Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Exploration of Computational Aids for Effective Drug Designing and Management of Viral Diseases: A Comprehensive Review

Author(s): Tahmeena Khan* and Saman Raza

Volume 23, Issue 17, 2023

Published on: 16 February, 2023

Page: [1640 - 1663] Pages: 24

DOI: 10.2174/1568026623666230201144522

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Background: Microbial diseases, specifically originating from viruses are the major cause of human mortality all over the world. The current COVID-19 pandemic is a case in point, where the dynamics of the viral-human interactions are still not completely understood, making its treatment a case of trial and error. Scientists are struggling to devise a strategy to contain the pandemic for over a year and this brings to light the lack of understanding of how the virus grows and multiplies in the human body.

Methods: This paper presents the perspective of the authors on the applicability of computational tools for deep learning and understanding of host-microbe interaction, disease progression and management, drug resistance and immune modulation through in silico methodologies which can aid in effective and selective drug development. The paper has summarized advances in the last five years. The studies published and indexed in leading databases have been included in the review.

Results: Computational systems biology works on an interface of biology and mathematics and intends to unravel the complex mechanisms between the biological systems and the inter and intra species dynamics using computational tools, and high-throughput technologies developed on algorithms, networks and complex connections to simulate cellular biological processes.

Conclusion: Computational strategies and modelling integrate and prioritize microbial-host interactions and may predict the conditions in which the fine-tuning attenuates. These microbial-host interactions and working mechanisms are important from the aspect of effective drug designing and fine- tuning the therapeutic interventions.

Keywords: High-throughput, Therapeutic-intervention, Microbial diseases, COVID-19, Pathogens, PCR assays.

Graphical Abstract
[1]
Brown, C.T.; Davis-Richardson, A.G.; Giongo, A.; Gano, K.A.; Crabb, D.B.; Mukherjee, N. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS ONE, 2011, 6(10), e25792.
[http://dx.doi.org/10.1371/journal.pone.0025792] [PMID: 22043294]
[2]
Scully, C.; Samaranayake, L.P. Emerging and changing viral diseases in the new millennium. Oral Dis., 2016, 22(3), 171-179.
[http://dx.doi.org/10.1111/odi.12356] [PMID: 26179810]
[3]
Shah, J.; Wilkins, E. Electrochemical biosensors for detection of biological warfare agents. Electroanalysis, 2003, 15(3), 157-167.
[http://dx.doi.org/10.1002/elan.200390019]
[4]
Singhal, T. A review of coronavirus disease-2019 (COVID-19). Indian J. Pediatr., 2020, 87(4), 281-286.
[http://dx.doi.org/10.1007/s12098-020-03263-6] [PMID: 32166607]
[5]
Gautret, P.; Gray, G.C.; Charrel, R.N.; Odezulu, N.G.; Al-Tawfiq, J.A.; Zumla, A.; Memish, Z.A. Emerging viral respiratory tract infections—environmental risk factors and transmission. Lancet Infect. Dis., 2014, 14(11), 1113-1122.
[http://dx.doi.org/10.1016/S1473-3099(14)70831-X] [PMID: 25189350]
[6]
Carson, S.S.; Fowler, R.A.; Cobb, J.P.; Arabi, Y.M.; Ingbar, D.H. Global participation in core data sets for emerging pathogens. Am. J. Respir. Crit. Care Med., 2015, 191(7), 728-730.
[http://dx.doi.org/10.1164/rccm.201412-2272ED] [PMID: 25830518]
[7]
Hui, D.S.; Zumla, A. Emerging respiratory tract viral infections. Curr. Opin. Pulm. Med., 2015, 21(3), 284-292.
[http://dx.doi.org/10.1097/MCP.0000000000000153] [PMID: 25764021]
[8]
Diemer, G.S.; Stedman, K.M. A novel virus genome discovered in an extreme environment suggests recombination between unrelated groups of RNA and DNA viruses. Biol. Direct, 2012, 7(1), 13.
[http://dx.doi.org/10.1186/1745-6150-7-13] [PMID: 22515485]
[9]
Goud, K.Y.; Reddy, K.K.; Khorshed, A.; Kumar, V.S.; Mishra, R.K.; Oraby, M.; Ibrahim, A.H.; Kim, H.; Gobi, K.V. Electrochemical diagnostics of infectious viral diseases: Trends and challenges. Biosens. Bioelectron., 2021, 180, 113112.
[http://dx.doi.org/10.1016/j.bios.2021.113112] [PMID: 33706158]
[10]
Mathis, M.; Briand, S.; Prentice, T. Emerging and re-emerging infectious threats in the 21st century. Wkly. Epidemiol. Rec., 2015, 90(20), 238-244.
[PMID: 25980037]
[11]
Tram, D.T.N.; Wang, H.; Sugiarto, S.; Li, T.; Ang, W.H.; Lee, C.; Pastorin, G. Advances in nanomaterials and their applications in point of care (POC) devices for the diagnosis of infectious diseases. Biotechnol. Adv., 2016, 34(8), 1275-1288.
[http://dx.doi.org/10.1016/j.biotechadv.2016.09.003] [PMID: 27686397]
[12]
Kaushik, A.; Tiwari, S.; Jayant, R.D.; Vashist, A.; Nikkhah-Moshaie, R.; El-Hage, N.; Nair, M. Electrochemical biosensors for early stage zika diagnostics. Trends Biotechnol., 2017, 35(4), 308-317.
[http://dx.doi.org/10.1016/j.tibtech.2016.10.001] [PMID: 28277248]
[13]
Booty, F.; Barraclough, K.; Winn, C. Standard infection control precautions; NHS Professionals. North Middlesex University Hospital NHS Trust and Stockport NHS Foundation Trust: Hertfordshire, UK, 2010.
[14]
Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J.M. Electrochemical biosensing for the diagnosis of viral infections and tropical diseases. ChemElectroChem, 2017, 4(4), 753-777.
[http://dx.doi.org/10.1002/celc.201600805]
[15]
Pashchenko, O.; Shelby, T.; Banerjee, T.; Santra, S. A comparison of optical, electrochemical, magnetic, and colorimetric point-of-care biosensors for infectious disease diagnosis. ACS Infect. Dis., 2018, 4(8), 1162-1178.
[http://dx.doi.org/10.1021/acsinfecdis.8b00023] [PMID: 29860830]
[16]
Asif, M.; Ajmal, M.; Ashraf, G.; Muhammad, N.; Aziz, A.; Iftikhar, T.; Wang, J.; Liu, H. The role of biosensors in coronavirus disease-2019 outbreak. Curr. Opin. Electrochem., 2020, 23, 174-184.
[http://dx.doi.org/10.1016/j.coelec.2020.08.011] [PMID: 32984642]
[17]
Sunita, S.A.; Sajid, A.; Singh, Y.; Shukla, P. Computational tools for modern vaccine development. Hum. Vaccin. Immunother., 2020, 16(3), 723-735.
[http://dx.doi.org/10.1080/21645515.2019.1670035] [PMID: 31545127]
[18]
Ayton, G.S.; Noid, W.G.; Voth, G.A. Multiscale modeling of biomolecular systems: in serial and in parallel. Curr. Opin. Struct. Biol., 2007, 17(2), 192-198.
[http://dx.doi.org/10.1016/j.sbi.2007.03.004] [PMID: 17383173]
[19]
Rosales, A.R.; Wahlers, J.; Limé, E.; Meadows, R.E.; Leslie, K.W.; Savin, R.; Bell, F.; Hansen, E.; Helquist, P.; Munday, R.H.; Wiest, O.; Norrby, P-O. Rapid virtual screening of enantioselective catalysts using CatVS. Nat. Catal., 2018, 2(1), 41-45.
[http://dx.doi.org/10.1038/s41929-018-0193-3]
[20]
Ballester, P.J. Machine learning for molecular modelling in drug design. Biomolecules, 2019, 9(6), 216.
[http://dx.doi.org/10.3390/biom9060216] [PMID: 31167503]
[21]
Morzan, U.N.; Alonso de Armiño, D.J.; Foglia, N.O.; Ramírez, F.; González Lebrero, M.C.; Scherlis, D.A.; Estrin, D.A. Spectroscopy in complex environments from qm-mm simulations. Chem. Rev., 2018, 118(7), 4071-4113.
[http://dx.doi.org/10.1021/acs.chemrev.8b00026] [PMID: 29561145]
[22]
Hernández-Rodríguez, M.; Rosales-Hernández, M.C.; Mendieta-Wejebe, J.E.; Martínez-Archundia, M.; Basurto, J.C. Current tools and methods in molecular dynamics (md) simulations for drug design. Curr. Med. Chem., 2016, 23(34), 3909-3924.
[http://dx.doi.org/10.2174/0929867323666160530144742] [PMID: 27237821]
[23]
Sothiselvam, S.; Liu, B.; Han, W.; Ramu, H.; Klepacki, D.; Atkinson, G.C.; Brauer, A.; Remm, M.; Tenson, T.; Schulten, K.; Vázquez-Laslop, N.; Mankin, A.S. Macrolide antibiotics allosterically predispose the ribosome for translation arrest. Proc. Natl. Acad. Sci., 2014, 111(27), 9804-9809.
[http://dx.doi.org/10.1073/pnas.1403586111] [PMID: 24961372]
[24]
Borhani, D.W.; Shaw, D.E. The future of molecular dynamics simulations in drug discovery. J. Comput. Aided Mol. Des., 2012, 26(1), 15-26.
[http://dx.doi.org/10.1007/s10822-011-9517-y] [PMID: 22183577]
[25]
Wang, Y.; Lupala, C.S.; Liu, H.; Lin, X. Identification of drug binding sites and action mechanisms with molecular dynamics simulations. Curr. Top. Med. Chem., 2019, 18(27), 2268-2277.
[http://dx.doi.org/10.2174/1568026619666181212102856] [PMID: 30539700]
[26]
Basith, S.; Cui, M.; Macalino, S.J.Y.; Choi, S. Expediting the design, discovery and development of anticancer drugs using computational approaches. Curr. Med. Chem., 2017, 24(42), 4753-4778.
[http://dx.doi.org/ 10.2174/0929867323666160902160535] [PMID: 27593958]
[27]
Vásquez-Domínguez, E.; Armijos-Jaramillo, V.D.; Tejera, E.; González-Díaz, H. Multioutput perturbation-theory machine learning (ptml) model of chembl data for antiretroviral compounds. Mol. Pharm., 2019, 16(10), 4200-4212.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00538] [PMID: 31426639]
[28]
Speck-Planche, A.; Cordeiro, M.N.D.S. De novo computational design of compounds virtually displaying potent antibacterial activity and desirable in vitro ADMET profiles. Med. Chem. Res., 2017, 26(10), 2345-2356.
