Generic placeholder image

Current Cosmetic Science

Editor-in-Chief

ISSN (Print): 2666-7797
ISSN (Online): 2666-7800

Mini-Review Article

Seed Oils in Treatment of Skin Aging and Photoaging

Author(s): Lata Kothapalli*, Vaidehi Raut and Asha Thomas

Volume 2, 2023

Published on: 20 March, 2023

Article ID: e250123213143 Pages: 10

DOI: 10.2174/2666779702666230125142357

Open Access Journals Promotions 2
conference banner
Abstract

Background: Seed oils have been exploited for an array of purposes with their addition to dietary, cosmetics, or therapeutic products. The process of skin aging is a natural and complex phenomenon in living beings. Skin aging is classified into two independent processes, i.e., chronological aging and premature aging. Aging is observed as a loss of strength and elasticity of the skin, leading to wrinkles on the skin. It is due to a decrease in various components of the skin matrix, like elastin, collagen, and hyaluronic acid. Furthermore, aging is potentiated by excessive exposure to UV radiation (Photoaging) and can be prevented or reduced by using products that combat photoaging.

Objective: Anti-aging and antiwrinkle agents are in demand for maintaining skin tone. Seed oils composed of polyunsaturated fatty acids are traditionally used in cosmetic products as moisturizers and emollients, while palmitic acid and oleic acid are known for their penetration-enhancing effect. With the changing trend for extraction of oils like cold pressed methods, seed oils enriched with polyphenols, flavonoids, carotenoids, and phytosterols are good antioxidants and antimicrobials and therefore have an ever-growing demand for their usage in the treatment of skin diseases. In this review, an attempt will be made to brief the phytoconstituents present in various seed oils and their utilization against skin ailments. Furthermore, a mechanistic approach towards the benefit of oils in skin barrier repair, antiaging, and photo-aging with the help of extensive well-designed clinical trials carried out in the recent past is elaborated.

Methods: A literature search in the Scopus database, Pubmed, and Medline was carried out using the terminology “aging, photoaging, antioxidant, UV-protection, sunscreens, skin barrier repair, and fatty acids, formulations” in the study. Data were retrieved over the last twenty years.

Results: The review summarises the mechanistic approach and beneficial application of seed oils for healthy and glowing skin. The oils obtained from olives, sesame, borage, grape seeds, and carrot seeds have multitargeted effects. However, the variation in pharmacological effect may vary based on geographically differing varieties, skin type, and person-to-person variation. The need to standardize the varieties for their phytoactive ingredients and the composition of formulation used for skin care can help utilize the seeds as a potential source of actives against skin diseases.

Conclusion: The potential of seed oils can be increased with appropriate analytical tools, validation protocols, and systematic experimental studies at preclinical and clinical trials for their application to skin care products.

Keywords: Seed oils, fatty acids, skin aging, photoaging, antioxidants, sunscreen, extracellular matrix.

