu, W.; Cao, Y.; Zhou, G. The influence of Gelatin/PCL ratio and 3-D construct shape of electrospun membranes on cartilage regeneration. Biomaterials, 2014, 35(1), 152-164.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.082] [PMID: 24135269]
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.082] [PMID: 24135269]
[127]
Xue, J.; Feng, B.; Zheng, R.; Lu, Y.; Zhou, G.; Liu, W.; Cao, Y.; Zhang, Y.; Zhang, W.J. Engineering ear-shaped cartilage using electrospun fibrous membranes of gelatin/polycaprolactone. Biomaterials, 2013, 34(11), 2624-2631.
[http://dx.doi.org/10.1016/j.biomaterials.2012.12.011] [PMID: 23352044]
[http://dx.doi.org/10.1016/j.biomaterials.2012.12.011] [PMID: 23352044]
[128]
Faezeh, Ghahreman; Semnani, D.; Khorasani, S.N.; Varshosaz, J.; Khalili, S.; Mohammadi, S.; Kaviannasab, E. Polycaprolactone–gelatin membranes in controlled drug delivery of 5-fluorouracil. Polym. Sci. Ser. A, 2020, 62(6), 636-647.
[http://dx.doi.org/10.1134/S0965545X20330020]
[http://dx.doi.org/10.1134/S0965545X20330020]
[129]
Kaviannasab, E.; Semnani, D.; Khorasani, S.N.; Varshosaz, J.; Khalili, S.; Ghahreman, F. Core-shell nanofibers of poly (ε –caprolactone) and Polyvinylpyrrolidone for drug delivery system. Mater. Res. Express, 2019, 6(11), 115015.
[http://dx.doi.org/10.1088/2053-1591/ab4387]
[http://dx.doi.org/10.1088/2053-1591/ab4387]
[130]
Zhu, L.F.; Zheng, Y.; Fan, J.; Yao, Y.; Ahmad, Z.; Chang, M.W. A novel core-shell nanofiber drug delivery system intended for the synergistic treatment of melanoma. Eur. J. Pharm. Sci., 2019, 137, 105002.
[http://dx.doi.org/10.1016/j.ejps.2019.105002] [PMID: 31302215]
[http://dx.doi.org/10.1016/j.ejps.2019.105002] [PMID: 31302215]
[131]
Badran, M.M.; Mady, M.M.; Ghannam, M.M.; Shakeel, F. Preparation and characterization of polymeric nanoparticles surface modified with chitosan for target treatment of colorectal cancer. Int. J. Biol. Macromol., 2017, 95, 643-649.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.098] [PMID: 27908720]
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.098] [PMID: 27908720]
[132]
Zhao, A.; Yao, P.; Kang, C.; Yuan, X.; Chang, J.; Pu, P. Synthesis and characterization of tat-mediated O-CMC magnetic nanoparticles having anticancer function. J. Magn. Magn. Mater., 2005, 295(1), 37-43.
[http://dx.doi.org/10.1016/j.jmmm.2004.12.044]
[http://dx.doi.org/10.1016/j.jmmm.2004.12.044]
[133]
Chassary, P.; Vincent, T.; Guibal, E. Metal anion sorption on chitosan and derivative materials: A strategy for polymer modification and optimum use. React. Funct. Polym., 2004, 60, 137-149.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2004.02.018]
[http://dx.doi.org/10.1016/j.reactfunctpolym.2004.02.018]
[134]
Sunderland, C.J.; Steiert, M.; Talmadge, J.E.; Derfus, A.M.; Barry, S.E. Targeted nanoparticles for detecting and treating cancer. Drug Dev. Res., 2006, 67(1), 70-93.
[http://dx.doi.org/10.1002/ddr.20069]
[http://dx.doi.org/10.1002/ddr.20069]
[135]
Shi, W.B.; Le, V.M.; Gu, C.H.; Zheng, Y.H.; Lang, M.D.; Lu, Y.H.; Liu, J.W. Overcoming multidrug resistance in 2D and 3D culture models by controlled drug chitosan-graft poly(caprolactone)-based nanoparticles. J. Pharm. Sci., 2014, 103(4), 1064-1074.
[http://dx.doi.org/10.1002/jps.23860] [PMID: 24523221]
[http://dx.doi.org/10.1002/jps.23860] [PMID: 24523221]
[136]
Kaewsaneha, C.; Tangboriboonrat, P.; Polpanich, D.; Eissa, M.; Elaissari, A. Janus colloidal particles: Preparation, properties, and biomedical applications. ACS Appl. Mater. Interfaces, 2013, 5(6), 1857-1869.
[http://dx.doi.org/10.1021/am302528g] [PMID: 23394306]
[http://dx.doi.org/10.1021/am302528g] [PMID: 23394306]
[137]
Zhang, J.; Zheng, X.; Wu, F.; Yan, B.; Zhou, S.; Qu, S.; Weng, J. Shape memory actuation of janus nanoparticles with amphipathic cross-linked network. ACS Macro Lett., 2016, 5(12), 1317-1321.
[http://dx.doi.org/10.1021/acsmacrolett.6b00730] [PMID: 35651214]
[http://dx.doi.org/10.1021/acsmacrolett.6b00730] [PMID: 35651214]
[138]
Qi, H.; Zhou, T.; Mei, S.; Chen, X.; Li, C.Y. Responsive shape change of sub-5 nm thin, janus polymer nanoplates. ACS Macro Lett., 2016, 5(6), 651-655.
[http://dx.doi.org/10.1021/acsmacrolett.6b00251] [PMID: 35614666]
[http://dx.doi.org/10.1021/acsmacrolett.6b00251] [PMID: 35614666]
[139]
Suzuki, D.; Tsuji, S.; Kawaguchi, H. Janus microgels prepared by surfactant-free pickering emulsion-based modification and their self-assembly. J. Am. Chem. Soc., 2007, 129(26), 8088-8089.
[http://dx.doi.org/10.1021/ja072258w] [PMID: 17552529]
[http://dx.doi.org/10.1021/ja072258w] [PMID: 17552529]
[140]
Khoee, S.; Jalaeian Bashirzadeh, M. Preparation of Janus‐type superparamagnetic iron oxide nanoparticles modified with functionalized PCL/PHEMAvia photopolymerization for dual drug delivery. J. Appl. Polym. Sci., 2021, 138(1), 49627.
[http://dx.doi.org/10.1002/app.49627]
[http://dx.doi.org/10.1002/app.49627]
[141]
Khoee, S.; Karimi, M.R. Dual-drug loaded Janus graphene oxide-based thermoresponsive nanoparticles for targeted therapy. Polymer, 2018, 142, 80-98.
[http://dx.doi.org/10.1016/j.polymer.2018.03.022]
[http://dx.doi.org/10.1016/j.polymer.2018.03.022]
46
2