[http://dx.doi.org/10.1007/s00044-017-1936-4]
[29]
González-Díaz, H.; Herrera-Ibatá, D.M.; Duardo-Sánchez, A.; Munteanu, C.R.; Orbegozo-Medina, R.A.; Pazos, A. ANN multiscale model of anti-HIV drugs activity vs AIDS prevalence in the US at county level based on information indices of molecular graphs and social networks. J. Chem. Inf. Model., 2014, 54(3), 744-755.
[http://dx.doi.org/10.1021/ci400716y] [PMID: 24521170]
[30]
Panda, P.K.; Arul, M.N.; Patel, P.; Verma, S.K.; Luo, W.; Rubahn, H.G.; Mishra, Y.K.; Suar, M.; Ahuja, R. Structure-based drug designing and immunoinformatics approach for SARS-CoV-2. Sci. Adv., 2020, 6(28), eabb8097.
[http://dx.doi.org/10.1126/sciadv.abb8097] [PMID: 32691011]
[31]
Bhuvaneshwari, S.; Sankaranarayanan, K. Identification of potential CRAC channel inhibitors: Pharmacophore mapping, 3D-QSAR modelling, and molecular docking approach. SAR QSAR Environ. Res., 2019, 30(2), 81-108.
[http://dx.doi.org/10.1080/1062936X.2019.1566172] [PMID: 30773908]
[32]
Wlodawer, A.; Vondrasek, J. Inhibitors of HIV-1 protease: A major success of structure-assisted drug design. Annu. Rev. Biophys. Biomol. Struct., 1998, 27(1), 249-284.
[http://dx.doi.org/10.1146/annurev.biophys.27.1.249] [PMID: 9646869]
[33]
Kist, R.; Timmers, L.F.S.M.; Caceres, R.A. Searching for potential mTOR inhibitors: Ligand-based drug design, docking and molecular dynamics studies of rapamycin binding site. J. Mol. Graph. Model., 2018, 80, 251-263.
[http://dx.doi.org/10.1016/j.jmgm.2017.12.015] [PMID: 29414044]
[34]
Vucicevic, J.; Nikolic, K.; Mitchell, J.B.O. Rational drug design of antineoplastic agents using 3d-qsar, cheminformatic, and virtual screening approaches. Curr. Med. Chem., 2019, 26(21), 3874-3889.
[http://dx.doi.org/10.2174/0929867324666170712115411] [PMID: 28707592]
[35]
Tropsha, A. Best practices for QSAR model development, validation, and exploitation. Mol. Inform., 2010, 29(6-7), 476-488.
[http://dx.doi.org/10.1002/minf.201000061] [PMID: 27463326]
[36]
Murgueitio, M.S.; Bermudez, M.; Mortier, J.; Wolber, G. In silico virtual screening approaches for anti-viral drug discovery. Drug Discov. Today. Technol., 2012, 9(3), e219-e225.
[http://dx.doi.org/10.1016/j.ddtec.2012.07.009] [PMID: 24990575]
[37]
Ferreira, L.; dos Santos, R.; Oliva, G.; Andricopulo, A. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
[38]
de Ruyck, J.; Brysbaert, G.; Blossey, R.; Lensink, M. Molecular docking as a popular tool in drug design, an in silico travel. Adv. Appl. Bioinform. Chem., 2016, 9, 1-11.
[http://dx.doi.org/10.2147/AABC.S105289] [PMID: 27390530]
[39]
Kalyaanamoorthy, S.; Chen, Y.P.P. Structure-based drug design to augment hit discovery. Drug Discov. Today, 2011, 16(17-18), 831-839.
[http://dx.doi.org/10.1016/j.drudis.2011.07.006] [PMID: 21810482]
[40]
Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol., 1996, 261(3), 470-489.
[http://dx.doi.org/10.1006/jmbi.1996.0477] [PMID: 8780787]
[41]
McGann, M.R.; Almond, H.R.; Nicholls, A.; Grant, J.A.; Brown, F.K. Gaussian docking functions. Biopolymers, 2003, 68(1), 76-90.
[http://dx.doi.org/10.1002/bip.10207] [PMID: 12579581]
[42]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19(14), 1639-1662.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B]
[43]
Venkatachalam, C.M.; Jiang, X.; Oldfield, T.; Waldman, M. LigandFit: A novel method for the shape-directed rapid docking of ligands to protein active sites. J. Mol. Graph. Model., 2003, 21(4), 289-307.
[http://dx.doi.org/10.1016/S1093-3263(02)00164-X] [PMID: 12479928]
[44]
Cheong, S.L.; Federico, S.; Venkatesan, G.; Paira, P.; Shao, Y.M.; Spalluto, G.; Yap, C.W.; Pastorin, G. Pharmacophore elucidation for a new series of 2-aryl-pyrazolo-triazolo-pyrimidines as potent human A3 adenosine receptor antagonists. Bioorg. Med. Chem. Lett., 2011, 21(10), 2898-2905.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.073] [PMID: 21511471]
[45]
Dixon, S.L.; Smondyrev, A.M.; Rao, S.N. PHASE: A novel approach to pharmacophore modeling and 3D database searching. Chem. Biol. Drug Des., 2006, 67(5), 370-372.
[http://dx.doi.org/10.1111/j.1747-0285.2006.00384.x] [PMID: 16784462]
[46]
Kaserer, T.; Beck, K.; Akram, M.; Odermatt, A.; Schuster, D. Pharmacophore models and pharmacophore-based virtual screening: Concepts and applications exemplified on hydroxysteroid dehydrogenases. Molecules, 2015, 20(12), 22799-22832.
[http://dx.doi.org/10.3390/molecules201219880] [PMID: 26703541]
[47]
Wadood, A.; Mehmood, A.; Khan, H.; Ilyas, M.; Ahmad, A.; Alarjah, M.; Abu-Izneid, T. Epitopes based drug design for dengue virus envelope protein: A computational approach. Comput. Biol. Chem., 2017, 71, 152-160.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.10.008] [PMID: 29096381]
[48]
Bhole, R.P.; Bonde, C.G.; Bonde, S.C.; Chikhale, R.V.; Wavhale, R.D. Pharmacophore model and atom-based 3D quantitative structure activity relationship (QSAR) of human immunodeficiency virus-1 (HIV-1) capsid assembly inhibitors. J. Biomol. Struct. Dyn., 2021, 39(2), 718-727.
[http://dx.doi.org/10.1080/07391102.2020.1715258] [PMID: 31928140]
[49]
Sankar, M.K.L.; Jeyachandran, S.; Pandi, B. Screening of inhibitors as potential remedial against Ebolavirus infection: pharmacophore-based approach. J. Biomol. Struct. Dyn., 2021, 39(2), 395-408.
[http://dx.doi.org/10.1080/07391102.2020.1715260] [PMID: 31928158]
[50]
Kumar, A.; Rathi, E.; Kini, S.G. E-pharmacophore modelling, virtual screening, molecular dynamics simulations and in-silico ADME analysis for identification of potential E6 inhibitors against cervical cancer. J. Mol. Struct., 2019, 1189(2019), 299-306.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.02]
[51]
Idris, M.O.; Yekeen, A.A.; Alakanse, O.S.; Durojaye, O.A. Computer-aided screening for potential TMPRSS2 inhibitors: a combination of pharmacophore modeling, molecular docking and molecular dynamics simulation approaches. J. Biomol. Struct. Dyn., 2021, 39(15), 5638-5656.
[http://dx.doi.org/10.1080/07391102.2020.1792346] [PMID: 32672528]
[52]
Law, W.Y.; Asaruddin, M.R.; Bhawani, S.A.; Mohamad, S. Pharmacophore modelling of vanillin derivatives, favipiravir, chloroquine, hydroxychloroquine, monolaurin and tetrodotoxin as MPro inhibitors of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). BMC Res. Notes, 2020, 13(1), 527.
[http://dx.doi.org/10.1186/s13104-020-05379-6] [PMID: 33176880]
[53]
Thakur, N.; Qureshi, A.; Kumar, M. AVPpred: Collection and prediction of highly effective antiviral peptides. Nucleic Acids Res., 2012, 40, W199-204.
[http://dx.doi.org/10.1093/nar/gks450]
[54]
Lin, F.K.; Pan, C.L.; Yang, J.M.; Chuang, T.J.; Chen, F.C. CAPIH: A web interface for comparative analyses and visualization of host-hiv protein-protein interactions. BMC Microbiol., 2009, 9(1), 164.
[http://dx.doi.org/10.1186/1471-2180-9-164] [PMID: 19674441]
[55]
Lu, G.; Rowley, T.; Garten, R.; Donis, R.O. FluGenome: A web tool for genotyping influenza A virus. Nucleic Acids Res., 2007, 35, W275-W279.
[http://dx.doi.org/10.1093/nar/gkm365]
[56]
Hayer, J.; Jadeau, F.; Deléage, G.; Kay, A.; Zoulim, F.; Combet, C. HBVdb: A knowledge database for hepatitis B virus. Nucleic Acids Res., 2013, 41(D1), D566-D570.
[http://dx.doi.org/10.1093/nar/gks1022] [PMID: 23125365]
[57]
Araujo, T.H.A.; Souza-Brito, L.I.; Libin, P.; Deforche, K.; Edwards, D.; de Albuquerque-Junior, A.E.; Vandamme, A.M.; Galvao-Castro, B.; Alcantara, L.C.J. A public HTLV-1 molecular epidemiology database for sequence management and data mining. PLoS One, 2012, 7(9), e42123.
[http://dx.doi.org/10.1371/journal.pone.0042123] [PMID: 22970114]
[58]
Shin-i, T.; Tanaka, Y.; Tateno, Y.; Mizokami, M. Development and public release of a comprehensive hepatitis virus database. Hepatol. Res., 2008, 38(3), 234-243.
[http://dx.doi.org/10.1111/j.1872-034X.2007.00262.x] [PMID: 17877727]
[59]
Duitama, J.; Kumar, D.M.; Hemphill, E.; Khan, M.; Măndoiu, I.I.; Nelson, C.E. PrimerHunter: A primer design tool for PCR-based virus subtype identification. Nucleic Acids Res., 2009, 37(8), 2483-2492.
[http://dx.doi.org/10.1093/nar/gkp073] [PMID: 19264805]
[60]
Naito, Y.; Ui-Tei, K.; Nishikawa, T.; Takebe, Y.; Saigo, K. siVirus: Web-based antiviral siRNA design software for highly divergent viral sequences. Nucleic Acids Res., 2006, 34, W448-W450.