[1]
Garg, C. Molecular mechanisms of skin photoaging and plant inhibitors. Int. J. Green Pharm., 2017, 11(2)
[http://dx.doi.org/10.22377/ijgp.v11i02.1031]
[2]
Parrado, C.; Mercado-Saenz, S.; Perez-Davo, A.; Gilaberte, Y.; Gonzalez, S.; Juarranz, A. Environmental stressors on skin aging. mechanistic insights. Front. Pharmacol., 2019, 10, 759.
[http://dx.doi.org/10.3389/fphar.2019.00759] [PMID: 31354480]
[3]
Fisher, G.J.; Kang, S.; Varani, J.; Bata-Csorgo, Z.; Wan, Y.; Datta, S.; Voorhees, J.J. Mechanisms of photoaging and chronological skin aging. Arch. Dermatol., 2002, 138(11), 1462-1470.
[http://dx.doi.org/10.1001/archderm.138.11.1462] [PMID: 12437452]
[4]
Rabe, J.H.; Mamelak, A.J.; McElgunn, P.J.S.; Morison, W.L.; Sauder, D.N. Photoaging: Mechanisms and repair. J. Am. Acad. Dermatol., 2006, 55(1), 1-19.
[http://dx.doi.org/10.1016/j.jaad.2005.05.010] [PMID: 16781287]
[5]
Bosch, R.; Philips, N.; Suárez-Pérez, J.; Juarranz, A.; Devmurari, A.; Chalensouk-Khaosaat, J.; González, S. Mechanisms of photoaging and cutaneous photocarcinogenesis, and photoprotective strategies with phytochemicals. Antioxidants, 2015, 4(2), 248-268.
[http://dx.doi.org/10.3390/antiox4020248] [PMID: 26783703]
[6]
Chen, L.; Hu, J.Y.; Wang, S.Q. The role of antioxidants in photoprotection: A critical review. J. Am. Acad. Dermatol., 2012, 67(5), 1013-1024.
[http://dx.doi.org/10.1016/j.jaad.2012.02.009] [PMID: 22406231]
[7]
Prasad, A.; Pospíšil, P. Ultraweak photon emission induced by visible light and ultraviolet A radiation via photoactivated skin chromophores: in vivo charge coupled device imaging. J. Biomed. Opt., 2012, 17(8), 085004.
[http://dx.doi.org/10.1117/1.JBO.17.8.085004] [PMID: 23224187]
[8]
Madan, K.; Nanda, S. In-vitro evaluation of antioxidant, anti-elastase, anti-collagenase, anti-hyaluronidase activities of safranal and determination of its sun protection factor in skin photoaging. Bioorg. Chem., 2018, 77, 159-167.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.030] [PMID: 29353733]
[9]
Cao, C.; Xiao, Z.; Wu, Y.; Ge, C. Diet and skin aging-from the perspective of food nutrition. Nutrients, 2020, 12(3), 870.
[http://dx.doi.org/10.3390/nu12030870] [PMID: 32213934]
[10]
Urbach, F.; Forbes, P.D.; Davies, R.E.; Berger, D. Cutaneous photobiology: Past, present and future. J. Invest. Dermatol., 1976, 67(1), 209-224.
[http://dx.doi.org/10.1111/1523-1747.ep12513042] [PMID: 778294]
[11]
Yaar, M.; Eller, M.S.; Gilchrest, B.A. Fifty years of skin aging. J. Investig. Dermatol. Symp. Proc., 2002, 7(1), 51-58.
[http://dx.doi.org/10.1046/j.1523-1747.2002.19636.x] [PMID: 12518793]
[12]
Makrantonaki, E.; Zouboulis, C.C. Molecular mechanisms of skin aging: State of the art. Ann. N. Y. Acad. Sci., 2007, 1119(1), 40-50.
[http://dx.doi.org/10.1196/annals.1404.027] [PMID: 18056953]
[13]
McCabe, M.C.; Hill, R.C.; Calderone, K.; Cui, Y.; Yan, Y.; Quan, T.; Fisher, G.J.; Hansen, K.C. Alterations in extracellular matrix composition during aging and photoaging of the skin. Matrix Biol. Plus, 2020, 8, 100041.
[http://dx.doi.org/10.1016/j.mbplus.2020.100041] [PMID: 33543036]
[14]
Baumann, L. Skin ageing and its treatment. J. Pathol., 2007, 211(2), 241-251.
[http://dx.doi.org/10.1002/path.2098] [PMID: 17200942]
[15]
Ganceviciene, R.; Liakou, A.I.; Theodoridis, A.; Makrantonaki, E.; Zouboulis, C.C. Skin anti-aging strategies. Dermatoendocrinol, 2012, 4(3), 308-319.
[http://dx.doi.org/10.4161/derm.22804] [PMID: 23467476]
[16]
Stadtman, E.R. Protein oxidation and aging. Science, 1992, 257(5074), 1220-1224.
[http://dx.doi.org/10.1126/science.1355616] [PMID: 1355616]
[17]
Kohen, R. Skin antioxidants: Their role in aging and in oxidative stress - New approaches for their evaluation. Biomed. Pharmacother., 1999, 53(4), 181-192.
[http://dx.doi.org/10.1016/S0753-3322(99)80087-0] [PMID: 10392290]
[18]
Fisher, G.J.; Quan, T.; Purohit, T.; Shao, Y.; Cho, M.K.; He, T.; Varani, J.; Kang, S.; Voorhees, J.J. Collagen fragmentation promotes oxidative stress and elevates matrix metalloproteinase-1 in fibroblasts in aged human skin. Am. J. Pathol., 2009, 174(1), 101-114.
[http://dx.doi.org/10.2353/ajpath.2009.080599] [PMID: 19116368]
[19]
Quan, T.; Qin, Z.; Xia, W.; Shao, Y.; Voorhees, J.J.; Fisher, G.J. Matrix-degrading metalloproteinases in photoaging. J. Investig. Dermatol. Symp. Proc., 2009, 14(1), 20-24.
[http://dx.doi.org/10.1038/jidsymp.2009.8] [PMID: 19675548]
[20]
Fligiel, S.E.G.; Varani, J.; Datta, S.C.; Kang, S.; Fisher, G.J.; Voorhees, J.J. Collagen degradation in aged/photodamaged skin in vivo and after exposure to matrix metalloproteinase-1 in vitro. J. Invest. Dermatol., 2003, 120(5), 842-848.
[http://dx.doi.org/10.1046/j.1523-1747.2003.12148.x] [PMID: 12713591]
[21]
Fisher, G.J.; Datta, S.C.; Talwar, H.S.; Wang, Z.Q.; Varani, J.; Kang, S.; Voorhees, J.J. Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature, 1996, 379(6563), 335-339.
[http://dx.doi.org/10.1038/379335a0] [PMID: 8552187]
[22]
Chung, J.H.; Seo, J.Y.; Choi, H.R.; Lee, M.K.; Youn, C.S.; Rhie, G.; Cho, K.H.; Kim, K.H.; Park, K.C.; Eun, H.C. Modulation of skin collagen metabolism in aged and photoaged human skin in vivo. J. Invest. Dermatol., 2001, 117(5), 1218-1224.
[http://dx.doi.org/10.1046/j.0022-202x.2001.01544.x] [PMID: 11710936]
[23]
Tzellos, T.G.; Sinopidis, X.; Kyrgidis, A.; Vahtsevanos, K.; Triaridis, S.; Printza, A.; Klagas, I.; Karakiulakis, G.; Papakonstantinou, E. Differential hyaluronan homeostasis and expression of proteoglycans in juvenile and adult human skin. J. Dermatol. Sci., 2011, 61(1), 69-72.
[http://dx.doi.org/10.1016/j.jdermsci.2010.10.010] [PMID: 21087840]
[24]
Reed, R.K.; Lilja, K.; Laurent, T.C. Hyaluronan in the rat with special reference to the skin. Acta Physiol. Scand., 1988, 134(3), 405-411.
[http://dx.doi.org/10.1111/j.1748-1716.1988.tb08508.x] [PMID: 3227957]
[25]
Girish, K.S.; Kemparaju, K. The magic glue hyaluronan and its eraser hyaluronidase: A biological overview. Life Sci., 2007, 80(21), 1921-1943.
[http://dx.doi.org/10.1016/j.lfs.2007.02.037] [PMID: 17408700]
[26]
Antonicelli, F.; Bellon, G.; Debelle, L.; Hornebeck, W. Elastin-elastases and inflamm-aging. Curr. Top. Dev. Biol., 2007, 79, 99-155.
[http://dx.doi.org/10.1016/S0070-2153(06)79005-6] [PMID: 17498549]
[27]
Oikarinen, A. Connective tissue and aging. Int. J. Cosmet. Sci., 2004, 26(2), 107-108.
[http://dx.doi.org/10.1111/j.1467-2494.2004.213_6.x]
[28]
Faria-Silva, C.; Ascenso, A.; Costa, A.M.; Marto, J.; Carvalheiro, M.; Ribeiro, H.M.; Simões, S. Feeding the skin: A new trend in food and cosmetics convergence. Trends Food Sci. Technol., 2020, 95, 21-32.
[http://dx.doi.org/10.1016/j.tifs.2019.11.015]
[29]
Vedamurthy, M. Antiaging therapies. Indian J. Dermatol. Venereol. Leprol., 2006, 72(3), 183-186.
[http://dx.doi.org/10.4103/0378-6323.25776] [PMID: 16766830]
[30]
Ng, T.B.; Liu, F.; Wang, Z.T. Antioxidative activity of natural products from plants. Life Sci., 2000, 66(8), 709-723.
[http://dx.doi.org/10.1016/S0024-3205(99)00642-6] [PMID: 10680579]