[http://dx.doi.org/10.1093/nar/gkl214] [PMID: 16845046]
[61]
Hiscock, D.; Upton, C. Viral genome dataBase: Storing and analyzing genes and proteins from complete viral genomes. Bioinformatics, 2000, 16(5), 484-485.
[http://dx.doi.org/10.1093/bioinformatics/16.5.484] [PMID: 10871272]
[62]
Alcantara, LCJ.; Cassol, S.; Libin, P.; Deforche, K.; Pybus, O.G.; Van Ranst, M. A standardized framework for accurate, high-throughput genotyping of recombinant and non-recombinant viral sequences. Nucleic Acids Res., 2009, 37, W634-W642.
[http://dx.doi.org/10.1093/nar/gkp455]
[63]
Guo, F.B.; Zhang, C.T. ZCURVE_V: A new self-training system for recognizing protein-coding genes in viral and phage genomes. BMC Bioinformatics, 2006, 7(1), 9.
[http://dx.doi.org/10.1186/1471-2105-7-9] [PMID: 16401352]
[64]
Kirchmair, J.; Rollinger, J.M.; Liedl, K.R.; Seidel, N.; Krumbholz, A.; Schmidtke, M. Novel neuraminidase inhibitors: Identification, biological evaluation and investigations of the binding mode. Future Med. Chem., 2011, 3(4), 437-450.
[http://dx.doi.org/10.4155/fmc.10.292] [PMID: 21452980]
[65]
Distinto, S.; Yáñez, M.; Alcaro, S.; Cardia, M.C.; Gaspari, M.; Sanna, M.L.; Meleddu, R.; Ortuso, F.; Kirchmair, J.; Markt, P.; Bolasco, A.; Wolber, G.; Secci, D.; Maccioni, E. Synthesis and biological assessment of novel 2-thiazolylhydrazones and computational analysis of their recognition by monoamine oxidase B. Eur. J. Med. Chem., 2012, 48, 284-295.
[http://dx.doi.org/10.1016/j.ejmech.2011.12.027] [PMID: 22222137]
[66]
Wang, Q.Y.; Patel, S.J.; Vangrevelinghe, E.; Xu, H.Y.; Rao, R.; Jaber, D.; Schul, W.; Gu, F.; Heudi, O.; Ma, N.L.; Poh, M.K.; Phong, W.Y.; Keller, T.H.; Jacoby, E.; Vasudevan, S.G. A small-molecule dengue virus entry inhibitor. Antimicrob. Agents Chemother., 2009, 53(5), 1823-1831.
[http://dx.doi.org/10.1128/AAC.01148-08] [PMID: 19223625]
[67]
B, F.R.; Prasana, J.C.; Muthu, S.; Abraham, C.S. Molecular docking studies, charge transfer excitation and wave function analyses (ESP, ELF, LOL) on valacyclovir: A potential antiviral drug. Comput. Biol. Chem., 2019, 78, 9-17.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.11.014] [PMID: 30476708]
[68]
Parvez, M.K.; Tabish Rehman, M.; Alam, P.; Al-Dosari, M.S.; Alqasoumi, S.I.; Alajmi, M.F. Plant-derived antiviral drugs as novel hepatitis B virus inhibitors: Cell culture and molecular docking study. Saudi Pharm. J., 2019, 27(3), 389-400.
[http://dx.doi.org/10.1016/j.jsps.2018.12.008] [PMID: 30976183]
[69]
El-Mageed, H.R.A.; Abdelrheem, D.A.; Ahmed, S.A.; Rahman, A.A.; Elsayed, K.N.M.; Ahmed, S.A.; EL-Bassuony, A.A.; Mohamed, H.S. Combination and tricombination therapy to destabilize the structural integrity of COVID-19 by some bioactive compounds with antiviral drugs: Insights from molecular docking study. Struct. Chem., 2021, 32(4), 1415-1430.
[http://dx.doi.org/10.1007/s11224-020-01723-5] [PMID: 33437137]
[70]
Abdallah, A.E.; Alesawy, M.S.; Eissa, S.I.; El-Fakharany, E.M.; Kalaba, M.H.; Sharaf, M.H.; Abo Shama, N.M.; Mahmoud, S.H.; Mostafa, A.; Al-Karmalawy, A.A.; Elkady, H. Design and synthesis of new 4-(2-nitrophenoxy)benzamide derivatives as potential antiviral agents: Molecular modeling and in vitro antiviral screening. New J. Chem., 2021, 45(36), 16557-16571.
[http://dx.doi.org/10.1039/D1NJ02710G]
[71]
Al-Karmalawy, A.A.; Farid, M.M.; Mostafa, A.; Ragheb, A.Y.H.; H Mahmoud, S.; Shehata, M.; Shama, N.M.A.; GabAllah, M.; Mostafa-Hedeab, G.; Marzouk, M.M. Naturally available flavonoid aglycones as potential antiviral drug candidates against SARS-CoV-2. Molecules, 2021, 26(21), 6559.
[http://dx.doi.org/10.3390/molecules26216559] [PMID: 34770969]
[72]
Aderem, A.; Adkins, J.N.; Ansong, C.; Galagan, J.; Kaiser, S.; Korth, M.J.; Law, G.L.; McDermott, J.G.; Proll, S.C.; Rosenberger, C.; Schoolnik, G.; Katze, M.G. A systems biology approach to infectious disease research: innovating the pathogen-host research paradigm. MBio, 2011, 2(1), e00325-e10.
[http://dx.doi.org/10.1128/mBio.00325-10] [PMID: 21285433]
[73]
Tavassoly, I.; Goldfarb, J.; Iyengar, R. Systems biology primer: The basic methods and approaches. Essays Biochem., 2018, 62(4), 487-500.
[http://dx.doi.org/10.1042/EBC20180003] [PMID: 30287586]
[74]
Domenech de Cellès, M.; King, A.A.; Rohani, P. Commentary: Resolving pertussis resurgence and vaccine immunity using mathematical transmission models. Hum. Vaccin. Immunother., 2019, 15(3), 683-686.
[http://dx.doi.org/10.1080/21645515.2018.1549432] [PMID: 30457424]
[75]
Cartelle Gestal, M.; Dedloff, M.R.; Torres-Sangiao, E. Computational health engineering applied to model infectious diseases and antimicrobial resistance spread. Appl. Sci., 2019, 9(12), 2486.
[http://dx.doi.org/10.3390/app9122486]
[76]
Haddawy, P.; Hasan, A.H.M.I.; Kasantikul, R.; Lawpoolsri, S.; Saangchai, P.; Kaewkungwal, J.; Singhasivanon, P. Spatiotemporal bayesian networks for malaria prediction. Artif. Intell. Med., 2018, 84, 127-138.
[http://dx.doi.org/10.1016/j.artmed.2017.12.002] [PMID: 29241658]
[77]
Lang, J.; Jin, L.; Yao, Y. Comparative efficacy of interventions for reducing injection and sexual risk behaviours to prevent HIV in injection drug users: Protocol for Bayesian network meta-analysis. BMJ Open, 2019, 9(1), e022811.
[http://dx.doi.org/10.1136/bmjopen-2018-022811] [PMID: 30696672]
[78]
Zahirul Islam, M.; Rutherford, S.; Phung, D.; Uzzaman, M.N.; Baum, S.; Huda, M.M.; Asaduzzaman, M.; Talukder, M.R.R.; Chu, C. Correlates of climate variability and dengue fever in two metropolitan cities in bangladesh. Cureus, 2018, 10(10), e3398.
[http://dx.doi.org/10.7759/cureus.3398] [PMID: 30533332]
[79]
Willems, H.; De Cesco, S.; Svensson, F. Computational chemistry on a budget: Supporting drug discovery with limited resources. J. Med. Chem., 2020, 63(18), 10158-10169.
[http://dx.doi.org/10.1021/acs.jmedchem.9b02126] [PMID: 32298123]
[80]
Lejal, N.; Tarus, B.; Bouguyon, E.; Chenavas, S.; Bertho, N.; Delmas, B.; Ruigrok, R.W.H.; Di Primo, C.; Slama-Schwok, A. Structure-based discovery of the novel antiviral properties of naproxen against the nucleoprotein of influenza A virus. Antimicrob. Agents Chemother., 2013, 57(5), 2231-2242.
[http://dx.doi.org/10.1128/AAC.02335-12] [PMID: 23459490]
[81]
Zhao, Z.X.; Cheng, L.P.; Li, M.; Pang, W.; Wu, F.H. Discovery of novel acylhydrazone neuraminidase inhibitors. Eur. J. Med. Chem., 2019, 173, 305-313.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.006] [PMID: 31022584]
[82]
Feixas, F.; Lindert, S.; Sinko, W.; McCammon, J.A. Exploring the role of receptor flexibility in structure-based drug discovery. Biophys. Chem., 2014, 186, 31-45.
[http://dx.doi.org/10.1016/j.bpc.2013.10.007] [PMID: 24332165]
[83]
Kukol, A. Consensus virtual screening approaches to predict protein ligands. Eur. J. Med. Chem., 2011, 46(9), 4661-4664.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.026] [PMID: 21640444]
[84]
Patel, H.; Kukol, A. Prediction of ligands to universally conserved binding sites of the influenza a virus nuclear export protein. Virology, 2019, 537, 97-103.
[http://dx.doi.org/10.1016/j.virol.2019.08.013] [PMID: 31542626]
[85]
Durrant, J.D.; Bush, R.M.; Amaro, R.E. Microsecond molecular dynamics simulations of influenza neuraminidase suggest a mechanism for the increased virulence of stalk-deletion mutants. J. Phys. Chem. B, 2016, 120(33), 8590-8599.
[http://dx.doi.org/10.1021/acs.jpcb.6b02655] [PMID: 27141956]
[86]
Durrant, J.D.; Kochanek, S.E.; Casalino, L.; Ieong, P.U.; Dommer, A.C.; Amaro, R.E. Mesoscale all-atom influenza virus simulations suggest new substrate binding mechanism. ACS Cent. Sci., 2020, 6(2), 189-196.
[http://dx.doi.org/10.1021/acscentsci.9b01071] [PMID: 32123736]
[87]
Karthick, V.; Nagasundaram, N.; Doss, C.G.P.; Chakraborty, C.; Siva, R.; Lu, A.; Zhang, G.; Zhu, H. Virtual screening of the inhibitors targeting at the viral protein 40 of Ebola virus. Infect. Dis. Poverty, 2016, 5(1), 12.