[31]
Lin, T.K.; Zhong, L.; Santiago, J. Anti-inflammatory and skin barrier repair effects of topical application of some plant oils. Int. J. Mol. Sci., 2017, 19(1), 70.
[http://dx.doi.org/10.3390/ijms19010070] [PMID: 29280987]
[32]
Guidoni, M.; de Christo Scherer, M.M.; Figueira, M.M.; Schmitt, E.F.P.; de Almeida, L.C.; Scherer, R.; Bogusz, S.; Fronza, M. Fatty acid composition of vegetable oil blend and in vitro effects of pharmacotherapeutical skin care applications. Braz. J. Med. Biol. Res., 2019, 52(2), e8209.
[http://dx.doi.org/10.1590/1414-431x20188209] [PMID: 30785481]
[33]
Choi, H.J.; Song, B.R.; Kim, J.E.; Bae, S.J.; Choi, Y.J.; Lee, S.J. Therapeutic effects of cold-pressed perilla oil mainly consisting of linolenic acid, oleic acid, and linoleic acid on uv-induced photoaging in nhdf cells and skh-1 hairless mice. Molecules, 2020, 25(4), 989.
[http://dx.doi.org/10.3390/molecules25040989]
[34]
Bajerski, L.; Michels, L.R.; Colomé, L.M.; Bender, E.A.; Freddo, R.J.; Bruxel, F.; Haas, S.E. The use of Brazilian vegetable oils in nanoemulsions: an update on preparation and biological applications. Braz. J. Pharm. Sci., 2016, 52(3), 347-363.
[http://dx.doi.org/10.1590/s1984-82502016000300001]
[35]
Michalak, M. Kiełtyka-Dadasiewicz, A. Oils from fruit seeds and their dietetic and cosmetic significance. Herba Pol., 2018, 64(4), 63-70.
[http://dx.doi.org/10.2478/hepo-2018-0026]
[36]
Zielińska, A.; Nowak, I. Fatty acids in vegetable oils and their importance in the cosmetic industry. Chemik., 2014, 68(2), 103-110.
[37]
Feingold, K.R. Thematic review series: Skin Lipids. The role of epidermal lipids in cutaneous permeability barrier homeostasis. J. Lipid Res., 2007, 48(12), 2531-2546.
[http://dx.doi.org/10.1194/jlr.R700013-JLR200] [PMID: 17872588]
[38]
Davis, G.D.J.; Masilamoni, J.G.; Arul, V.; Kumar, M.S.M.; Baraneedharan, U.; Paul, S.F.D.; Sakthivelu, I.V.; Jesudason, E.P.; Jayakumar, R. Radioprotective effect of dl-α-lipoic acid on mice skin fibroblasts. Cell Biol. Toxicol., 2009, 25(4), 331-340.
[http://dx.doi.org/10.1007/s10565-008-9087-5] [PMID: 18553143]
[39]
Akamatsu, H.; Niwa, Y.; Matsunaga, K. Effect of palmitic acid on neutrophil functions in vitro. Int. J. Dermatol., 2001, 40(10), 640-643.
[http://dx.doi.org/10.1046/j.1365-4362.2001.01292.x] [PMID: 11737424]
[40]
Kim, E.J.; Kim, M.K.; Jin, X.J.; Oh, J.H.; Kim, J.E.; Chung, J.H. Skin aging and photoaging alter fatty acids composition, including 11,14,17-eicosatrienoic acid, in the epidermis of human skin. J. Korean Med. Sci., 2010, 25(6), 980-983.
[http://dx.doi.org/10.3346/jkms.2010.25.6.980] [PMID: 20514327]
[41]
Katsuta, Y.; Iida, T.; Inomata, S.; Denda, M. Unsaturated fatty acids induce calcium influx into keratinocytes and cause abnormal differentiation of epidermis. J. Invest. Dermatol., 2005, 124(5), 1008-1013.
[http://dx.doi.org/10.1111/j.0022-202X.2005.23682.x] [PMID: 15854043]
[42]
Fujiwara, K.; Maekawa, F.; Yada, T. Oleic acid interacts with GPR40 to induce Ca2+ signaling in rat islet beta-cells: Mediation by PLC and L-type Ca2+ channel and link to insulin release. Am. J. Physiol. Endocrinol. Metab., 2005, 289(4), E670-E677.
[http://dx.doi.org/10.1152/ajpendo.00035.2005] [PMID: 15914509]
[43]
Rennert, B.; Melzig, M.F. Free fatty acids inhibit the activity of Clostridium histolyticum collagenase and human neutrophil elastase. Planta medica., 2002, 68(09), 767-769.
[http://dx.doi.org/10.1055/s-2002-34411] [PMID: 12357383]
[44]
Calder, P.C. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? Br. J. Clin. Pharmacol., 2013, 75(3), 645-662.
[http://dx.doi.org/10.1111/j.1365-2125.2012.04374.x] [PMID: 22765297]
[45]
Das, U. Essential Fatty acids - a review. Curr. Pharm. Biotechnol., 2006, 7(6), 467-482.
[http://dx.doi.org/10.2174/138920106779116856] [PMID: 17168664]
[46]
Kim, H.H.; Cho, S.; Lee, S.; Kim, K.H.; Cho, K.H.; Eun, H.C.; Chung, J.H. Photoprotective and anti-skin-aging effects of eicosapentaenoic acid in human skin in vivo. J. Lipid Res., 2006, 47(5), 921-930.
[http://dx.doi.org/10.1194/jlr.M500420-JLR200] [PMID: 16467281]
[47]
Deckelbaum, R.J.; Torrejon, C. The omega-3 fatty acid nutritional landscape: health benefits and sources. J. Nutr., 2012, 142(3), 587S-591S.
[http://dx.doi.org/10.3945/jn.111.148080] [PMID: 22323763]
[48]
Jin, X.J.; Kim, E.J.; Oh, I.K.; Kim, Y.K.; Park, C.H.; Chung, J.H. Prevention of UV-induced skin damages by 11,14,17-eicosatrienoic acid in hairless mice in vivo. J. Korean Med. Sci., 2010, 25(6), 930-937.
[http://dx.doi.org/10.3346/jkms.2010.25.6.930] [PMID: 20514317]
[49]
Kim, E.J.; Kim, Y.K.; Kim, M.K.; Kim, S.; Kim, J.Y.; Lee, D.H.; Chung, J.H. UV-induced inhibition of adipokine production in subcutaneous fat aggravates dermal matrix degradation in human skin. Sci. Rep., 2016, 6(1), 25616.
[http://dx.doi.org/10.1038/srep25616] [PMID: 27161953]
[50]
Oster, R.T.; Tishinsky, J.M.; Yuan, Z.; Robinson, L.E. Docosahexaenoic acid increases cellular adiponectin mRNA and secreted adiponectin protein, as well as PPARγ mRNA, in 3T3-L1 adipocytes. Appl. Physiol. Nutr. Metab., 2010, 35(6), 783-789.
[http://dx.doi.org/10.1139/H10-076] [PMID: 21164549]
[51]
Byun, H.J.; Cho, K.H.; Eun, H.C.; Lee, M.J.; Lee, Y.; Lee, S.; Chung, J.H. Lipid ingredients in moisturizers can modulate skin responses to UV in barrier-disrupted human skin in vivo. J. Dermatol. Sci., 2012, 65(2), 110-117.
[http://dx.doi.org/10.1016/j.jdermsci.2011.12.005] [PMID: 22209282]
[52]
Aburjai, T.; Natsheh, F.M. Plants used in cosmetics. Phytother. Res., 2003, 17(9), 987-1000.
[http://dx.doi.org/10.1002/ptr.1363] [PMID: 14595575]
[53]
Elias, P.M.; Brown, B.E.; Ziboh, V.A. The permeability barrier in essential fatty acid deficiency: evidence for a direct role for linoleic acid in barrier function. J. Invest. Dermatol., 1980, 74(4), 230-233.
[http://dx.doi.org/10.1111/1523-1747.ep12541775] [PMID: 7373078]
[54]
Feingold, K.R. The outer frontier: The importance of lipid metabolism in the skin. J. Lipid Res., 2009, 50(Suppl Suppl.), S417-S422.
[http://dx.doi.org/10.1194/jlr.R800039-JLR200] [PMID: 18980941]
[55]
Naik, A.; Pechtold, L.A.R.M.; Potts, R.O.; Guy, R.H. Mechanism of oleic acid-induced skin penetration enhancement in vivo in humans. J. Control. Release, 1995, 37(3), 299-306.
[http://dx.doi.org/10.1016/0168-3659(95)00088-7]
[56]
Cho, H.S.; Lee, M.H.; Lee, J.W.; No, K.O.; Park, S.K.; Lee, H.S.; Kang, S.; Cho, W.G.; Park, H.J.; Oh, K.W.; Hong, J.T. Anti-wrinkling effects of the mixture of vitamin C, vitamin E, pycnogenol and evening primrose oil, and molecular mechanisms on hairless mouse skin caused by chronic ultraviolet B irradiation. Photodermatol. Photoimmunol. Photomed., 2007, 23(5), 155-162.
[http://dx.doi.org/10.1111/j.1600-0781.2007.00298.x] [PMID: 17803593]
[57]
Boskou, D.; Blekas, G.; Tsimidou, M. Olive oil composition. Olive Oil; AOCS press, 2006.
[http://dx.doi.org/10.1016/B978-1-893997-88-2.50008-0]
[58]