[http://dx.doi.org/10.1186/s40249-016-0105-1] [PMID: 26888469]
[88]
Omotuyi, I.O. Ebola virus envelope glycoprotein derived peptide in human Furin-bound state: computational studies. J. Biomol. Struct. Dyn., 2015, 33(3), 461-470.
[http://dx.doi.org/10.1080/07391102.2014.981207] [PMID: 25347780]
[89]
Sweeney, N.L.; Hanson, A.M.; Mukherjee, S.; Ndjomou, J.; Geiss, B.J.; Steel, J.J.; Frankowski, K.J.; Li, K.; Schoenen, F.J.; Frick, D.N. Benzothiazole and pyrrolone flavivirus inhibitors targeting the viral helicase. ACS Infect. Dis., 2015, 1(3), 140-148.
[http://dx.doi.org/10.1021/id5000458] [PMID: 26029739]
[90]
Mirza, S.B.; Lee, R.C.H.; Chu, J.J.H.; Salmas, R.E.; Mavromoustakos, T.; Durdagi, S. Discovery of selective dengue virus inhibitors using combination of molecular fingerprint-based virtual screening protocols, structure-based pharmacophore model development, molecular dynamics simulations and in vitro studies. J. Mol. Graph. Model., 2018, 79, 88-102.
[http://dx.doi.org/10.1016/j.jmgm.2017.10.010] [PMID: 29156382]
[91]
Weimer, B.C.; Chen, P.; Desai, P.T.; Chen, D.; Shah, J. Whole cell cross-linking to discover host-microbe protein cognate receptor/ligand pairs. Front. Microbiol., 2018, 9, 1585.
[http://dx.doi.org/10.3389/fmicb.2018.01585] [PMID: 30072965]
[92]
Ruch, T.R.; Engel, J.N. Targeting the mucosal barrier: How pathogens modulate the cellular polarity network. Cold Spring Harb. Perspect. Biol., 2017, 9(6), a027953.
[http://dx.doi.org/10.1101/cshperspect.a027953] [PMID: 28193722]
[93]
Daşbaşi, B. Stability analysis of the hiv model through incommensurate fractional-order nonlinear system. Chaos Solitons Fractals, 2020, 137, 109870.
[http://dx.doi.org/10.1016/j.chaos.2020.109870] [PMID: 32395039]
[94]
Zheng, N.; Wang, K.; Zhan, W.; Deng, L. Targeting virus-host protein interactions: Feature extraction and machine learning approaches. Curr. Drug Metab., 2019, 20(3), 177-184.
[http://dx.doi.org/10.2174/1389200219666180829121038] [PMID: 30156155]
[95]
Cui, G.; Fang, C.; Han, K. Prediction of protein-protein interactions between viruses and human by an SVM model. BMC Bioinformatics, 2012, 13(Suppl. 7), S5.
[http://dx.doi.org/10.1186/1471-2105-13-S7-S5] [PMID: 22595002]
[96]
Kim, B.; Alguwaizani, S.; Zhou, X.; Huang, D.S.; Park, B.; Han, K. An improved method for predicting interactions between virus and human proteins. J. Bioinform. Comput. Biol., 2017, 15(1), 1650024.
[http://dx.doi.org/10.1142/S0219720016500244] [PMID: 27397631]
[97]
Dyer, M.D.; Murali, T.M.; Sobral, B.W. Supervised learning and prediction of physical interactions between human and HIV proteins. Infect. Genet. Evol., 2011, 11(5), 917-923.
[http://dx.doi.org/10.1016/j.meegid.2011.02.022] [PMID: 21382517]
[98]
Hunt, T. Protein sequence motifs involved in recognition and targeting: A new series. Trends Biochem. Sci., 1990, 15, 305.
[99]
Diella, F.; Haslam, N.; Chica, C.; Budd, A.; Michael, S.; Brown, N.P.; Trave, G.; Gibson, T.J. Understanding eukaryotic linear motifs and their role in cell signaling and regulation. Front. Biosci., 2008, 13, 6580-6603.
[http://dx.doi.org/10.2741/3175] [PMID: 18508681]
[100]
Evans, P.; Dampier, W.; Ungar, L.; Tozeren, A. Prediction of HIV-1 virus-host protein interactions using virus and host sequence motifs. BMC Med. Genomics, 2009, 2(1), 27.
[http://dx.doi.org/10.1186/1755-8794-2-27] [PMID: 19450270]
[101]
Becerra, A.; Bucheli, V.A.; Moreno, P.A. Prediction of virus-host protein-protein interactions mediated by short linear motifs. BMC Bioinformatics, 2017, 18(1), 163.
[http://dx.doi.org/10.1186/s12859-017-1570-7] [PMID: 28279163]
[102]
Garzón, J.I.; Deng, L.; Murray, D.; Shapira, S.; Petrey, D.; Honig, B. A computational interactome and functional annotation for the human proteome. eLife, 2016, 5, e18715.
[http://dx.doi.org/10.7554/eLife.18715] [PMID: 27770567]
[103]
Doolittle, J.M.; Gomez, S.M. Structural similarity-based predictions of protein interactions between HIV-1 and Homo sapiens. Virol. J., 2010, 7(1), 82.
[http://dx.doi.org/10.1186/1743-422X-7-82] [PMID: 20426868]
[104]
Doolittle, J.M.; Gomez, S.M. Mapping protein interactions between Dengue virus and its human and insect hosts. PLoS Negl. Trop. Dis., 2011, 5(2), e954.
[http://dx.doi.org/10.1371/journal.pntd.0000954] [PMID: 21358811]
[105]
de Chassey, B.; Meyniel-Schicklin, L.; Aublin-Gex, A.; Navratil, V.; Chantier, T.; André, P.; Lotteau, V. Structure homology and interaction redundancy for discovering virus-host protein interactions. EMBO Rep., 2013, 14(10), 938-944.
[http://dx.doi.org/10.1038/embor.2013.130] [PMID: 24008843]
[106]
Zhang, Y.; Bo, X.C.; Yang, J.; Wang, S.Q. HBVPathDB: A database of HBV infection-related molecular interaction network. World J. Gastroenterol., 2005, 11(11), 1690-1692.
[http://dx.doi.org/10.3748/wjg.v11.i11.1690] [PMID: 15786551]
[107]
Chatr-aryamontri, A; Ceol, A; Peluso, D; Nardozza, A; Panni, S; Sacco, F VirusMINT: A viral protein interaction database. Nucleic Acids Res., 2009, 37, D669-D673.
[http://dx.doi.org/10.1093/nar/gkn739]
[108]
Fu, W.; Sanders-Beer, BE; Katz, KS; Maglott, DR; Pruitt, KD; Ptak, RG Human immunodeficiency virus type 1, human protein interaction database at NCBI. Nucleic Acids Res., 2009, 37, D417-D422.
[http://dx.doi.org/10.1093/nar/gkn708] [PMID: 18927109]
[109]
Palmeira, L.; Penel, S.; Lotteau, V.; Rabourdin-Combe, C.; Gautier, C. PhEVER: A database for the global exploration of virus-host evolutionary relationships. Nucleic Acids Res., 2011, 39(S1), D569-D575.
[http://dx.doi.org/10.1093/nar/gkq1013] [PMID: 21081560]
[110]
Rozanov, M.; Plikat, U.; Chappey, C.; Kochergin, A.; Tatusova, T. A web-based genotyping resource for viral sequences. Nucleic Acids Res., 2004, 32, W654-W659.
[http://dx.doi.org/10.1093/nar/gkh419]
[111]
Myers, R.E.; Gale, C.V.; Harrison, A.; Takeuchi, Y.; Kellam, P. A statistical model for HIV-1 sequence classification using the subtype analyser (STAR). Bioinformatics, 2005, 21(17), 3535-3540.
[http://dx.doi.org/10.1093/bioinformatics/bti569] [PMID: 16046498]
[112]
Yin, L.; Yao, J.; Gardner, B.P.; Chang, K.; Yu, F.; Goodenow, M.M. HPV-QUEST: A highly customized system for automated hpv sequence analysis capable of processing next generation sequencing data set. Bioinformation, 2012, 8(8), 388-390.
[http://dx.doi.org/10.6026/97320630008388] [PMID: 22570520]
[113]
Pineda-Peña, A.C.; Faria, N.R.; Imbrechts, S.; Libin, P.; Abecasis, A.B.; Deforche, K.; Gómez-López, A.; Camacho, R.J.; de Oliveira, T.; Vandamme, A.M. Automated subtyping of HIV-1 genetic sequences for clinical and surveillance purposes: Performance evaluation of the new REGA version 3 and seven other tools. Infect. Genet. Evol., 2013, 19, 337-348.
[http://dx.doi.org/10.1016/j.meegid.2013.04.032] [PMID: 23660484]
[114]
Chevenet, F.; Jung, M.; Peeters, M.; de Oliveira, T.; Gascuel, O. Searching for virus phylotypes. Bioinformatics, 2013, 29(5), 561-570.
[http://dx.doi.org/10.1093/bioinformatics/btt010] [PMID: 23329414]
[115]
Beerenwinkel, N.; Däumer, M.; Oette, M.; Korn, K.; Hoffmann, D.; Kaiser, R.; Lengauer, T.; Selbig, J.; Walter, H. Geno2pheno: Estimating phenotypic drug resistance from HIV-1 genotypes. Nucleic Acids Res., 2003, 31(13), 3850-3855.
[http://dx.doi.org/10.1093/nar/gkg575] [PMID: 12824435]
[116]
Maes, P.; Matthijnssens, J.; Rahman, M.; Van Ranst, M.; Rota, C. A web-based tool for the complete genome classification of group A rotaviruses. BMC Microbiol., 2009, 9(1), 238.
[http://dx.doi.org/10.1186/1471-2180-9-238] [PMID: 19930627]
[117]
Onodera, K.; Melcher, U. VirOligo: A database of virus-specific oligonucleotides. Nucleic Acids Res., 2002, 30(1), 203-204.
[http://dx.doi.org/10.1093/nar/30.1.203] [PMID: 11752293]
[118]
Shen, H.B.; Chou, K.C. Virus-PLoc: A fusion classifier for predicting the subcellular localization of viral proteins within host and virus-infected cells. Biopolymers, 2007, 85(3), 233-240.
[http://dx.doi.org/10.1002/bip.20640] [PMID: 17120237]
[119]
Qureshi, A.; Thakur, N.; Kumar, M. HIPdb: A database of experimentally validated HIV inhibiting peptides. PLoS One, 2013, 8(1), e54908.