Baldioli, M.; Servili, M.; Perretti, G.; Montedoro, G.F. Antioxidant activity of tocopherols and phenolic compounds of virgin olive oil. J. Am. Oil Chem. Soc., 1996, 73(11), 1589-1593.
[http://dx.doi.org/10.1007/BF02523530]
[59]
Romana-Souza, B.; Monte-Alto-Costa, A. Olive oil inhibits ageing signs induced by chronic stress in ex vivo human skin via inhibition of extracellular-signal-related kinase 1/2 and c- JUN pathways. Int. J. Cosmet. Sci., 2019, 41(2), 156-163.
[http://dx.doi.org/10.1111/ics.12520] [PMID: 30740755]
[60]
Romana-Souza, B.; Monte-Alto-Costa, A. Olive oil reduces chronic psychological stress-induced skin aging in mice through the NF-κB and NRF2 pathways. J. Funct. Foods, 2019, 54, 310-319.
[http://dx.doi.org/10.1016/j.jff.2019.01.036]
[61]
Budiyanto, A.; Ahmed, N.U.; Wu, A.; Bito, T.; Nikaido, O.; Osawa, T.; Ueda, M.; Ichihashi, M. Protective effect of topically applied olive oil against photocarcinogenesis following UVB exposure of mice. Carcinogenesis, 2000, 21(11), 2085-2090.
[http://dx.doi.org/10.1093/carcin/21.11.2085] [PMID: 11062172]
[62]
Carvalho, R.H.R.; Galvão, E.L.; Barros, J.Â.C.; Conceição, M.M.; Sousa, E.M.B.D. Extraction, fatty acid profile and antioxidant activity of sesame extract (Sesamum Indicum L.). Braz. J. Chem. Eng., 2012, 29(2), 409-420.
[http://dx.doi.org/10.1590/S0104-66322012000200020]
[63]
Dar, A.A.; Arumugam, N. Lignans of sesame: Purification methods, biological activities and biosynthesis – A review. Bioorg. Chem., 2013, 50, 1-10.
[http://dx.doi.org/10.1016/j.bioorg.2013.06.009] [PMID: 23933354]
[64]
Lin, T.Y.; Wu, P.Y.; Hou, C.W.; Chien, T.Y.; Chang, Q.X.; Wen, K.C.; Lin, C.Y.; Chiang, H.M. Protective effects of sesamin against UVB-induced skin inflammation and photodamage in vitro and in vivo. Biomolecules, 2019, 9(9), 479.
[http://dx.doi.org/10.3390/biom9090479] [PMID: 31547364]
[65]
Zaid, A.N.; Jaradat, N.; Malkieh, N.; Al-Rimawi, S.; Hussein, F.; Isa, L. Impact of sesame oil source: A quality assessment for cosmeceutical and pharmaceutical use. Fabada J. Pharm. Sci., 2019, 44(3), 189-196.
[66]
Altuntaş E.; Yener, G. Anti-aging potential of a cream containing herbal oils and honey: Formulation and in vivo evaluation of effectiveness using non-invasive biophysical techniques. IOSR J. Pharm. Biol. Sci., 2015, 10(6), 51-60.
[67]
Chiang, J.P.; Hsu, D.Z.; Tsai, J.C.; Sheu, H.M.; Liu, M.Y. Effects of topical sesame oil on oxidative stress in rats. Altern. Ther. Health Med., 2005, 11(6), 40-45.
[PMID: 16320859]
[68]
Foster, R.H.; Hardy, G.; Alany, R.G. Borage oil in the treatment of atopic dermatitis. Nutrition., 2010, 26(7-8), 708-18.
[http://dx.doi.org/10.1016/j.nut.2009.10.014] [PMID: 20579590]
[69]
Kanehara, S.; Ohtani, T.; Uede, K.; Furukawa, F. Clinical effects of undershirts coated with borage oil on children with atopic dermatitis: A double-blind, placebo-controlled clinical trial. J. Dermatol., 2007, 34(12), 811-815.
[http://dx.doi.org/10.1111/j.1346-8138.2007.00391.x] [PMID: 18078406]
[70]
De Spirt, S.; Stahl, W.; Tronnier, H.; Sies, H.; Bejot, M.; Maurette, J.M.; Heinrich, U. Intervention with flaxseed and borage oil supplements modulates skin condition in women. Br. J. Nutr., 2009, 101(3), 440-445.
[http://dx.doi.org/10.1017/S0007114508020321] [PMID: 18761778]
[71]
Dabetic, N.M.; Todorovic, V.M.; Djuricic, I.D.; Antic Stankovic, J.A.; Basic, Z.N.; Vujovic, D.S.; Sobajic, S.S. Grape seed oil characterization: A novel approach for oil quality assessment. Eur. J. Lipid Sci. Technol., 2020, 122(6), 1900447.
[http://dx.doi.org/10.1002/ejlt.201900447]
[72]
Maier, T.; Schieber, A.; Kammerer, D.R.; Carle, R. Residues of bgrape (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants. Food Chem., 2009, 112(3), 551-559.
[http://dx.doi.org/10.1016/j.foodchem.2008.06.005]
[73]
Guo, L.; Wang, L.H.; Sun, B.; Yang, J.Y.; Zhao, Y.Q.; Dong, Y.X.; Spranger, M.I.; Wu, C.F. Direct in vivo evidence of protective effects of grape seed procyanidin fractions and other antioxidants against ethanol-induced oxidative DNA damage in mouse brain cells. J. Agric. Food Chem., 2007, 55(14), 5881-5891.
[http://dx.doi.org/10.1021/jf070440a] [PMID: 17567031]
[74]
Maffei Facino, R.; Carini, M.; Aldini, G.; Bombardelli, E.; Morazzoni, P.; Morelli, R. Free radicals scavenging action and anti-enzyme activities of procyanidines from Vitis vinifera. A mechanism for their capillary protective action. Arzneimittelforschung, 1994, 44(5), 592-601.
[PMID: 8024628]
[75]
Gumus, Z.P.; Ustun Argon, Z.; Celenk, V.U. Cold pressed pomegranate (Punica granatum) seed oil. InCold Pressed Oils, 2020, 1, 597-609. [Academic Press.
[http://dx.doi.org/10.1016/B978-0-12-818188-1.00053-0]
[76]
Bogdan, C.; Iurian, S.; Tomuta, I.; Moldovan, M.L. Improvement of skin condition in striae distensae: development, characterization and clinical efficacy of a cosmetic product containing Punica granatum seed oil and Croton lechleri resin extract. Drug Des. Devel. Ther., 2017, 11, 521-531.
[http://dx.doi.org/10.2147/DDDT.S128470] [PMID: 28280300]
[77]
Afaq, F.; Zaid, M.A.; Khan, N.; Dreher, M.; Mukhtar, H. Protective effect of pomegranate-derived products on UVB-mediated damage in human reconstituted skin. Exp. Dermatol., 2009, 18(6), 553-561.
[http://dx.doi.org/10.1111/j.1600-0625.2008.00829.x] [PMID: 19320737]
[78]
Abdellatif, A.A.; Alawadh, S.H.; Bouazzaoui, A.; Alhowail, A.H.; Mohammed, H.A. Anthocyanins-rich pomegranate cream as a topical formulation with anti-aging activity. J. Dermatolog. Treat., 2020, 32(8), 983-990.
[http://dx.doi.org/10.1080/09546634.2020.1721418] [PMID: 32022625]
[79]
Puglia, C.; Bonina, F. In vivo spectrophotometric evaluation of skin barrier recovery after topical application of soybean phytosterols. J. Cosmet. Sci., 2008, 59(3), 217-224.
[PMID: 18528589]
[80]
Patzelt, A.; Lademann, J.; Richter, H.; Darvin, M.E.; Schanzer, S.; Thiede, G.; Sterry, W.; Vergou, T.; Hauser, M. In vivo investigations on the penetration of various oils and their influence on the skin barrier. Skin Res. Technol., 2012, 18(3), 364-369.
[http://dx.doi.org/10.1111/j.1600-0846.2011.00578.x] [PMID: 22092829]
[81]
Tsoyi, K.; Park, H.B.; Kim, Y.M.; Chung, J.I.; Shin, S.C.; Shim, H.J.; Lee, W.S.; Seo, H.G.; Lee, J.H.; Chang, K.C.; Kim, H.J. Protective effect of anthocyanins from black soybean seed coats on UVB-induced apoptotic cell death in vitro and in vivo. J. Agric. Food Chem., 2008, 56(22), 10600-10605.
[http://dx.doi.org/10.1021/jf802112c] [PMID: 18959412]
[82]
Seiberg, M. Non-denatured soybean extracts in skin care: Multiple anti-aging effects. In: Soybean - Biochemistry, Chemistry and Physiology; Ng, T.B. Intech Open: London, , 2011; p. 656.
[http://dx.doi.org/10.5772/15308]
[83]
Medeiros de. AW; Ferreira, R.O.; Alves, AM; Tribuzy de, MC; Florentino da, SCDKS; Kelly de, A.N. Physicochemical characterization, fatty acid profile, antioxidant activity, and antibacterial potential of cacao oil, coconut oil, and cocoa butter. PLoS One, 2020, 15(4), e0232224.
[http://dx.doi.org/10.1371/journal.pone.0232224] [PMID: 32343717]