[http://dx.doi.org/10.1371/journal.pone.0054908] [PMID: 23359817]
[120]
Qureshi, A.; Thakur, N.; Tandon, H.; Kumar, M. AVPdb: A database of experimentally validated antiviral peptides targeting medically important viruses. Nucleic Acids Res., 2014, 42(D1), D1147-D1153.
[http://dx.doi.org/10.1093/nar/gkt1191] [PMID: 24285301]
[121]
Hong, J.J.; Wu, T.Y.; Chang, T.Y.; Chen, C.Y. Viral IRES prediction system - a web server for prediction of the IRES secondary structure in silico. PLoS One, 2013, 8(11), e79288.
[http://dx.doi.org/10.1371/journal.pone.0079288] [PMID: 24223923]
[122]
Ferron, F.; Rancurel, C.; Longhi, S.; Cambillau, C.; Henrissat, B.; Canard, B. VaZyMolO: A tool to define and classify modularity in viral proteins. J. Gen. Virol., 2005, 86(3), 743-749.
[http://dx.doi.org/10.1099/vir.0.80590-0] [PMID: 15722535]
[123]
Carrillo-Tripp, M.; Shepherd, C.M.; Borelli, I.A.; Venkataraman, S.; Lander, G.; Natarajan, P.; Johnson, J.E.; Brooks, C.L., III; Reddy, V.S. VIPERdb2: An enhanced and web API enabled relational database for structural virology. Nucleic Acids Res., 2009, 37, D436-D442.
[http://dx.doi.org/10.1093/nar/gkn840] [PMID: 18981051]
[124]
Sudhakar, P.; Machiels, K.; Verstockt, B.; Korcsmaros, T.; Vermeire, S. Computational biology and machine learning approaches to understand mechanistic microbiome-host interactions. Front. Microbiol., 2021, 12, 618856.
[http://dx.doi.org/10.3389/fmicb.2021.618856] [PMID: 34046017]
[125]
Arnold, R.; Boonen, K.; Sun, M.G.F.; Kim, P.M. Computational analysis of interactomes: Current and future perspectives for bioinformatics approaches to model the host-pathogen interaction space. Methods, 2012, 57(4), 508-518.
[http://dx.doi.org/10.1016/j.ymeth.2012.06.011] [PMID: 22750305]
[126]
Zheng, L.L.; Li, C.; Ping, J.; Zhou, Y.; Li, Y.; Hao, P. The domain landscape of virus-host interactomes. BioMed Res. Int., 2014, 2014, 1-13.
[http://dx.doi.org/10.1155/2014/867235] [PMID: 24991570]
[127]
Kshirsagar, M.; Murugesan, K.; Carbonell, J.G.; Klein-Seetharaman, J. Multitask matrix completion for learning protein interactions across diseases. J. Comput. Biol., 2017, 24(6), 501-514.
[http://dx.doi.org/10.1089/cmb.2016.0201] [PMID: 28128642]
[128]
Kshirsagar, M.; Carbonell, J.; Klein-Seetharaman, J. Techniques to cope with missing data in host-pathogen protein interaction prediction. Bioinformatics, 2012, 28(18), i466-i472.
[http://dx.doi.org/10.1093/bioinformatics/bts375] [PMID: 22962468]
[129]
Segura-Cabrera, A.; García-Pérez, C.A.; Guo, X.; Rodríguez-Pérez, M.A. A viral-human interactome based on structural motif-domain interactions captures the human infectome. PLoS One, 2013, 8(8), e71526.
[http://dx.doi.org/10.1371/journal.pone.0071526] [PMID: 23951184]
[130]
Kharrat, N.; Belmabrouk, S.; Abdelhedi, R.; Benmarzoug, R.; Assidi, M.; Al Qahtani, M.H.; Rebai, A. Screening for clusters of charge in human virus proteomes. BMC Genomics, 2016, 17(S9), 758.
[http://dx.doi.org/10.1186/s12864-016-3086-3] [PMID: 27766959]
[131]
Mukhopadhyay, A.; Maulik, U.; Bandyopadhyay, S. A novel biclustering approach to association rule mining for predicting hiv-1-human protein interactions. PLoS One, 2012, 7(4), e32289.
[http://dx.doi.org/10.1371/journal.pone.0032289]
[132]
Mukhopadhyay, A.; Ray, S.; Maulik, U. Incorporating the type and direction information in predicting novel regulatory interactions between HIV-1 and human proteins using a biclustering approach. BMC Bioinformatics, 2014, 15(1), 26.
[http://dx.doi.org/10.1186/1471-2105-15-26] [PMID: 24460683]
[133]
Mondal, K.C., Pasquier, N., Mukhopadhyay, A., da Costa Pereira, C., Maulik, U. and Tettamanzi, A.G., 2012. Prediction of protein interactions on HIV-1-human PPI data using a novel closure-based integrated approach. In Proceedings of the International conference on bioinformatics models, methods and algorithms: BIOINFORMATICS 2012: Vilamoura, Portugal, february 1-4, 2012 (pp. 164- 173). SciTePress.
[134]
Zhao, N.; Pang, B.; Shyu, C.R.; Korkin, D. Structural similarity and classification of protein interaction interfaces. PLoS One, 2011, 6(5), e19554.
[http://dx.doi.org/10.1371/journal.pone.0019554] [PMID: 21589874]
[135]
Mei, S.; Flemington, E.K.; Zhang, K. A computational framework for distinguishing direct versus indirect interactions in human functional protein-protein interaction networks. Integr. Biol., 2017, 9(7), 595-606.
[http://dx.doi.org/10.1039/c7ib00013h] [PMID: 28524201]
[136]
Zhang, S.B.; Tang, Q.R. Protein-protein interaction inference based on semantic similarity of Gene Ontology terms. J. Theor. Biol., 2016, 401, 30-37.
[http://dx.doi.org/10.1016/j.jtbi.2016.04.020] [PMID: 27117309]
[137]
Ikram, N., Qadir, M.A. and Afzal, M.T., 2017. Investigating correlation between protein sequence similarity and semantic similarity using gene ontology annotations. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 15(3), pp.905-912. http://dx.doi.org/10.1109/TCBB.2017.2695542
[http://dx.doi.org/10.1109/TCBB.2017.2695542]
[138]
Plotkin, J.B.; Dushoff, J.; Levin, S.A. Hemagglutinin sequence clusters and the antigenic evolution of influenza A virus. Proc. Natl. Acad. Sci., 2002, 99(9), 6263-6268.
[http://dx.doi.org/10.1073/pnas.082110799] [PMID: 11972025]
[139]
Abdel-Azim, G. New hierarchical clustering algorithm for protein sequences based on hellinger distance. Appl. Math. Inf. Sci., 2016, 10(4), 1541-1549.
[http://dx.doi.org/10.18576/amis/100432]
[140]
Cao, H.; Zhang, Y.; Zhao, J.; Zhu, L.; Wang, Y.; Li, J.; Feng, Y.M.; Zhang, N. Prediction of the ebola virus infection related human genes using protein-protein interaction network. Comb. Chem. High Throughput Screen., 2017, 20(7), 638-646.http://www.eurekaselect.com/150812/article
[http://dx.doi.org/10.2174/1386207320666170310114816] [PMID: 28294056]
[141]
Spencer, K.A.; Dee, M.; Britton, P.; Hiscox, J.A. Role of phosphorylation clusters in the biology of the coronavirus infectious bronchitis virus nucleocapsid protein. Virology, 2008, 370(2), 373-381.
[http://dx.doi.org/10.1016/j.virol.2007.08.016] [PMID: 17931676]
[142]
Schleker, S.; Garcia-Garcia, J.; Klein-Seetharaman, J.; Oliva, B. Prediction and comparison of Salmonella-human and Salmonella-Arabidopsis interactomes. Chem. Biodivers., 2012, 9(5), 991-1018.
[http://dx.doi.org/10.1002/cbdv.201100392] [PMID: 22589098]
[143]
Mei, S. Probability weighted ensemble transfer learning for predicting interactions between HIV-1 and human proteins. PLoS One, 2013, 8(11), e79606.
[http://dx.doi.org/10.1371/journal.pone.0079606] [PMID: 24260261]
[144]
Wuchty, S. Computational prediction of host-parasite protein interactions between P. falciparum and H. sapiens. PLoS One, 2011, 6(11), e26960.
[http://dx.doi.org/10.1371/journal.pone.0026960] [PMID: 22114664]
[145]
Barman, R.K.; Saha, S.; Das, S. Prediction of interactions between viral and host proteins using supervised machine learning methods. PLoS One, 2014, 9(11), e112034.
[http://dx.doi.org/10.1371/journal.pone.0112034] [PMID: 25375323]
[146]
Kshirsagar, M.; Carbonell, J.; Klein-Seetharaman, J. Multitask learning for host-pathogen protein interactions. Bioinformatics, 2013, 29(13), i217-i226.
[http://dx.doi.org/10.1093/bioinformatics/btt245] [PMID: 23812987]
[147]
Boolchandani, M.; D’Souza, A.W.; Dantas, G. Sequencing-based methods and resources to study antimicrobial resistance. Nat. Rev. Genet., 2019, 20(6), 356-370.
[http://dx.doi.org/10.1038/s41576-019-0108-4] [PMID: 30886350]
[148]
Chowdhury, A.S.; Call, D.R.; Broschat, S.L. Antimicrobial resistance prediction for gram-negative bacteria via game theory-based feature evaluation. Sci. Rep., 2019, 9(1), 14487.
[http://dx.doi.org/10.1038/s41598-019-50686-z] [PMID: 31597945]
[149]
Chowdhury, A.S.; Call, D.R.; Broschat, S.L. PARGT: A software tool for predicting antimicrobial resistance in bacteria. Sci. Rep., 2020, 10(1), 11033.
[http://dx.doi.org/10.1038/s41598-020-67949-9] [PMID: 32620856]
[150]
Singh, V. “Antimicrobial resistance,” in microbial pathogens and strategies for combating them. science, technology and education. Formatex Res. Center., 2013, 1, 291-296.
[151]
Margeridon-Thermet, S.; Shafer, R.W. Comparison of the mechanisms of drug resistance among HIV, hepatitis b, and hepatitis C. Viruses, 2010, 2(12), 2696-2739.
[http://dx.doi.org/10.3390/v2122696] [PMID: 21243082]
[152]
Khalilzadeh, S.; Boloorsaz, M.R.; Safavi, A.; Farnia, P.; Velayati, A.A. Primary and acquired drug resistance in childhood tuberculosis. East. Mediterr. Health J., 2006, 12(6), 909-914.
[PMID: 17333839]
[153]
Loeffler, J.; Stevens, D.A. Antifungal drug resistance. Clin. Infect. Dis., 2003, 36(Suppl. 1), S31-S41.
[http://dx.doi.org/10.1086/344658] [PMID: 12516028]
[154]
Alekshun, M.N.; Levy, S.B. Molecular mechanisms of antibacterial multidrug resistance. Cell, 2007, 128(6), 1037-1050.
[http://dx.doi.org/10.1016/j.cell.2007.03.004] [PMID: 17382878]
[155]
Marks, S.M.; Flood, J.; Seaworth, B.; Hirsch-Moverman, Y.; Armstrong, L.; Mase, S.; Salcedo, K.; Oh, P.; Graviss, E.A.; Colson, P.W.; Armitige, L.; Revuelta, M.; Sheeran, K. Treatment practices, outcomes, and costs of multidrug-resistant and extensively drug-resistant tuberculosis, United States, 2005-2007. Emerg. Infect. Dis., 2014, 20(5), 812-821.
[http://dx.doi.org/10.3201/eid2005.131037] [PMID: 24751166]
[156]
Tanwar, J.; Das, S.; Fatima, Z.; Hameed, S. Multidrug resistance: An emerging crisis. Interdis. Per. Infect. Dis., 2014, 2014
[http://dx.doi.org/10.1155/2014/541340]
[157]
Chethana, G.S.; Hari venkatesh, VKR; Mirzaei, F; Gopinath, SM. Review on multidrug resistant bacteria and its implication in medical sciences. J. Biol. Sci. Opin., 2013, 1(1), 32-37.
[http://dx.doi.org/10.7897/2321-6328.01127]
[158]
Wartu, J.R.; Butt, A.Q.; Suleiman, U.; Adeke, M.; Tayaza, F.B.; Musa, B.J.; Baba, J. Multidrug resistance by microorganisms: A review. ScientificWorldJournal, 2019, 14(4)
[159]
Elion, G.B.; Furman, P.A.; Fyfe, J.A.; Miranda, P.; Beauchamp, L.; Schaeffer, H.J. Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl)guanine. Proc. Natl. Acad. Sci., 1977, 74(12), 5716-5720.
[http://dx.doi.org/10.1073/pnas.74.12.5716] [PMID: 202961]
[160]
Coen, D.M.; Schaffer, P.A. Two distinct loci confer resistance to acycloguanosine in herpes simplex virus type 1. Proc. Natl. Acad. Sci., 1980, 77(4), 2265-2269.
[http://dx.doi.org/10.1073/pnas.77.4.2265] [PMID: 6246531]
[161]
Biron, K.K.; Elion, G.B. in vitro susceptibility of varicella-zoster virus to acyclovir. Antimicrob. Agents Chemother., 1980, 18(3), 443-447.
[http://dx.doi.org/10.1128/AAC.18.3.443] [PMID: 6252836]
[162]
Breton, G.; Fillet, A.M.; Katlama, C.; Bricaire, F.; Caumes, E. Acyclovir-resistant herpes zoster in human immunodeficiency virus-infected patients: results of foscarnet therapy. Clin. Infect. Dis., 1998, 27(6), 1525-1527.
[http://dx.doi.org/10.1086/515045] [PMID: 9868672]
[163]
Morfin, F.; Thouvenot, D.; De Turenne-Tessier, M.; Lina, B.; Aymard, M.; Ooka, T. Phenotypic and genetic characterization of thymidine kinase from clinical strains of varicella-zoster virus resistant to acyclovir. Antimicrob. Agents Chemother., 1999, 43(10), 2412-2416.
[http://dx.doi.org/10.1128/AAC.43.10.2412] [PMID: 10508017]
[164]
Laurenti, L.; Piccioni, P.; Cattani, P.; Cingolani, A.; Efremov, D.; Chiusolo, P.; Tarnani, M.; Fadda, G.; Sica, S.; Leone, G. Cytomegalovirus reactivation during alemtuzumab therapy for chronic lymphocytic leukemia: incidence and treatment with oral ganciclovir. Haematologica, 2004, 89(10), 1248-1252.
[PMID: 15477211]
[165]
Chou, S.; Waldemer, R.H.; Senters, A.E.; Michels, K.S.; Kemble, G.W.; Miner, R.C.; Drew, W.L. Cytomegalovirus UL97 phosphotransferase mutations that affect susceptibility to ganciclovir. J. Infect. Dis., 2002, 185(2), 162-169.
[http://dx.doi.org/10.1086/338362] [PMID: 11807689]
[166]
Götte, M. The distinct contributions of fitness and genetic barrier to the development of antiviral drug resistance. Curr. Opin. Virol., 2012, 2(5), 644-650.
[http://dx.doi.org/10.1016/j.coviro.2012.08.004] [PMID: 22964133]
[167]
Menéndez-Arias, L. Molecular basis of human immunodeficiency virus type 1 drug resistance: Overview and recent developments. Antiviral Res., 2013, 98(1), 93-120.
[http://dx.doi.org/10.1016/j.antiviral.2013.01.007] [PMID: 23403210]
[168]
Powdrill, M.H.; Tchesnokov, E.P.; Kozak, R.A.; Russell, R.S.; Martin, R.; Svarovskaia, E.S.; Mo, H.; Kouyos, R.D.; Götte, M. Contribution of a mutational bias in hepatitis C virus replication to the genetic barrier in the development of drug resistance. Proc. Natl. Acad. Sci. USA, 2011, 108(51), 20509-20513.
[http://dx.doi.org/10.1073/pnas.1105797108] [PMID: 22135458]
[169]
Yoshino, R.; Yasuo, N.; Sekijima, M. Molecular dynamics simulation reveals the mechanism by which the influenza cap-dependent endonuclease acquires resistance against baloxavir marboxil. Sci. Rep., 2019, 9(1), 17464.
[http://dx.doi.org/10.1038/s41598-019-53945-1] [PMID: 31767949]
[170]
Wu, Y.; Gao, F.; Qi, J.; Bi, Y.; Fu, L.; Mohan, S. Resistance to mutant group 2 influenza virus neuraminidases of an oseltamivir-zanamivir hybrid inhibitor. J. Virol., 2016, 90(23), 10693-10700.
[http://dx.doi.org/10.1128/JVI.01703-16]
[171]
Yen, H.L. Current and novel antiviral strategies for influenza infection. Curr. Opin. Virol., 2016, 18, 126-134.
[http://dx.doi.org/10.1016/j.coviro.2016.05.004] [PMID: 27344481]
[172]
Hosseini, A.; Alibés, A.; Noguera-Julian, M.; Gil, V.; Paredes, R.; Soliva, R.; Orozco, M.; Guallar, V. Computational prediction of hiv-1 resistance to protease inhibitors. J. Chem. Inf. Model., 2016, 56(5), 915-923.
[http://dx.doi.org/10.1021/acs.jcim.5b00667] [PMID: 27082876]
[173]
Drăghici, S.; Potter, R.B. Predicting HIV drug resistance with neural networks. Bioinformatics, 2003, 19(1), 98-107.
[http://dx.doi.org/10.1093/bioinformatics/19.1.98] [PMID: 12499299]
[174]
Beerenwinkel, N.; Schmidt, B.; Walter, H.; Kaiser, R.; Lengauer, T.; Hoffmann, D.; Korn, K.; Selbig, J. Diversity and complexity of HIV-1 drug resistance: A bioinformatics approach to predicting phenotype from genotype. Proc. Natl. Acad. Sci. USA, 2002, 99(12), 8271-8276.
[http://dx.doi.org/10.1073/pnas.112177799] [PMID: 12060770]
[175]
Tarasova, O.A.; Filimonov, D.A.; Poroikov, V.V. Computational prediction of human immunodeficiency resistance to reverse transcriptase inhibitors. Biomed. Khim., 2017, 63(5), 457-460.
[http://dx.doi.org/10.18097/PBMC20176305457] [PMID: 29080881]
[176]
Tarasova, O.; Biziukova, N.; Filimonov, D.; Poroikov, V. A computational approach for the prediction of HIV resistance based on amino acid and nucleotide descriptors. Molecules, 2018, 23(11), 2751.
[http://dx.doi.org/10.3390/molecules23112751] [PMID: 30355996]
[177]
Steiner, M.C.; Gibson, K.M.; Crandall, K.A. Drug resistance prediction using deep learning techniques on HIV-1 sequence data. Viruses, 2020, 12(5), 560.
[http://dx.doi.org/10.3390/v12050560] [PMID: 32438586]
[178]
Angermueller, C.; Pärnamaa, T.; Parts, L.; Stegle, O. Deep learning for computational biology. Mol. Syst. Biol., 2016, 12(7), 878.
[http://dx.doi.org/10.15252/msb.20156651] [PMID: 27474269]
[179]
Sheik Amamuddy, O.; Bishop, N.T.; Tastan Bishop, Ö. Characterizing early drug resistance-related events using geometric ensembles from HIV protease dynamics. Sci. Rep., 2018, 8(1), 17938.
[http://dx.doi.org/10.1038/s41598-018-36041-8] [PMID: 30560871]
[180]
Hu, G.; Ma, A.; Dou, X.; Zhao, L.; Wang, J. Computational studies of a mechanism for binding and drug resistance in the wild type and four mutations of HIV-1 protease with a grl-0519 inhibitor. Int. J. Mol. Sci., 2016, 17(6), 819.
[http://dx.doi.org/10.3390/ijms17060819] [PMID: 27240358]
[181]
Mandal, R.S.; Panda, S.; Das, S. In silico prediction of drug resistance due to S247R mutation of Influenza H1N1 neuraminidase protein. J. Biomol. Struct. Dyn., 2018, 36(4), 966-980.
[http://dx.doi.org/10.1080/07391102.2017.1305295] [PMID: 28279127]
[182]
Versoza, C.J.; Pfeifer, S.P. Computational prediction of bacteriophage host ranges. Microorganisms, 2022, 10(1), 149.
[http://dx.doi.org/10.3390/microorganisms10010149] [PMID: 35056598]
[183]
Monteiro, R.; Pires, D.P.; Costa, A.R.; Azeredo, J. Phage therapy: Going temperate? Trends Microbiol., 2019, 27(4), 368-378.
[http://dx.doi.org/10.1016/j.tim.2018.10.008] [PMID: 30466900]
[184]
Touchon, M.; Moura de Sousa, J.A.; Rocha, E.P.C. Embracing the enemy: The diversification of microbial gene repertoires by phage-mediated horizontal gene transfer. Curr. Opin. Microbiol., 2017, 38, 66-73.