[84]
Marina, AM; Che Man, YB; Nazimah, SA; Amin, I. Antioxidant capacity and phenolic acids of virgin coconut oil. Int. J. Food Sci. Nutr., 2009, 60(S2), 114-123.
[http://dx.doi.org/10.1080/09637480802549127]
[85]
Kim, S.Y.; Im, J.O.; An, I.S.; An, S.; Ahn, K.J. The effect of coconut oil on the skin barrier function. Kor. J. Aesthet. Cosmetol., 2014, 12(6), 907-914.
[86]
Nevin, K.G.; Rajamohan, T. Effect of topical application of virgin coconut oil on skin components and antioxidant status during dermal wound healing in young rats. Skin Pharmacol. Physiol., 2010, 23(6), 290-297.
[http://dx.doi.org/10.1159/000313516] [PMID: 20523108]
[87]
Kulkarni, S.S.; Bhalke, R.D.; Pande, V.V.; Kendre, P.N. Herbal plants in photoprotection and sun screening action: An overview. Indo Am. J. Pharm., 2014, 4(2), 1104-1113.
[88]
Varma, S.R.; Sivaprakasam, T.O.; Arumugam, I.; Dilip, N.; Raghuraman, M.; Pavan, K.B.; Rafiq, M.; Paramesh, R. In vitro anti-inflammatory and skin protective properties of Virgin coconut oil. J. Tradit. Complement. Med., 2019, 9(1), 5-14.
[http://dx.doi.org/10.1016/j.jtcme.2017.06.012] [PMID: 30671361]
[89]
Kola, O.; Duran, H.; Ozer, M.S.; Fenercioglu, H. Fatty acid profile determination of cold pressed oil of some nut fruits. Riv. Ital. Sostanze Grasse, 2015, 92(2), 107-111.
[90]
Copolovici, D.; Bungau, S.; Boscencu, R.; Tit, D.M.; Copolovici, L. The fatty acids composition and antioxidant activity of walnut cold press oil. Revista de Chimie, 2017, 68(3), 507-509.
[http://dx.doi.org/10.37358/RC.17.3.5489]
[91]
Zhao, H.; Li, J.; Zhao, J.; Chen, Y.; Ren, C.; Chen, Y. Antioxidant effects of compound walnut oil capsule in mice aging model induced by D-galactose. Food Nutr. Res., 2018, 62.
[http://dx.doi.org/10.29219/fnr.v62.1371] [PMID: 29720929]
[92]
Kodad, O. Socias i Company, R. Variability of oil content and of major fatty acid composition in almond (Prunus amygdalus Batsch) and its relationship with kernel quality. J. Agric. Food Chem., 2008, 56(11), 4096-4101.
[http://dx.doi.org/10.1021/jf8001679] [PMID: 18461963]
[93]
Sarkar, S.; Miyaji, T.; Sasaki, J.; Biswas, S.; Ali, S.; Salam, A. Fatty acid composition, physicochemical and antioxidant properties of almond seed (Terminaliacatappia L.) oil and its therapeutic uses. J. Global Biosci., 2020, 9(5), 7419-7433.
[94]
Ahmad, Z. The uses and properties of almond oil. Complement. Ther. Clin. Pract., 2010, 16(1), 10-12.
[http://dx.doi.org/10.1016/j.ctcp.2009.06.015] [PMID: 20129403]
[95]
Sultana, Y.; Kohli, K.; Athar, M.; Khar, R.K.; Aqil, M. Effect of pre-treatment of almond oil on ultraviolet B?induced cutaneous photoaging in mice. J. Cosmet. Dermatol., 2007, 6(1), 14-19.
[http://dx.doi.org/10.1111/j.1473-2165.2007.00293.x] [PMID: 17348990]
[96]
Aksu, M.; Incegul, Y.; Kiralan, S.S.; Kiralan, M.; Ozkan, G. Cold pressed carrot (Daucus carota) seed oil. Cold Pressed Oils; Academic Press, 2020, pp. 335-343.
[http://dx.doi.org/10.1016/B978-0-12-818188-1.00030-X]
[97]
Singh, S.; Lohani, A.; Mishra, A.K.; Verma, A. Formulation and evaluation of carrot seed oil-based cosmetic emulsions. J. Cosmet. Laser Ther., 2019, 21(2), 99-107.
[http://dx.doi.org/10.1080/14764172.2018.1469769] [PMID: 29737890]
[98]
Moore, E.M.; Wagner, C.; Komarnytsky, S. The enigma of bioactivity and toxicity of botanical oils for skin care. Front. Pharmacol., 2020, 11, 785.
[http://dx.doi.org/10.3389/fphar.2020.00785] [PMID: 32547393]

© 2024 Bentham Science Publishers | Privacy Policy