[http://dx.doi.org/10.1016/j.mib.2017.04.010] [PMID: 28527384]
[185]
Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol., 1990, 215(3), 403-410.
[http://dx.doi.org/10.1016/S0022-2836(05)80360-2] [PMID: 2231712]
[186]
Edwards, R.A.; McNair, K.; Faust, K.; Raes, J.; Dutilh, B.E. Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol. Rev., 2016, 40(2), 258-272.
[http://dx.doi.org/10.1093/femsre/fuv048] [PMID: 26657537]
[187]
Bourret, J.; Alizon, S.; Bravo, I.G. COUSIN (COdon Usage Similarity INdex): A normalized measure of codon usage preferences. Genome Biol. Evol., 2019, 11(12), 3523-3528.
[http://dx.doi.org/10.1093/gbe/evz262] [PMID: 31800035]
[188]
Boeckaerts, D.; Stock, M.; Criel, B.; Gerstmans, H.; De Baets, B.; Briers, Y. Predicting bacteriophage hosts based on sequences of annotated receptor-binding proteins. Sci. Rep., 2021, 11(1), 1467.
[http://dx.doi.org/10.1038/s41598-021-81063-4] [PMID: 33446856]
[189]
Young, F.; Rogers, S.; Robertson, D.L. Predicting host taxonomic information from viral genomes: A comparison of feature representations. PLOS Comput. Biol., 2020, 16(5), e1007894.
[http://dx.doi.org/10.1371/journal.pcbi.1007894] [PMID: 32453718]
[190]
Lu, C.; Zhang, Z.; Cai, Z.; Zhu, Z.; Qiu, Y.; Wu, A.; Jiang, T.; Zheng, H.; Peng, Y. Prokaryotic virus host predictor: A Gaussian model for host prediction of prokaryotic viruses in metagenomics. BMC Biol., 2021, 19(1), 5.
[http://dx.doi.org/10.1186/s12915-020-00938-6] [PMID: 33441133]
[191]
Li, M; Wang, Y; Li, F; Zhao, Y; Liu, M; Zhang, S A deep learning-based method for identification of bacteriophage-host interaction. IEEE/ACM Trans Comput Biol Bioinform, 2021, 18(5), 1801-1810.
[http://dx.doi.org/10.1109/TCBB.2020.3017386]
[192]
Wang, W.; Ren, J.; Tang, K.; Dart, E.; Ignacio-Espinoza, J.C.; Fuhrman, J.A.; Braun, J.; Sun, F.; Ahlgren, N.A. A network-based integrated framework for predicting virus-prokaryote interactions. NAR Genom. Bioinform., 2020, 2(2), lqaa044.
[http://dx.doi.org/10.1093/nargab/lqaa044] [PMID: 32626849]
[193]
Kharkar, P.B.; Talkar, S.S.; Kadwadkar, N.A.; Patravale, V.B. Nanosystems for oral delivery of immunomodulators. In: Nanostructures for Oral Medicine; Andronescu, E, Ed.; Grumezescu: AM Elsevier, 2017; 11, pp. 295-334.
[http://dx.doi.org/10.1016/B978-0-323-47720-8.00012-2]
[194]
Lua, L.H.L.; Connors, N.K.; Sainsbury, F.; Chuan, Y.P.; Wibowo, N.; Middelberg, A.P.J. Bioengineering virus-like particles as vaccines. Biotechnol. Bioeng., 2014, 111(3), 425-440.
[http://dx.doi.org/10.1002/bit.25159] [PMID: 24347238]
[195]
Ali, M.; Pandey, R.K.; Khatoon, N.; Narula, A.; Mishra, A.; Prajapati, V.K. Exploring dengue genome to construct a multi-epitope based subunit vaccine by utilizing immunoinformatics approach to battle against dengue infection. Sci. Rep., 2017, 7(1), 9232.
[http://dx.doi.org/10.1038/s41598-017-09199-w] [PMID: 28835708]
[196]
Ren, S.; Guan, L.; Dong, Y.; Wang, C.; Feng, L.; Xie, Y. Design and evaluation of a multi-epitope assembly peptide vaccine against Acinetobacter baumannii infection in mice. Swiss Med. Wkly., 2019, 149, w20052.
[http://dx.doi.org/10.4414/smw.2019.20052] [PMID: 31203576]
[197]
He, L.; Lin, X.; de Val, N.; Saye-Francisco, K.L.; Mann, C.J.; Augst, R.; Morris, C.D.; Azadnia, P.; Zhou, B.; Sok, D.; Ozorowski, G.; Ward, A.B.; Burton, D.R.; Zhu, J. Hidden lineage complexity of glycan-dependent HIV-1 broadly neutralizing antibodies uncovered by digital panning and native-like gp140 trimer. Front. Immunol., 2017, 8, 1025.
[http://dx.doi.org/10.3389/fimmu.2017.01025] [PMID: 28883821]
[198]
Ekiert, D.C.; Wilson, I.A. Broadly neutralizing antibodies against influenza virus and prospects for universal therapies. Curr. Opin. Virol., 2012, 2(2), 134-141.
[http://dx.doi.org/10.1016/j.coviro.2012.02.005] [PMID: 22482710]
[199]
Gehlenborg, N.; O’Donoghue, S.I.; Baliga, N.S.; Goesmann, A.; Hibbs, M.A.; Kitano, H.; Kohlbacher, O.; Neuweger, H.; Schneider, R.; Tenenbaum, D.; Gavin, A.C. Visualization of omics data for systems biology. Nat. Methods, 2010, 7(Suppl. 3), S56-S68.
[http://dx.doi.org/10.1038/nmeth.1436] [PMID: 20195258]
[200]
Nelma, P.G.; Massimo, L. Innovation in metabonomics to improve personalized health care. In: Handbook of biomarkers and precision medicine; CRC Press: USA, 2019.
[http://dx.doi.org/10.1111/nyas.12775] [PMID: 26014591]
[201]
Oh, S.J.; Choi, Y.K.; Shin, O.S. Systems biology-based platforms to accelerate research of emerging infectious diseases. Yonsei Med. J., 2018, 59(2), 176-186.
[http://dx.doi.org/10.3349/ymj.2018.59.2.176] [PMID: 29436184]
[202]
Bajic, G.; van der Poel, C.E.; Kuraoka, M.; Schmidt, A.G.; Carroll, M.C.; Kelsoe, G.; Harrison, S.C. Autoreactivity profiles of influenza hemagglutinin broadly neutralizing antibodies. Sci. Rep., 2019, 9(1), 3492.
[http://dx.doi.org/10.1038/s41598-019-40175-8] [PMID: 30837606]
[203]
Trobaugh, D.W.; Sun, C.; Dunn, M.D.; Reed, D.S.; Klimstra, W.B. Rational design of a live-attenuated eastern equine encephalitis virus vaccine through informed mutation of virulence determinants. PLoS Pathog., 2019, 15(2), e1007584.
[http://dx.doi.org/10.1371/journal.ppat.1007584]
[204]
Tom, J.K.; Albin, T.J.; Manna, S.; Moser, B.A.; Steinhardt, R.C.; Esser-Kahn, A.P. Applications of immunomodulatory immune synergies to adjuvant discovery and vaccine development. Trends Biotechnol., 2019, 37(4), 373-388.
[http://dx.doi.org/10.1016/j.tibtech.2018.10.004] [PMID: 30470547]
[205]
He, Y. Vaccine adjuvant informatics: From data integration and analysis to rational vaccine adjuvant design. Front. Immunol., 2014, 5, 32.
[http://dx.doi.org/10.3389/fimmu.2014.00032] [PMID: 24550916]
[206]
Wallis, J.; Shenton, D.P.; Carlisle, R.C. Novel approaches for the design, delivery and administration of vaccine technologies. Clin. Exp. Immunol., 2019, 196(2), 189-204.
[http://dx.doi.org/10.1111/cei.13287] [PMID: 30963549]
[207]
Du, L.; Tai, W.; Yang, Y.; Zhao, G.; Zhu, Q.; Sun, S.; Liu, C.; Tao, X.; Tseng, C.T.K.; Perlman, S.; Jiang, S.; Zhou, Y.; Li, F. Introduction of neutralizing immunogenicity index to the rational design of MERS coronavirus subunit vaccines. Nat. Commun., 2016, 7(1), 13473.
[http://dx.doi.org/10.1038/ncomms13473] [PMID: 27874853]
[208]
Bordoli, L.; Kiefer, F.; Arnold, K.; Benkert, P.; Battey, J.; Schwede, T. Protein structure homology modeling using SWISS-MODEL workspace. Nat. Protoc., 2009, 4(1), 1-13.
[http://dx.doi.org/10.1038/nprot.2008.197] [PMID: 19131951]
[209]
Johnson, C.; Hargest, V.; Cortez, V.; Meliopoulos, V.; Schultz-Cherry, S. Astrovirus pathogenesis. Viruses, 2017, 9(1), 22.
[http://dx.doi.org/10.3390/v9010022] [PMID: 28117758]
[210]
Alansari, Z.; Anuar, N.B.; Kamsin, A.; Soomro, S.; Belgaum, M.R. Computational intelligence tools and databases in bioinformatics. 4th IEEE International Conference on Engineering Technologies and Applied Sciences (ICETAS), 2017.
[http://dx.doi.org/10.1109/ICETAS.2017.8277876]
[211]
O’Brien, S.P.; Swanstrom, A.E.; Pegu, A.; Ko, S.Y.; Immonen, T.T.; Del Prete, G.Q. Rational design and in vivo selection of SHIVs encoding transmitted/founder subtype C HIV-1 envelopes. PLoS Pathog., 2019, 15(4), e1007632.
[http://dx.doi.org/10.1371/journal.ppat.1007632] [PMID: 30943274]
[212]
Dubey, K.K.; Luke, G.A.; Knox, C.; Kumar, P.; Pletschke, B.I.; Singh, P.K.; Shukla, P. Vaccine and antibody production in plants: Developments and computational tools. Brief. Funct. Genomics, 2018, 17(5), 295-307.
[http://dx.doi.org/10.1093/bfgp/ely020] [PMID: 29982427]
[213]
Goldenzweig, A.; Fleishman, S.J. Principles of protein stability and their application in computational design. Annu. Rev. Biochem., 2018, 87(1), 105-129.
[http://dx.doi.org/10.1146/annurev-biochem-062917-012102] [PMID: 29401000]
[214]
Li, M.H.; Zong, H.; Leroueil, P.R.; Choi, S.K.; Baker, J.R., Jr Ligand characteristics important to avidity interactions of multivalent nanoparticles. Bioconjug. Chem., 2017, 28(6), 1649-1657.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00098] [PMID: 28398751]
[215]
Barwal, I.; Kumar, R.; Kateriya, S.; Dinda, A.K.; Yadav, S.C. Targeted delivery system for cancer cells consist of multiple ligands conjugated genetically modified CCMV capsid on doxorubicin GNPs complex. Sci. Rep., 2016, 6(1), 37096.
[http://dx.doi.org/10.1038/srep37096] [PMID: 27872483]
[216]
Rynda-Apple, A.; Patterson, D.P.; Douglas, T. Virus-like particles as antigenic nanomaterials for inducing protective immune responses in the lung. Nanomedicine, 2014, 9(12), 1857-1868.
[http://dx.doi.org/10.2217/nnm.14.107] [PMID: 25325241]
[217]
Kwong, P.D.; Chuang, G.Y.; DeKosky, B.J.; Gindin, T.; Georgiev, I.S.; Lemmin, T.; Schramm, C.A.; Sheng, Z.; Soto, C.; Yang, A.S.; Mascola, J.R.; Shapiro, L. Antibodyomics: Bioinformatics technologies for understanding B-cell immunity to HIV-1. Immunol. Rev., 2017, 275(1), 108-128.
[http://dx.doi.org/10.1111/imr.12480] [PMID: 28133812]
[218]
Xiang, Z.; He, Y. Vaxign: A web-based vaccine target design program for reverse vaccinology. Procedia Vaccinol., 2009, 1(1), 23-29.
[http://dx.doi.org/10.1016/j.provac.2009.07.005]
[219]
Heinson, A.I.; Woelk, C.H.; Newell, M.L. The promise of reverse vaccinology. Int. Health, 2015, 7(2), 85-89.
[http://dx.doi.org/10.1093/inthealth/ihv002] [PMID: 25733557]
[220]
Yee, P.T.I.; Tan, S.H.; Ong, K.C.; Tan, K.O.; Wong, K.T.; Hassan, S.S.; Poh, C.L. Development of live attenuated Enterovirus 71 vaccine strains that confer protection against lethal challenge in mice. Sci. Rep., 2019, 9(1), 4805.
[http://dx.doi.org/10.1038/s41598-019-41285-z] [PMID: 30886246]
[221]
Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; Lepore, R.; Schwede, T. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res., 2018, 46(W1), W296-W303.
[http://dx.doi.org/10.1093/nar/gky427] [PMID: 29788355]
[222]
Taylor, W.R.; Munro, R.E.J.; Petersen, K.; Bywater, R.P. Ab initio modelling of the N-terminal domain of the secretin receptors. Comput. Biol. Chem., 2003, 27(2), 103-114.
[http://dx.doi.org/10.1016/S1476-9271(03)00020-3] [PMID: 12821307]
[223]
Gourlay, L.; Peri, C.; Bolognesi, M.; Colombo, G. Structure and computation in immunoreagent design: From diagnostics to vaccines. Trends Biotechnol., 2017, 35(12), 1208-1220.
[http://dx.doi.org/10.1016/j.tibtech.2017.06.018] [PMID: 28739221]
[224]
Naz, K.; Naz, A.; Ashraf, S.T.; Rizwan, M.; Ahmad, J.; Baumbach, J.; Ali, A.; Pan, R.V. Pangenome-reverse vaccinology approach for identifications of potential vaccine candidates in microbial pangenome. BMC Bioinformatics, 2019, 20(1), 123.
[http://dx.doi.org/10.1186/s12859-019-2713-9] [PMID: 30871454]
[225]
Magistrelli, G.; Poitevin, Y.; Schlosser, F.; Pontini, G.; Malinge, P.; Josserand, S.; Corbier, M.; Fischer, N. Optimizing assembly and production of native bispecific antibodies by codon deoptimization. MAbs, 2017, 9(2), 231-239.
[http://dx.doi.org/10.1080/19420862.2016.1267088] [PMID: 28001485]
[226]
Trösemeier, J.H.; Rudorf, S.; Loessner, H.; Hofner, B.; Reuter, A.; Schulenborg, T.; Koch, I.; Bekeredjian-Ding, I.; Lipowsky, R.; Kamp, C. Optimizing the dynamics of protein expression. Sci. Rep., 2019, 9(1), 7511.
[http://dx.doi.org/10.1038/s41598-019-43857-5] [PMID: 31101858]
[227]
Kar, P.; Ruiz-Perez, L.; Arooj, M.; Mancera, R.L. Current methods for the prediction of T-cell epitopes. Pept. Sci., 2018, 110(2), e24046.
[http://dx.doi.org/10.1002/pep2.24046]
[228]
Greenbaum, J.A.; Andersen, P.H.; Blythe, M.; Bui, H.H.; Cachau, R.E.; Crowe, J.; Davies, M.; Kolaskar, A.S.; Lund, O.; Morrison, S.; Mumey, B.; Ofran, Y.; Pellequer, J.L.; Pinilla, C.; Ponomarenko, J.V.; Raghava, G.P.S.; van Regenmortel, M.H.V.; Roggen, E.L.; Sette, A.; Schlessinger, A.; Sollner, J.; Zand, M.; Peters, B. Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. J. Mol. Recognit., 2007, 20(2), 75-82.
[http://dx.doi.org/10.1002/jmr.815] [PMID: 17205610]
[229]
Ganguly, B.; Rastogi, S.K.; Prasad, S. Computational designing of a poly-epitope fecundity vaccine for multiple species of livestock. Vaccine, 2013, 32(1), 11-18.
[http://dx.doi.org/10.1016/j.vaccine.2013.10.086] [PMID: 24211168]
[230]
Rahman, M.S.; Rahman, M.K.; Saha, S.; Kaykobad, M.; Rahman, M.S. Antigenic: An improved prediction model of protective antigens. Artif. Intell. Med., 2019, 94, 28-41.
[http://dx.doi.org/10.1016/j.artmed.2018.12.010] [PMID: 30871681]
[231]
Changeux, J.P. Allostery and the monod-wyman-changeux model after 50 years. Annu. Rev. Biophys., 2012, 41(1), 103-133.
[http://dx.doi.org/10.1146/annurev-biophys-050511-102222] [PMID: 22224598]
[232]
Penkler, D.L.; Tastan Bishop, Ö. Modulation of human hsp90α conformational dynamics by allosteric ligand interaction at the c-terminal domain. Sci. Rep., 2019, 9(1), 1600.
[http://dx.doi.org/10.1038/s41598-018-35835-0] [PMID: 30733455]
[233]
Nussinov, R.; Tsai, C.J. Allostery in disease and in drug discovery. Cell, 2013, 153(2), 293-305.
[http://dx.doi.org/10.1016/j.cell.2013.03.034] [PMID: 23582321]
[234]
Cembran, A.; Kim, J.; Gao, J.; Veglia, G. NMR mapping of protein conformational landscapes using coordinated behavior of chemical shifts upon ligand binding. Phys. Chem. Chem. Phys., 2014, 16(14), 6508-6518.
[http://dx.doi.org/10.1039/C4CP00110A] [PMID: 24604024]
[235]
Amusengeri, A.; Astl, L.; Lobb, K.; Verkhivker, G.M.; Tastan Bishop, Ö. Establishing computational approaches towards identifying malarial allosteric modulators: A case study of plasmodium falciparum hsp70s. Int. J. Mol. Sci., 2019, 20(22), 5574.
[http://dx.doi.org/10.3390/ijms20225574] [PMID: 31717270]
[236]
Vajda, S.; Beglov, D.; Wakefield, A.E.; Egbert, M.; Whitty, A. Cryptic binding sites on proteins: Definition, detection, and druggability. Curr. Opin. Chem. Biol., 2018, 44, 1-8.
[http://dx.doi.org/10.1016/j.cbpa.2018.05.003] [PMID: 29800865]
[237]
Brown, D.K.; Tastan Bishop, Ö. Role of structural bioinformatics in drug discovery by computational SNP analysis. Glob. Heart, 2017, 12(2), 151-161.
[http://dx.doi.org/10.1016/j.gheart.2017.01.009] [PMID: 28302551]
[238]
Guarnera, E.; Berezovsky, I.N. Toward comprehensive allosteric control over protein activity. Structure, 2019, 27(5), 866-878.e1.
[http://dx.doi.org/10.1016/j.str.2019.01.014] [PMID: 30827842]
[239]
Tee, W.V.; Guarnera, E.; Berezovsky, I.N. On the allosteric effect of nssnps and the emerging importance of allosteric polymorphism. J. Mol. Biol., 2019, 431(19), 3933-3942.
[http://dx.doi.org/10.1016/j.jmb.2019.07.012] [PMID: 31306666]
[240]
Nussinov, R.; Jang, H.; Tsai, C.J.; Cheng, F. Review: Precision medicine and driver mutations: Computational methods, functional assays and conformational principles for interpreting cancer drivers. PLOS Comput. Biol., 2019, 15(3), e1006658.
[http://dx.doi.org/10.1371/journal.pcbi.1006658] [PMID: 30921324]
[241]
Kumar, R.D.; Chang, L.W.; Ellis, M.J.; Bose, R. Prioritizing potentially druggable mutations with dgene: an annotation tool for cancer genome sequencing data. PLoS One, 2013, 8(6), e67980.
[http://dx.doi.org/10.1371/journal.pone.0067980] [PMID: 23826350]
[242]
Brown, D.K.; Tastan Bishop, Ö. HUMA: A platform for the analysis of genetic variation in humans. Hum. Mutat., 2018, 39(1), 40-51.
[http://dx.doi.org/10.1002/humu.23334] [PMID: 28967693]
[243]
Sheik Amamuddy, O.; Veldman, W.; Manyumwa, C.; Khairallah, A.; Agajanian, S.; Oluyemi, O.; Verkhivker, G.M.; Tastan Bishop, Ö. Integrated computational approaches and tools for allosteric drug discovery. Int. J. Mol. Sci., 2020, 21(3), 847.
[http://dx.doi.org/10.3390/ijms21030847] [PMID: 32013012]
[244]
Di Maio, V.C.; Cento, V.; Mirabelli, C.; Artese, A.; Costa, G.; Alcaro, S.; Perno, C.F.; Ceccherini-Silberstein, F. Hepatitis c virus genetic variability and the presence of ns5b resistance-associated mutations as natural polymorphisms in selected genotypes could affect the response to ns5b inhibitors. Antimicrob. Agents Chemother., 2014, 58(5), 2781-2797.
[http://dx.doi.org/10.1128/AAC.02386-13] [PMID: 24590484]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy