Review Article

识别新型抗菌靶点的最新进展和技术

卷 31, 期 4, 2024

发表于: 07 April, 2023

页: [464 - 501] 页: 38

弟呕挨: 10.2174/0929867330666230123143458

价格: $65

conference banner
摘要

背景:随着耐药细菌的出现,迫切需要开发新型抗生素。基于靶标的药物发现是药物开发过程中最常用的方法。然而,传统的药物靶点识别技术成本高昂且耗时。随着研究的继续,抗菌靶点识别的创新方法已经被开发出来,这使我们能够更容易、更快速地发现药物靶点。 方法:在这篇综述中,详细讨论了从组学数据库中寻找药物靶点的方法,包括原则、进程、优点和潜在的局限性。还讨论了噬菌体驱动和细菌细胞学分析方法的作用。此外,当前的文章展示了在创建用于抗菌目标识别的计算工具、机器学习算法和数据库方面所取得的进展。 结果:还描述了通过采用上述技术成功识别的细菌药物靶点。 结论:本次综述的目的是吸引合成化学家、生物学家和计算研究人员的兴趣,讨论和改进这些方法,以便更容易、更快地开发新药。

关键词: 抗菌、组学、机器学习、生物信息学、药物靶标、细菌细胞学分析。

[1]
Feigenbaum, J.J.; Muller, C.; Wrigley-Field, E. Regional and racial inequality in infectious disease mortality in US cities, 1900-1948. Demography, 2019, 56(4), 1371-1388.
[http://dx.doi.org/10.1007/s13524-019-00789-z] [PMID: 31197611]
[2]
Malathi, K.; Ramaiah, S.; Reviews, G.E. Bioinformatics approaches for new drug discovery: A review. Biotechnol. Genet. Eng. Rev., 2018, 34(2), 243-260.
[http://dx.doi.org/10.1080/02648725.2018.1502984] [PMID: 30064294]
[3]
Nazli, A.; He, D.L.; Xu, H.; Wang, Z.P.; He, Y. A comparative insight on the newly emerging rifamycins: Rifametane, rifalazil, TNP-2092 and TNP-2198. Curr. Med. Chem., 2022, 29(16), 2846-2862.
[http://dx.doi.org/10.2174/0929867328666210806114949] [PMID: 34365945]
[4]
Zhao, S.; Wang, Z.P.; Lin, Z.; Wei, G.; Wen, X.; Li, S.; Yang, X.; Zhang, Q.; Jing, C.; Dai, Y.; Guo, J.; He, Y. Drug repurposing by siderophore conjugation: Synthesis and biological evaluation of siderophore-methotrexate conjugates as antibiotics. Angew. Chem. Int. Ed., 2022, 61(36), e202204139.
[http://dx.doi.org/10.1002/anie.202204139] [PMID: 35802518]
[5]
Peng, H.; Xie, B.; Cen, X.; Dai, J.; Dai, Y.; Yang, X.; He, Y. Glutathione-responsive multifunctional nanoparticles based on mannose-modified pillar[5]arene for targeted antibiotic delivery against intracellular methicillin-resistant S. aureus. Mater. Chem. Front., 2022, 6(3), 360-367.
[http://dx.doi.org/10.1039/D1QM01459E]
[6]
Peng, H.; Xie, B.; Yang, X.; Dai, J.; Wei, G.; He, Y. Pillar[5]arene-based, dual pH and enzyme responsive supramolecular vesicles for targeted antibiotic delivery against intracellular MRSA. Chem. Commun., 2020, 56(58), 8115-8118.
[http://dx.doi.org/10.1039/D0CC02522D] [PMID: 32691784]
[7]
He, Y.; Yang, J.; Wu, B.; Risen, L.; Swayze, E.E. Synthesis and biological evaluations of novel benzimidazoles as potential antibacterial agents. Bioorg. Med. Chem. Lett., 2004, 14(5), 1217-1220.
[http://dx.doi.org/10.1016/j.bmcl.2003.12.051] [PMID: 14980669]
[8]
Simpkin, V.L.; Renwick, M.J.; Kelly, R.; Mossialos, E. Incentivising innovation in antibiotic drug discovery and development: Progress, challenges and next steps. J. Antibiot., 2017, 70(12), 1087-1096.
[http://dx.doi.org/10.1038/ja.2017.124] [PMID: 29089600]
[9]
Nazli, A.; He, D.L.; Liao, D.; Khan, M.Z.I.; Huang, C.; He, Y. Strategies and progresses for enhancing targeted antibiotic delivery. Adv. Drug Deliv. Rev., 2022, 189(11), 114502-114535.
[http://dx.doi.org/10.1016/j.addr.2022.114502] [PMID: 35998828]
[10]
Wei, G.; He, Y. Antibacterial and antibiofilm activities of novel cyclic peptides against methicillin-resistant staphylococcus aureus. Int. J. Mol. Sci., 2022, 23(14), 8029-8045.
[http://dx.doi.org/10.3390/ijms23148029] [PMID: 35887376]
[11]
Yang, X.; Xie, B.; Peng, H.; Shi, G.; Sreenivas, B.; Guo, J.; Wang, C.; He, Y. Eradicating intracellular MRSA via targeted delivery of lysostaphin and vancomycin with mannose-modified exosomes. J. Control. Release, 2021, 329(1), 454-467.
[http://dx.doi.org/10.1016/j.jconrel.2020.11.045] [PMID: 33253805]
[12]
McDowell, L.L.; Quinn, C.L.; Leeds, J.A.; Silverman, J.A.; Silver, L.L. Perspective on antibacterial lead identification challenges and the role of hypothesis-driven strategies. SLAS Discov., 2019, 24(4), 440-456.
[http://dx.doi.org/10.1177/2472555218818786] [PMID: 30890054]
[13]
He, Y.; Wu, B.; Yang, J.; Robinson, D.; Risen, L.; Ranken, R.; Blyn, L.; Sheng, S.; Swayze, E.E. 2-Piperidin-4-yl-benzimidazoles with broad spectrum antibacterial activities. Bioorg. Med. Chem. Lett., 2003, 13(19), 3253-3256.
[http://dx.doi.org/10.1016/S0960-894X(03)00661-9] [PMID: 12951103]
[14]
Scheffler, R.J.; Colmer, S.; Tynan, H.; Demain, A.L.; Gullo, V.P. Antimicrobials, drug discovery, and genome mining. Appl. Microbiol. Biotechnol., 2013, 97(3), 969-978.
[http://dx.doi.org/10.1007/s00253-012-4609-8] [PMID: 23233204]
[15]
Gould, I.M. Antibiotic resistance: The perfect storm. Int. J. Antimicrob. Agents, 2009, 34(8), S2-S5.
[http://dx.doi.org/10.1016/S0924-8579(09)70549-7] [PMID: 19596110]
[16]
Yang, X.; Shi, G.; Guo, J.; Wang, C.; He, Y. Exosome-encapsulated antibiotic against intracellular infections of methicillin-resistant Staphylococcus aureus. Int. J. Nanomedicine, 2018, 13(4), 8095-8104.
[http://dx.doi.org/10.2147/IJN.S179380] [PMID: 30555228]
[17]
Katsila, T.; Spyroulias, G.A.; Patrinos, G.P.; Matsoukas, M.T. Computational approaches in target identification and drug discovery. Comput. Struct. Biotechnol. J., 2016, 14(1), 177-184.
[http://dx.doi.org/10.1016/j.csbj.2016.04.004] [PMID: 27293534]
[18]
Paananen, J.; Fortino, V. An omics perspective on drug target discovery platforms. Brief. Bioinform., 2020, 21(6), 1937-1953.
[http://dx.doi.org/10.1093/bib/bbz122] [PMID: 31774113]
[19]
Rao, V.S.; Srinivas, K. Modern drug discovery process: an in-silico approach. J. Bioinform. Seq. Anal., 2011, 3(5), 89-94.
[20]
Jiang, Z.; Zhou, Y. Using bioinformatics for drug target identification from the genome. Am. J. Pharmacogenom., 2005, 5(6), 387-396.
[http://dx.doi.org/10.2165/00129785-200505060-00005] [PMID: 16336003]
[21]
Coates, A.R.M.; Hu, Y. Novel approaches to developing new antibiotics for bacterial infections. Br. J. Pharmacol., 2007, 152(8), 1147-1154.
[http://dx.doi.org/10.1038/sj.bjp.0707432] [PMID: 17704820]
[22]
Shangguan, Z. A review of target identification strategies for drug discovery: From database to machine-based methods. J. Phys. Conf. Ser., 2021, 1893(1), 012013-012020.
[http://dx.doi.org/10.1088/1742-6596/1893/1/012013]
[23]
Singh, V.; Mizrahi, V. Identification and validation of novel drug targets in Mycobacterium tuberculosis. Drug Discov. Today, 2017, 22(3), 503-509.
[http://dx.doi.org/10.1016/j.drudis.2016.09.010] [PMID: 27649943]
[24]
Buysse, J. The role of genomics in antibacterial target discovery. Curr. Med. Chem., 2001, 8(14), 1713-1726.
[http://dx.doi.org/10.2174/0929867013371699] [PMID: 11562290]
[25]
Brötz-Oesterhelt, H.; Bandow, J.E.; Labischinski, H. Bacterial proteomics and its role in antibacterial drug discovery. Mass Spectrom. Rev., 2005, 24(4), 549-565.
[http://dx.doi.org/10.1002/mas.20030] [PMID: 15389844]
[26]
Tounta, V.; Liu, Y.; Cheyne, A.; Larrouy-Maumus, G. Metabolomics in infectious diseases and drug discovery. Mol. Omics, 2021, 17(3), 376-393.
[http://dx.doi.org/10.1039/D1MO00017A] [PMID: 34125125]
[27]
Plaimas, K.; Eils, R.; König, R. Identifying essential genes in bacterial metabolic networks with machine learning methods. BMC Syst. Biol., 2010, 4(1), 56.
[http://dx.doi.org/10.1186/1752-0509-4-56] [PMID: 20438628]
[28]
Perumal, D.; Lim, C.S.; Sakharkar, M.K. Biocomputational strategies for microbial drug target identification: New antibiotic targets. Springer Link: Berlin, 2008, 142, pp. 1-9.
[29]
Joshi, H.; Verma, A.; Soni, D.K. Impact of microbial genomics approaches for novel antibiotic target: Microbial genomics in sustainable agroecosystems. Springer Link: Berlin, 2019, 2, pp. 75-88.
[http://dx.doi.org/10.1007/978-981-32-9860-6_5]
[30]
George, R.; Jacob, S.; Thomas, S.; Georrge, J.J. Approaches for novel drug target identification. Proceedings of International Science Symposium on Recent Trends in Science and Technology, New Delhi, India, August 10-13, 2017, pp. 399-421.
[31]
Russell, C.; Rahman, A.; Mohammed, A.R. Application of genomics, proteomics and metabolomics in drug discovery, development and clinic. Ther. Deliv., 2013, 4(3), 395-413.
[http://dx.doi.org/10.4155/tde.13.4] [PMID: 23442083]
[32]
Burbaum, J.; Tobal, G.M. Proteomics in drug discovery. Curr. Opin. Chem. Biol., 2002, 6(4), 427-433.
[http://dx.doi.org/10.1016/S1367-5931(02)00337-X] [PMID: 12133716]
[33]
Sarker, M.; Talcott, C.; Galande, A.K. In silico systems biology approaches for the identification of antimicrobial targets: In silico models for drug discovery. Springer Link: Berlin, 2013; 993, pp. 13-30.
[34]
López-Gomollón, S. Detecting sRNAs by northern blotting: In MicroRNAs in development. Springer Link: Berlin, 2011; 732, pp. 25-38.
[35]
Eissa, N.; Hussein, H.; Wang, H.; Rabbi, M.F.; Bernstein, C.N.; Ghia, J.E. Stability of reference genes for messenger RNA quantification by real-time PCR in mouse dextran sodium sulfate experimental colitis. PLoS One, 2016, 11(5), e0156289.
[http://dx.doi.org/10.1371/journal.pone.0156289] [PMID: 27244258]
[36]
Moustafa, K.; Cross, J. Genetic approaches to study plant responses to environmental stresses: An overview. Biology, 2016, 5(2), 20-48.
[http://dx.doi.org/10.3390/biology5020020] [PMID: 27196939]
[37]
Mackay, I.M.; Arden, K.E.; Nitsche, A. Real-time PCR in virology. Nucleic Acids Res., 2002, 30(6), 1292-1305.
[http://dx.doi.org/10.1093/nar/30.6.1292] [PMID: 11884626]
[38]
K’osuri, M.A.; Kalei, A.; Onyango, R. Microbiology of hospital wastewater. In: current developments in biotechnology and bioengineering; Elsevier: Amsterdam, 2018; 404, pp. 103-148.
[39]
Chen, X.; Yin, L.; Peng, L.; Liang, Y.; Lv, H.; Ma, T. Synergistic effect and mechanism of plumbagin with gentamicin against carbapenem-resistant Klebsiella pneumoniae. Infect. Drug Resist., 2020, 13(1), 2751-2759.
[http://dx.doi.org/10.2147/IDR.S265753] [PMID: 32884304]
[40]
Martin, J.K., II; Sheehan, J.P.; Bratton, B.P.; Moore, G.M.; Mateus, A.; Li, S.H.J.; Kim, H.; Rabinowitz, J.D.; Typas, A.; Savitski, M.M.; Wilson, M.Z.; Gitai, Z. A dual-mechanism antibiotic kills gram-negative bacteria and avoids drug resistance. Cell, 2020, 181(7), 1518-1532.e14.
[http://dx.doi.org/10.1016/j.cell.2020.05.005] [PMID: 32497502]
[41]
Lin, X.; Li, X.; Lin, X. A review on applications of computational methods in drug screening and design. Molecules, 2020, 25(6), 1375-1392.
[http://dx.doi.org/10.3390/molecules25061375] [PMID: 32197324]
[42]
Rao, V.S.; Das, S.K.; Rao, V.J.; Srinubabu, G. Recent developments in life sciences research: Role of bioinformatics. Afr. J. Biotechnol., 2008, 7(5), 495-503.
[43]
Pulido, M.R.; García-Quintanilla, M.; Gil-Marqués, M.L.; McConnell, M.J. Identifying targets for antibiotic development using omics technologies. Drug Discov. Today, 2016, 21(3), 465-472.
[http://dx.doi.org/10.1016/j.drudis.2015.11.014] [PMID: 26691873]
[44]
Barh, D.; Tiwari, S.; Jain, N.; Ali, A.; Santos, A.R.; Misra, A.N.; Azevedo, V.; Kumar, A. In silico subtractive genomics for target identification in human bacterial pathogens. Drug Dev. Res., 2011, 72(2), 162-177.
[http://dx.doi.org/10.1002/ddr.20413]
[45]
Fields, F.R.; Lee, S.W.; McConnell, M.J. Using bacterial genomes and essential genes for the development of new antibiotics. Biochem. Pharmacol., 2017, 134(6), 74-86.
[http://dx.doi.org/10.1016/j.bcp.2016.12.002] [PMID: 27940263]
[46]
Dembek, M.; Barquist, L.; Boinett, C.J.; Cain, A.K.; Mayho, M.; Lawley, T.D.; Fairweather, N.F.; Fagan, R.P. High-throughput analysis of gene essentiality and sporulation in Clostridium difficile. MBio, 2015, 6(2), e02383-14.
[http://dx.doi.org/10.1128/mBio.02383-14] [PMID: 25714712]
[47]
Gawronski, J.D.; Wong, S.M.S.; Giannoukos, G.; Ward, D.V.; Akerley, B.J. Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. Proc. Natl. Acad. Sci., 2009, 106(38), 16422-16427.
[http://dx.doi.org/10.1073/pnas.0906627106] [PMID: 19805314]
[48]
Barquist, L.; Boinett, C.J.; Cain, A.K. Approaches to querying bacterial genomes with transposon-insertion sequencing. RNA Biol., 2013, 10(7), 1161-1169.
[http://dx.doi.org/10.4161/rna.24765] [PMID: 23635712]
[49]
Butt, A.M.; Tahir, S.; Nasrullah, I.; Idrees, M.; Lu, J.; Tong, Y. Mycoplasma genitalium: A comparative genomics study of metabolic pathways for the identification of drug and vaccine targets. Infect. Genet. Evol., 2012, 12(1), 53-62.
[http://dx.doi.org/10.1016/j.meegid.2011.10.017] [PMID: 22057004]
[50]
Raskin, D.M.; Seshadri, R.; Pukatzki, S.U.; Mekalanos, J.J. Bacterial genomics and pathogen evolution. Cell, 2006, 124(4), 703-714.
[http://dx.doi.org/10.1016/j.cell.2006.02.002] [PMID: 16497582]
[51]
Wadood, A.; Jamal, A.; Riaz, M.; Khan, A.; Uddin, R.; Jelani, M.; Azam, S.S. Subtractive genome analysis for in silico identification and characterization of novel drug targets in Streptococcus pneumonia strain JJA. Microb. Pathog., 2018, 115, 194-198.
[http://dx.doi.org/10.1016/j.micpath.2017.12.063] [PMID: 29277475]
[52]
Vetrivel, U.; Subramanian, G.; Dorairaj, S. A novel in silico approach to identify potential therapeutic targets in human bacterial pathogens. HUGO J., 2011, 5(1-4), 25-34.
[http://dx.doi.org/10.1007/s11568-011-9152-7] [PMID: 23205162]
[53]
Sadhasivam, A.; Vetrivel, U. Genome-wide codon usage profiling of ocular infective Chlamydia trachomatis serovars and drug target identification. J. Biomol. Struct. Dyn., 2018, 36(8), 1979-2003.
[http://dx.doi.org/10.1080/07391102.2017.1343685] [PMID: 28627970]
[54]
Lee, S.; Weon, S.; Lee, S.; Kang, C. Relative codon adaptation index, a sensitive measure of codon usage bias. Evol. Bioinform. Online, 2010, 6(1), EBO.S4608.
[http://dx.doi.org/10.4137/EBO.S4608] [PMID: 20535230]
[55]
Ng, C.; Tay, M.; Tan, B.; Le, T.H.; Haller, L.; Chen, H.; Koh, T.H.; Barkham, T.M.S.; Thompson, J.R.; Gin, K.Y.H. Characterization of metagenomes in urban aquatic compartments reveals high prevalence of clinically relevant antibiotic resistance genes in wastewaters. Front. Microbiol., 2017, 8(1), 2200-2212.
[http://dx.doi.org/10.3389/fmicb.2017.02200] [PMID: 29201017]
[56]
Singh, B.K.; Macdonald, C.A. Drug discovery from uncultivable microorganisms. Drug Discov. Today, 2010, 15(17-18), 792-799.
[http://dx.doi.org/10.1016/j.drudis.2010.07.002] [PMID: 20656054]
[57]
Schmieder, R.; Edwards, R. Insights into antibiotic resistance through metagenomic approaches. Future Microbiol., 2012, 7(1), 73-89.
[http://dx.doi.org/10.2217/fmb.11.135] [PMID: 22191448]
[58]
Torres-Cortés, G.; Millán, V.; Ramírez-Saad, H.C.; Nisa- Martínez, R.; Toro, N.; Martínez-Abarca, F. Characterization of novel antibiotic resistance genes identified by functional metagenomics on soil samples. Environ. Microbiol., 2011, 13(4), 1101-1114.
[http://dx.doi.org/10.1111/j.1462-2920.2010.02422.x] [PMID: 21281423]
[59]
Uddin, R.; Sufian, M. Core proteomic analysis of unique metabolic pathways of Salmonella enterica for the identification of potential drug targets. PLoS One, 2016, 11(1), e0146796.
[http://dx.doi.org/10.1371/journal.pone.0146796] [PMID: 26799565]
[60]
Naz, A.; Obaid, A.; Shahid, F.; Dar, H.A.; Naz, K.; Ullah, N.; Ali, A. Reverse vaccinology and drug target identification through pan-genomics. In: Pan-Genomics: Applications, Challenges, and Future Prospects, 1st ed; Debmalya, B., Ed.; Elsevier: Amsterdam, 2020, 321, pp. 317-333.
[http://dx.doi.org/10.1016/B978-0-12-817076-2.00016-0]
[61]
Chao, M.C.; Abel, S.; Davis, B.M.; Waldor, M.K. The design and analysis of transposon insertion sequencing experiments. Nat. Rev. Microbiol., 2016, 14(2), 119-128.
[http://dx.doi.org/10.1038/nrmicro.2015.7] [PMID: 26775926]
[62]
Cain, A.K.; Barquist, L.; Goodman, A.L.; Paulsen, I.T.; Parkhill, J.; van Opijnen, T. A decade of advances in transposon-insertion sequencing. Nat. Rev. Genet., 2020, 21(9), 526-540.
[http://dx.doi.org/10.1038/s41576-020-0244-x] [PMID: 32533119]
[63]
Fabian, B.K.; Foster, C.; Asher, A.J.; Elbourne, L.D.H.; Cain, A.K.; Hassan, K.A.; Tetu, S.G.; Paulsen, I.T. Elucidating essential genes in plant-associated Pseudomonas protegens Pf-5 using transposon insertion sequencing. J. Bacteriol., 2021, 203(7), 1-17.
[http://dx.doi.org/10.1128/JB.00432-20] [PMID: 33257523]
[64]
DeJesus, M.A.; Zhang, Y.J.; Sassetti, C.M.; Rubin, E.J.; Sacchettini, J.C.; Ioerger, T.R. Bayesian analysis of gene essentiality based on sequencing of transposon insertion libraries. Bioinformatics, 2013, 29(6), 695-703.
[http://dx.doi.org/10.1093/bioinformatics/btt043] [PMID: 23361328]
[65]
Bachman, M.A.; Breen, P.; Deornellas, V.; Mu, Q.; Zhao, L.; Wu, W.; Cavalcoli, J.D.; Mobley, H.L.T. Genome-wide identification of Klebsiella pneumoniae fitness genes during lung infection. MBio, 2015, 6(3), e00775-15.
[http://dx.doi.org/10.1128/mBio.00775-15] [PMID: 26060277]
[66]
Zhao, L.; Anderson, M.T.; Wu, W.; T Mobley, H.L.; Bachman, M.A. TnseqDiff: Identification of conditionally essential genes in transposon sequencing studies. BMC Bioinformatics, 2017, 18(1), 326.
[http://dx.doi.org/10.1186/s12859-017-1745-2] [PMID: 28683752]
[67]
Schoolnik, G. Functional and comparative genomics of pathogenic bacteria. Curr. Opin. Microbiol., 2002, 5(1), 20-26.
[http://dx.doi.org/10.1016/S1369-5274(02)00280-1] [PMID: 11834364]
[68]
Shahid, F.; Shehroz, M.; Zaheer, T.; Ali, A. Subtractive genomics approaches: Towards anti-bacterial drug discovery. Front. Anti-infect. Drug Discov., 2020, 8(1), 144-145.
[69]
Redon, R.; Carter, N.P. Comparative genomic hybridization: Microarray design and data interpretation. In: DNA Microarrays for Biomedical Research, 1st ed; Martin, D., Ed.; Springer Link: Berlin, 2009; 529, pp. 37-49.
[http://dx.doi.org/10.1007/978-1-59745-538-1_3]
[70]
Gillespie, S. Current status of molecular microbiological techniques for the analysis of drinking water. In: Molecular Microbial Diagnostic Methods, 1st ed; Nigel, C. Elsevier: Amsterdam, 2016; Vol. 264, pp. 39-58.
[http://dx.doi.org/10.1016/B978-0-12-416999-9.00003-4]
[71]
Torshizi, A.D.; Wang, K. Next-generation sequencing in drug development: Target identification and genetically stratified clinical trials. Drug Discov., 2018, 23(10), 1776-1783.
[72]
Endrullat, C.; Glökler, J.; Franke, P.; Frohme, M. Standardization and quality management in next-generation sequencing. Appl. Transl. Genomics, 2016, 10(9), 2-9.
[http://dx.doi.org/10.1016/j.atg.2016.06.001] [PMID: 27668169]
[73]
Unamba, C.I.N.; Nag, A.; Sharma, R.K. Next generation sequencing technologies: The doorway to the unexplored genomics of non-model plants. Front. Plant Sci., 2015, 6(12), 1074-1090.
[http://dx.doi.org/10.3389/fpls.2015.01074] [PMID: 26734016]
[74]
Cantu, D.; Govindarajulu, M.; Kozik, A.; Wang, M.; Chen, X.; Kojima, K.K.; Jurka, J.; Michelmore, R.W.; Dubcovsky, J. Next generation sequencing provides rapid access to the genome of Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust. PLoS One, 2011, 6(8), e24230.
[http://dx.doi.org/10.1371/journal.pone.0024230] [PMID: 21909385]
[75]
Behjati, S.; Tarpey, P.S. What is next generation sequencing? Arch. Dis. Child. Educ. Pract. Ed., 2013, 98(6), 236-238.
[http://dx.doi.org/10.1136/archdischild-2013-304340] [PMID: 23986538]
[76]
Ramanathan, B.; Jindal, H.M.; Le, C.F.; Gudimella, R.; Anwar, A.; Razali, R.; Poole-Johnson, J.; Manikam, R.; Sekaran, S.D. Next generation sequencing reveals the antibiotic resistant variants in the genome of Pseudomonas aeruginosa. PLoS One, 2017, 12(8), e0182524.
[http://dx.doi.org/10.1371/journal.pone.0182524] [PMID: 28797043]
[77]
Kumar Jaiswal, A.; Tiwari, S.; Jamal, S.; Barh, D.; Azevedo, V.; Soares, S. An in-silico identification of common putative vaccine candidates against Treponema pallidum: A reverse vaccinology and subtractive genomics based approach. Int. J. Mol. Sci., 2017, 18(2), 402-417.
[http://dx.doi.org/10.3390/ijms18020402] [PMID: 28216574]
[78]
Uddin, R.; Siraj, B.; Rashid, M.; Khan, A.; Ahsan Halim, S.; Al-Harrasi, A. Genome subtraction and comparison for the identification of novel drug targets against Mycobacterium avium subsp. hominissuis. Pathogens, 2020, 9(5), 368-382.
[http://dx.doi.org/10.3390/pathogens9050368] [PMID: 32408506]
[79]
Asalone, K.C.; Nelson, M.M.; Bracht, J.R. Novel sequence discovery by subtractive genomics. J. Vis. Exp., 2019, 143(143), 1-7.
[PMID: 30735163]
[80]
Agron, P.G.; Macht, M.; Radnedge, L.; Skowronski, E.W.; Miller, W.; Andersen, G.L. Use of subtractive hybridization for comprehensive surveys of prokaryotic genome differences. FEMS Microbiol. Lett., 2002, 211(2), 175-182.
[http://dx.doi.org/10.1111/j.1574-6968.2002.tb11221.x] [PMID: 12076809]
[81]
dos Santos, D.F.K.; Istvan, P.; Quirino, B.F.; Kruger, R.H. Functional metagenomics as a tool for identification of new antibiotic resistance genes from natural environments. Microb. Ecol., 2017, 73(2), 479-491.
[http://dx.doi.org/10.1007/s00248-016-0866-x] [PMID: 27709246]
[82]
Mullany, P. Functional metagenomics for the investigation of antibiotic resistance. Virulence, 2014, 5(3), 443-447.
[http://dx.doi.org/10.4161/viru.28196] [PMID: 24556726]
[83]
Kaur, R.; Yadav, B.; Tyagi, R. Microbiology of hospital wastewater. In: Current Developments in Biotechnology and Bioengineering, 1st ed; Ashok, P., Ed.; Elsevier: Amsterdam, 2020; Vol. 404, pp. 103-148.
[http://dx.doi.org/10.1016/B978-0-12-819722-6.00004-3]
[84]
Yang, H.; Chen, J.; Tang, S.; Li, Z.; Zhen, Y.; Huang, L.; Yi, J. New drug R&D of traditional Chinese medicine: Role of data mining approaches. J. Biol. Syst., 2009, 17(3), 329-347.
[http://dx.doi.org/10.1142/S0218339009002971]
[85]
Uchiyama, T.; Abe, T.; Ikemura, T.; Watanabe, K. Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nat. Biotechnol., 2005, 23(1), 88-93.
[http://dx.doi.org/10.1038/nbt1048] [PMID: 15608629]
[86]
Podar, M.; Abulencia, C.B.; Walcher, M.; Hutchison, D.; Zengler, K.; Garcia, J.A.; Holland, T.; Cotton, D.; Hauser, L.; Keller, M. Targeted access to the genomes of low-abundance organisms in complex microbial communities. Appl. Environ. Microbiol., 2007, 73(10), 3205-3214.
[http://dx.doi.org/10.1128/AEM.02985-06] [PMID: 17369337]
[87]
Ferrer, M.; Beloqui, A.; Timmis, K.N.; Golyshin, P.N. Metagenomics for mining new genetic resources of microbial communities. J. Mol. Microbiol. Biotechnol., 2009, 16(1-2), 109-123.
[PMID: 18957866]
[88]
Yun, J.; Ryu, S. Screening for novel enzymes from metagenome and SIGEX, as a way to improve it. Microb. Cell Fact., 2005, 4(1), 8.
[http://dx.doi.org/10.1186/1475-2859-4-8] [PMID: 15790425]
[89]
Dash, H.R.; Das, S. Molecular methods for studying microorganisms from atypical environments. Methods Microbiol., 2018, 45, 89-122.
[http://dx.doi.org/10.1016/bs.mim.2018.07.005]
[90]
Zou, Y.; Xue, W.; Luo, G.; Deng, Z.; Qin, P.; Guo, R.; Sun, H.; Xia, Y.; Liang, S.; Dai, Y.; Wan, D.; Jiang, R.; Su, L.; Feng, Q.; Jie, Z.; Guo, T.; Xia, Z.; Liu, C.; Yu, J.; Lin, Y.; Tang, S.; Huo, G.; Xu, X.; Hou, Y.; Liu, X.; Wang, J.; Yang, H.; Kristiansen, K.; Li, J.; Jia, H.; Xiao, L. 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nat. Biotechnol., 2019, 37(2), 179-185.
[http://dx.doi.org/10.1038/s41587-018-0008-8] [PMID: 30718868]
[91]
Naz, K.; Naz, A.; Ashraf, S.T.; Rizwan, M.; Ahmad, J.; Baumbach, J.; Ali, A.; Pan, R.V. PanRV: Pangenome-reverse vaccinology approach for identifications of potential vaccine candidates in microbial pangenome. BMC Bioinformatics, 2019, 20(1), 123-133.
[http://dx.doi.org/10.1186/s12859-019-2713-9] [PMID: 30871454]
[92]
Ding, W.; Baumdicker, F.; Neher, R.A. panX: Pan-genome analysis and exploration. Nucleic Acids Res., 2018, 46(1), e5.
[http://dx.doi.org/10.1093/nar/gkx977] [PMID: 29077859]
[93]
Mira, A.; Martín-Cuadrado, A.B.; D’Auria, G.; Rodríguez- Valera, F. The bacterial pan-genome:A new paradigm in microbiology. Int. Microbiol., 2010, 13(2), 45-57.
[PMID: 20890839]
[94]
Read, T.D.; Ussery, D.W. Opening the pan-genomics box. Curr. Opin. Microbiol., 2006, 9(5), 496-498.
[http://dx.doi.org/10.1016/j.mib.2006.08.010]
[95]
Hassan, A.; Naz, A.; Obaid, A.; Paracha, R.Z.; Naz, K.; Awan, F.M.; Muhmmad, S.A.; Janjua, H.A.; Ahmad, J.; Ali, A. Pangenome and immuno-proteomics analysis of Acinetobacter baumannii strains revealed the core peptide vaccine targets. BMC Genomics, 2016, 17(1), 732.
[http://dx.doi.org/10.1186/s12864-016-2951-4] [PMID: 27634541]
[96]
Gadd, G.M. Metals and microorganisms: A problem of definition. FEMS Microbiol. Lett., 1992, 100(1-3), 197-203.
[http://dx.doi.org/10.1111/j.1574-6968.1992.tb05703.x] [PMID: 1478456]
[97]
Feder, M.E.; Walser, J.C. The biological limitations of transcriptomics in elucidating stress and stress responses. J. Evol. Biol., 2005, 18(4), 901-910.
[http://dx.doi.org/10.1111/j.1420-9101.2005.00921.x] [PMID: 16033562]
[98]
Yang, X.L.; Shi, Y.; Zhang, D.D.; Xin, R.; Deng, J.; Wu, T.M.; Wang, H.M.; Wang, P.Y.; Liu, J.B.; Li, W.; Ma, Y.S.; Fu, D. Quantitative proteomics characterization of cancer biomarkers and treatment. Mol. Ther. Oncolytics, 2021, 21, 255-263.
[http://dx.doi.org/10.1016/j.omto.2021.04.006] [PMID: 34095463]
[99]
Yakkioui, Y.; Temel, Y.; Chevet, E.; Negroni, L. Integrated and quantitative proteomics of human tumors. In: Methods in Enzymology, 1st ed; Arun, K.S. Elsevier: Amsterdam, 2017, Vol. 586, pp. 229-246.
[http://dx.doi.org/10.1016/bs.mie.2016.09.034]
[100]
Shiio, Y.; Aebersold, R. Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry. Nat. Protoc., 2006, 1(1), 139-145.
[http://dx.doi.org/10.1038/nprot.2006.22] [PMID: 17406225]
[101]
Sethuraman, M.; McComb, M.E.; Heibeck, T.; Costello, C.E.; Cohen, R.A. Isotope-coded affinity tag approach to identify and quantify oxidant-sensitive protein thiols. Mol. Cell. Proteomics, 2004, 3(3), 273-278.
[http://dx.doi.org/10.1074/mcp.T300011-MCP200] [PMID: 14726493]
[102]
Gygi, S.P.; Rist, B.; Gerber, S.A.; Turecek, F.; Gelb, M.H.; Aebersold, R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol., 1999, 17(10), 994-999.
[http://dx.doi.org/10.1038/13690] [PMID: 10504701]
[103]
Colangelo, C.M.; Williams, K.R. Isotope-coded affinity tags for protein quantification. In: New and Emerging Proteomic Techniques, 1st ed; Dobrin, N., Ed.; Springer: Berlin, 2006; Vol. 328, pp. 151-158.
[http://dx.doi.org/10.1385/1-59745-026-X:151]
[104]
Cho, S.H.; Goodlett, D.; Franzblau, S. ICAT-based comparative proteomic analysis of non-replicating persistent Mycobacterium tuberculosis. Tuberculosis, 2006, 86(6), 445-460.
[http://dx.doi.org/10.1016/j.tube.2005.10.002] [PMID: 16376151]
[105]
Rai, A.K.; Satija, N.K. Importance of targeted therapies in acute myeloid leukemia. In: Translational Biotechnology, 1st ed; Yasha, H., Ed.; Elsevier: Amsterdam, 2021; 341, pp. 107-133.
[http://dx.doi.org/10.1016/B978-0-12-821972-0.00017-4]
[106]
Wdowiak, A.P.; Duong, M.N.; Joyce, R.D.; Boyatzis, A.E.; Walkey, M.C.; Nealon, G.L.; Arthur, P.G.; Piggott, M.J. Isotope-coded maleimide affinity tags for proteomics applications. Bioconjug. Chem., 2021, 32(8), 1652-1666.
[http://dx.doi.org/10.1021/acs.bioconjchem.1c00206] [PMID: 34160215]
[107]
Beretov, J.; Wasinger, V.C.; Graham, P.H.; Millar, E.K.; Kearsley, J.H.; Li, Y. Proteomics for breast cancer urine biomarkers. Adv. Clin. Chem., 2014, 63(1), 123-167.
[http://dx.doi.org/10.1016/B978-0-12-800094-6.00004-2] [PMID: 24783353]
[108]
Elliott, M.H.; Smith, D.S.; Parker, C.E.; Borchers, C. Current trends in quantitative proteomics. J. Mass Spectrom., 2009, 44(12), 1637-1660.
[PMID: 19957301]
[109]
Du, C.; Weng, Y.; Lou, J.; Zeng, G.; Liu, X.; Jin, H.; Lin, S.; Tang, L. Isobaric tags for relative and absolute quantitation‑based proteomics reveals potential novel biomarkers for the early diagnosis of acute myocardial infarction within 3h. Int. J. Mol. Med., 2019, 43(5), 1991-2004.
[http://dx.doi.org/10.3892/ijmm.2019.4137] [PMID: 30896787]
[110]
Wang, Y.; Cong, S.; Zhang, Q.; Li, R.; Wang, K. iTRAQ-based proteomics reveals potential anti-virulence targets for ESBL-producing Klebsiella pneumoniae. Infect. Drug Resist., 2020, 13(1), 2891-2899.
[http://dx.doi.org/10.2147/IDR.S259894] [PMID: 32903891]
[111]
Wang, Z.; Liu, G.; Jiang, J. Profiling of apoptosis- and autophagy-associated molecules in human lung cancer A549 cells in response to cisplatin treatment using stable isotope labeling with amino acids in cell culture. Int. J. Oncol., 2019, 54(3), 1071-1085.
[http://dx.doi.org/10.3892/ijo.2019.4690] [PMID: 30664195]
[112]
Hoedt, E.; Zhang, G.; Neubert, T.A. Stable isotope labeling by amino acids in cell culture (SILAC) for quantitative proteomics: Advancements of mass spectrometry in biomedical research, 1st ed; Alisa, G.W., Ed.; Springer: Berlin, 2019, 806, pp. 31-539.
[http://dx.doi.org/10.1007/978-3-030-15950-4_31]
[113]
Zhang, H.; Li, X.; Martin, D.B.; Aebersold, R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotechnol., 2003, 21(6), 660-666.
[http://dx.doi.org/10.1038/nbt827] [PMID: 12754519]
[114]
Soufi, B.; Macek, B. Stable isotope labeling by amino acids applied to bacterial cell culture.Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC), 1st ed; Bettina, W., Ed.; Springer: Berlin, 2014, Vol. 1188, pp. 9-22.
[http://dx.doi.org/10.1007/978-1-4939-1142-4_2]
[115]
Kratchmarova, I. Stable isotope labeling by amino acids in cell culture (SILAC), in 2D PAGE: Sample preparation and fractionation. Mol. Cell. Proteomics, 2008, 1(5), 101-111.
[116]
Mann, M. Functional and quantitative proteomics using SILAC. Nat. Rev. Mol. Cell Biol., 2006, 7(12), 952-958.
[http://dx.doi.org/10.1038/nrm2067] [PMID: 17139335]
[117]
Chen, X.; Wei, S.; Ji, Y.; Guo, X.; Yang, F. Quantitative proteomics using SILAC: Principles, applications, and developments. Proteomics, 2015, 15(18), 3175-3192.
[http://dx.doi.org/10.1002/pmic.201500108] [PMID: 26097186]
[118]
Boysen, A.; Borch, J.; Krogh, T.J.; Hjernø, K.; Møller-Jensen, J. SILAC-based comparative analysis of pathogenic Escherichia coli secretomes. J. Microbiol. Methods, 2015, 116(1), 66-79.
[http://dx.doi.org/10.1016/j.mimet.2015.06.015] [PMID: 26143086]
[119]
Zimmer, J.S.D.; Monroe, M.E.; Qian, W.J.; Smith, R.D. Advances in proteomics data analysis and display using an accurate mass and time tag approach. Mass Spectrom. Rev., 2006, 25(3), 450-482.
[http://dx.doi.org/10.1002/mas.20071] [PMID: 16429408]
[120]
Zhou, J.Y.; Schepmoes, A.A.; Zhang, X.; Moore, R.J.; Monroe, M.E.; Lee, J.H.; Camp, D.G., II; Smith, R.D.; Qian, W.J.; Improved, L.C. Improved LC-MS/MS spectral counting statistics by recovering low-scoring spectra matched to confidently identified peptide sequences. J. Proteome Res., 2010, 9(11), 5698-5704.
[http://dx.doi.org/10.1021/pr100508p] [PMID: 20812748]
[121]
Li, C.; Xiong, Q.; Zhang, J.; Ge, F.; Bi, L.J. Quantitative proteomic strategies for the identification of microRNA targets. Expert Rev. Proteomics, 2012, 9(5), 549-559.
[http://dx.doi.org/10.1586/epr.12.49] [PMID: 23194271]
[122]
Phong, T.Q.; Ha, D.T.T.; Volker, U.; Hammer, E. Using a label free quantitative proteomics approach to identify changes in protein abundance in multidrug-resistant Mycobacterium tuberculosis. Indian J. Microbiol., 2015, 55(2), 219-230.
[http://dx.doi.org/10.1007/s12088-015-0511-2] [PMID: 25805910]
[123]
Minden, J. Comparative proteomics and difference gel electrophoresis. Biotechniques, 2007, 43(6), 739-745, 741, 743 passim.
[http://dx.doi.org/10.2144/000112653] [PMID: 18251249]
[124]
Burchmore, R. Identification of anti-infective targets through comparative proteomics. Expert Rev. Anti Infect. Ther., 2006, 4(2), 163-165.
[http://dx.doi.org/10.1586/14787210.4.2.163] [PMID: 16597196]
[125]
Hammami, R.; Zouhir, A.; Ben Hamida, J.; Fliss, I. BACTIBASE: A new web-accessible database for bacteriocin characterization. BMC Microbiol., 2007, 7(1), 89-95.
[http://dx.doi.org/10.1186/1471-2180-7-89] [PMID: 17941971]
[126]
Ciborowski, P.; Silberring, J. Quantitative measurements in proteomics: Proteomic profiling and analytical chemistry.Elsevier: Amsterdam, 2013, 206, pp. 135-150.
[127]
Shiny, M.C.; Madhusudan, I.; Gaurav, I.R.; Shanthi, C. Potential of proteomics to probe microbes. J. Basic Microbiol., 2020, 60(6), 471-483.
[http://dx.doi.org/10.1002/jobm.201900628] [PMID: 32212201]
[128]
Serpa, J.J.; Parker, C.E.; Petrotchenko, E.V.; Han, J.; Pan, J.; Borchers, C.H. Mass spectrometry-based structural proteomics. Eur. J. Mass Spectrom., 2012, 18(2), 251-267.
[http://dx.doi.org/10.1255/ejms.1178] [PMID: 22641729]
[129]
Navare, A.T.; Chavez, J.D.; Zheng, C.; Weisbrod, C.R.; Eng, J.K.; Siehnel, R.; Singh, P.K.; Manoil, C.; Bruce, J.E. Probing the protein interaction network of Pseudomonas aeruginosa cells by chemical cross-linking mass spectrometry. Structure, 2015, 23(4), 762-773.
[http://dx.doi.org/10.1016/j.str.2015.01.022] [PMID: 25800553]
[130]
Leitner, A. Cross-linking and other structural proteomics techniques: How chemistry is enabling mass spectrometry applications in structural biology. Chem. Sci., 2016, 7(8), 4792-4803.
[http://dx.doi.org/10.1039/C5SC04196A] [PMID: 30155128]
[131]
Mahdavi, A.; Szychowski, J.; Ngo, J.T.; Sweredoski, M.J.; Graham, R.L.J.; Hess, S.; Schneewind, O.; Mazmanian, S.K.; Tirrell, D.A. Identification of secreted bacterial proteins by noncanonical amino acid tagging. Proc. Natl. Acad. Sci. USA, 2014, 111(1), 433-438.
[http://dx.doi.org/10.1073/pnas.1301740111] [PMID: 24347637]
[132]
Barker, C.A.; Farha, M.A.; Brown, E.D. Chemical genomic approaches to study model microbes. Chem. Biol., 2010, 17(6), 624-632.
[http://dx.doi.org/10.1016/j.chembiol.2010.05.010] [PMID: 20609412]
[133]
Levine, S.R.; Beatty, K.E. Investigating β-lactam drug targets in Mycobacterium tuberculosis using chemical probes. ACS Infect. Dis., 2021, 7(2), 461-470.
[http://dx.doi.org/10.1021/acsinfecdis.0c00809] [PMID: 33470787]
[134]
Baker, Y.R.; Hodgkinson, J.T.; Florea, B.I.; Alza, E.; Galloway, W.R.J.D.; Grimm, L.; Geddis, S.M.; Overkleeft, H.S.; Welch, M.; Spring, D.R. Identification of new quorum sensing autoinducer binding partners in Pseudomonas aeruginosa using photoaffinity probes. Chem. Sci., 2017, 8(11), 7403-7411.
[http://dx.doi.org/10.1039/C7SC01270E] [PMID: 29163891]
[135]
Head, S.A.; Liu, J.O. Identification of small molecule-binding proteins in a native cellular environment by live-cell photoaffinity labeling. J. Vis. Exp., 2016, 115(115), 1-9.
[http://dx.doi.org/10.3791/54529] [PMID: 27684515]
[136]
Chuang, V.; Otagiri, M. Photoaffinity labeling of plasma proteins. Molecules, 2013, 18(11), 13831-13859.
[http://dx.doi.org/10.3390/molecules181113831] [PMID: 24217326]
[137]
Maurya, S.; Akhtar, S.; Siddiqui, M.H.; Khan, M.K.A. Subtractive proteomics for identification of drug targets in bacterial pathogens: A review. Int. J. Eng. Technol., 2020, 9(1), 262-273.
[138]
Solanki, V.; Tiwari, V. Subtractive proteomics to identify novel drug targets and reverse vaccinology for the development of chimeric vaccine against Acinetobacter baumannii. Sci. Rep., 2018, 8(1), 9044.
[http://dx.doi.org/10.1038/s41598-018-26689-7] [PMID: 29899345]
[139]
Lowe, R.; Shirley, N.; Bleackley, M.; Dolan, S.; Shafee, T. Transcriptomics technologies. PLOS Comput. Biol., 2017, 13(5), e1005457.
[http://dx.doi.org/10.1371/journal.pcbi.1005457] [PMID: 28545146]
[140]
Russo, G.; Zegar, C.; Giordano, A. Advantages and limitations of microarray technology in human cancer. Oncogene, 2003, 22(42), 6497-6507.
[http://dx.doi.org/10.1038/sj.onc.1206865] [PMID: 14528274]
[141]
Jaluria, P.; Konstantopoulos, K.; Betenbaugh, M.; Shiloach, J. A perspective on microarrays: Current applications, pitfalls, and potential uses. Microb. Cell Fact., 2007, 6(1), 4.
[http://dx.doi.org/10.1186/1475-2859-6-4] [PMID: 17254338]
[142]
Dennis, P.; Edwards, E.A.; Liss, S.N.; Fulthorpe, R. Monitoring gene expression in mixed microbial communities by using DNA microarrays. Appl. Environ. Microbiol., 2003, 69(2), 769-778.
[http://dx.doi.org/10.1128/AEM.69.2.769-778.2003] [PMID: 12570994]
[143]
Zhang, Q.; Hu, Y.; Wei, P.; Shi, L.; Shi, L.; Li, J.; Zhao, Y.; Chen, Y.; Zhang, X.; Ye, F.; Liu, X.; Lin, S. Identification of hub genes for adult patients with sepsis via RNA sequencing. Sci. Rep., 2022, 12(1), 5128.
[http://dx.doi.org/10.1038/s41598-022-09175-z] [PMID: 34992227]
[144]
Febrer, M.; McLay, K.; Caccamo, M.; Twomey, K.B.; Ryan, R.P. Advances in bacterial transcriptome and transposon insertion-site profiling using second-generation sequencing. Trends Biotechnol., 2011, 29(11), 586-594.
[http://dx.doi.org/10.1016/j.tibtech.2011.06.004] [PMID: 21764162]
[145]
Kogenaru, S.; Yan, Q.; Guo, Y.; Wang, N. RNA-seq and microarray complement each other in transcriptome profiling. BMC Genomics, 2012, 13(1), 629.
[http://dx.doi.org/10.1186/1471-2164-13-629] [PMID: 23153100]
[146]
Alonso, A.; Marsal, S.; JuliÃ, A. Analytical methods in untargeted metabolomics: State of the art in 2015. Front. Bioeng. Biotechnol., 2015, 3(1), 23-43.
[http://dx.doi.org/10.3389/fbioe.2015.00023] [PMID: 25798438]
[147]
da Cunha, B.R.; Zoio, P.; Fonseca, L.P.; Calado, C.R.C. Technologies for high-throughput identification of antibiotic mechanism of action. Antibiotics, 2021, 10(5), 565-585.
[http://dx.doi.org/10.3390/antibiotics10050565] [PMID: 34065815]
[148]
Scalbert, A.; Brennan, L.; Fiehn, O.; Hankemeier, T.; Kristal, B.S.; van Ommen, B.; Pujos-Guillot, E.; Verheij, E.; Wishart, D.; Wopereis, S. Mass-spectrometry-based metabolomics: Limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics, 2009, 5(4), 435-458.
[http://dx.doi.org/10.1007/s11306-009-0168-0] [PMID: 20046865]
[149]
Jump, R.L.P.; Polinkovsky, A.; Hurless, K.; Sitzlar, B.; Eckart, K.; Tomas, M.; Deshpande, A.; Nerandzic, M.M.; Donskey, C.J. Metabolomics analysis identifies intestinal microbiota-derived biomarkers of colonization resistance in clindamycin-treated mice. PLoS One, 2014, 9(7), e101267.
[http://dx.doi.org/10.1371/journal.pone.0101267] [PMID: 24988418]
[150]
Maček, B.; Carpy, A.; Koch, A.; Bicho, C.C.; Borek, W.E.; Hauf, S.; Sawin, K.E. Stable isotope labeling by amino acids in cell culture (SILAC) technology in fission yeast. Cold Spring Harb. Protoc., 2017, 2017(6), pdb.top079814.
[http://dx.doi.org/10.1101/pdb.top079814] [PMID: 28572211]
[151]
Deng, J.; Erdjument-Bromage, H.; Neubert, T.A.; Quan, M. B. titative comparison of proteomes using SILAC. Curr. Protoc. Protein Sci., 2019, 95(1), e74.
[http://dx.doi.org/10.1002/cpps.74] [PMID: 30238645]
[152]
Zhu, W.; Smith, J.W.; Huang, C.-M. Mass spectrometry-based label-free quantitative proteomics. J. Biotechnol. Biomed., 2009, 2010(1), 1-6.
[153]
Asara, J.M.; Christofk, H.R.; Freimark, L.M.; Cantley, L.C. A label-free quantification method by MS/MS TIC compared to SILAC and spectral counting in a proteomics screen. Proteomics, 2008, 8(5), 994-999.
[http://dx.doi.org/10.1002/pmic.200700426] [PMID: 18324724]
[154]
Neilson, K.A.; Ali, N.A.; Muralidharan, S.; Mirzaei, M.; Mariani, M.; Assadourian, G.; Lee, A.; van Sluyter, S.C.; Haynes, P.A. Less label, more free: Approaches in label-free quantitative mass spectrometry. Proteomics, 2011, 11(4), 535-553.
[http://dx.doi.org/10.1002/pmic.201000553] [PMID: 21243637]
[155]
Renaud, J.B.; Sabourin, L.; Topp, E.; Sumarah, M.W. Spectral counting approach to measure selectivity of high-resolution LC–MS methods for environmental analysis. Anal. Chem., 2017, 89(5), 2747-2754.
[http://dx.doi.org/10.1021/acs.analchem.6b03475] [PMID: 28194977]
[156]
Rappsilber, J.; Ryder, U.; Lamond, A.I.; Mann, M. Large-scale proteomic analysis of the human spliceosome. Genome Res., 2002, 12(8), 1231-1245.
[http://dx.doi.org/10.1101/gr.473902] [PMID: 12176931]
[157]
Ishihama, Y.; Oda, Y.; Tabata, T.; Sato, T.; Nagasu, T.; Rappsilber, J.; Mann, M. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell. Proteomics, 2005, 4(9), 1265-1272.
[http://dx.doi.org/10.1074/mcp.M500061-MCP200] [PMID: 15958392]
[158]
Lu, P.; Vogel, C.; Wang, R.; Yao, X.; Marcotte, E.M. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat. Biotechnol., 2007, 25(1), 117-124.
[http://dx.doi.org/10.1038/nbt1270] [PMID: 17187058]
[159]
Chandramouli, K.; Qian, P.Y. Proteomics: Challenges, techniques and possibilities to overcome biological sample complexity. Hum. Genomics Proteomics, 2009, 1(1), 1-22.
[http://dx.doi.org/10.4061/2009/239204] [PMID: 20948568]
[160]
Haqqani, A.S.; Kelly, J.F.; Stanimirovic, D.B. Quantitative protein profiling by mass spectrometry using isotope-coded affinity tags. In: Genomics Protocols, 1st ed; Mike, S., Ed.; Springer: Berlin, 2008; 439, pp. 225-240.
[http://dx.doi.org/10.1007/978-1-59745-188-8_16]
[161]
Yamamoto, S.; Ishihara, T. Resolution and retention of proteins near isoelectric points in ion-exchange chromatography. Molecular recognition in electrostatic interaction chromatography. Sep. Sci. Technol., 2000, 35(11), 1707-1717.
[http://dx.doi.org/10.1081/SS-100102489]
[162]
Rosenberg, I.M. Protein analysis and purification: Benchtop techniques. Springer Science & Business Media: Berlin, 2013.
[163]
Piras, C.; Soggiu, A.; Bonizzi, L.; Gaviraghi, A.; Deriu, F.; De Martino, L.; Iovane, G.; Amoresano, A.; Roncada, P. Comparative proteomics to evaluate multi drug resistance in Escherichia coli. Mol. Biosyst., 2012, 8(4), 1060-1067.
[http://dx.doi.org/10.1039/C1MB05385J] [PMID: 22120138]
[164]
Petrotchenko, E.V.; Serpa, J.J.; Borchers, C.H. Cross-linking applications in structural proteomics: Proteomics for biological discovery.Veenstra, 2019, 548, pp. 175-196.
[http://dx.doi.org/10.1002/9781119081661.ch7]
[165]
Subbotin, R.I.; Chait, B.T. A pipeline for determining protein-protein interactions and proximities in the cellular milieu. Mol. Cell. Proteomics, 2014, 13(11), 2824-2835.
[http://dx.doi.org/10.1074/mcp.M114.041095] [PMID: 25172955]
[166]
Petrotchenko, E.V.; Borchers, C.H. Crosslinking combined with mass spectrometry for structural proteomics. Mass Spectrom. Rev., 2010, 29(6), 862-876.
[http://dx.doi.org/10.1002/mas.20293] [PMID: 20730915]
[167]
Götze, M.; Iacobucci, C.; Ihling, C.H.; Sinz, A. A simple cross-linking/mass spectrometry workflow for studying system-wide protein interactions. Anal. Chem., 2019, 91(15), 10236-10244.
[http://dx.doi.org/10.1021/acs.analchem.9b02372] [PMID: 31283178]
[168]
Mendoza, V.L.; Vachet, R.W. Probing protein structure by amino acid-specific covalent labeling and mass spectrometry. Mass Spectrom. Rev., 2009, 28(5), 785-815.
[http://dx.doi.org/10.1002/mas.20203] [PMID: 19016300]
[169]
Liuni, P.; Zhu, S.; Wilson, D.J. Oxidative protein labeling with analysis by mass spectrometry for the study of structure, folding, and dynamics. Antioxid. Redox Signal., 2014, 21(3), 497-510.
[http://dx.doi.org/10.1089/ars.2014.5850] [PMID: 24512178]
[170]
Chen, X.; Wang, Y.; Ma, N.; Tian, J.; Shao, Y.; Zhu, B.; Wong, Y.K.; Liang, Z.; Zou, C.; Wang, J. Target identification of natural medicine with chemical proteomics approach: Probe synthesis, target fishing and protein identification. Signal Transduct. Target. Ther., 2020, 5(1), 72.
[http://dx.doi.org/10.1038/s41392-020-0186-y] [PMID: 32435053]
[171]
Piazza, I.; Beaton, N.; Bruderer, R.; Knobloch, T.; Barbisan, C.; Chandat, L.; Sudau, A.; Siepe, I.; Rinner, O.; de Souza, N.; Picotti, P.; Reiter, L. A machine learning-based chemoproteomic approach to identify drug targets and binding sites in complex proteomes. Nat. Commun., 2020, 11(1), 4200.
[http://dx.doi.org/10.1038/s41467-020-18071-x] [PMID: 32826910]
[172]
Rix, U.; Superti-Furga, G. Target profiling of small molecules by chemical proteomics. Nat. Chem. Biol., 2009, 5(9), 616-624.
[http://dx.doi.org/10.1038/nchembio.216] [PMID: 19690537]
[173]
Deng, H.; Lei, Q.; Wu, Y.; He, Y.; Li, W. Activity-based protein profiling: Recent advances in medicinal chemistry. Eur. J. Med. Chem., 2020, 191(1), 112151-112219.
[http://dx.doi.org/10.1016/j.ejmech.2020.112151] [PMID: 32109778]
[174]
Kok, B.P.; Ghimire, S.; Kim, W.; Chatterjee, S.; Johns, T.; Kitamura, S.; Eberhardt, J.; Ogasawara, D.; Xu, J.; Sukiasyan, A.; Kim, S.M.; Godio, C.; Bittencourt, J.M.; Cameron, M.; Galmozzi, A.; Forli, S.; Wolan, D.W.; Cravatt, B.F.; Boger, D.L.; Saez, E. Discovery of small- molecule enzyme activators by activity-based protein profiling. Nat. Chem. Biol., 2020, 16(9), 997-1005.
[http://dx.doi.org/10.1038/s41589-020-0555-4] [PMID: 32514184]
[175]
Wang, S.; Tian, Y.; Wang, M.; Wang, M.; Sun, G.; Sun, X. Advanced activity-based protein profiling application strategies for drug development. Front. Pharmacol., 2018, 9(1), 353-362.
[http://dx.doi.org/10.3389/fphar.2018.00353] [PMID: 29686618]
[176]
Fonović, M.; Bogyo, M. Activity-based probes as a tool for functional proteomic analysis of proteases. Expert Rev. Proteomics, 2008, 5(5), 721-730.
[http://dx.doi.org/10.1586/14789450.5.5.721] [PMID: 18937562]
[177]
Yang, Y.; Yang, X.; Verhelst, S. Comparative analysis of click chemistry mediated activity-based protein profiling in cell lysates. Molecules, 2013, 18(10), 12599-12608.
[http://dx.doi.org/10.3390/molecules181012599] [PMID: 24126377]
[178]
Smith, E.; Collins, I. Photoaffinity labeling in target- and binding-site identification. Future Med. Chem., 2015, 7(2), 159-183.
[http://dx.doi.org/10.4155/fmc.14.152] [PMID: 25686004]
[179]
Burton, N.R.; Kim, P.; Backus, K.M. Photoaffinity labelling strategies for mapping the small molecule–protein interactome. Org. Biomol. Chem., 2021, 19(36), 7792-7809.
[http://dx.doi.org/10.1039/D1OB01353J] [PMID: 34549230]
[180]
Geoghegan, K.F.; Johnson, D.S. Chemical proteomic technologies for drug target identification. In: Annual Reports in Medicinal Chemistry, 2nd ed; John, E.M. Elsevier: Amsterdam, 2010; 45, pp. 345-360.
[http://dx.doi.org/10.1016/S0065-7743(10)45021-6]
[181]
Robinette, D.; Neamati, N.; Tomer, K.B.; Borchers, C.H. Photoaffinity labeling combined with mass spectrometric approaches as a tool for structural proteomics. Expert Rev. Proteomics, 2006, 3(4), 399-408.
[http://dx.doi.org/10.1586/14789450.3.4.399] [PMID: 16901199]
[182]
Lin, J. Development of photoaffinity probes to identify protein-protein interactions and map binding regions.2019,
[http://dx.doi.org/10.5353/th_991044146571003414]
[183]
Huang, Y.; Niu, B.; Gao, Y.; Fu, L.; Li, W. CD-HIT Suite: A web server for clustering and comparing biological sequences. Bioinformatics, 2010, 26(5), 680-682.
[http://dx.doi.org/10.1093/bioinformatics/btq003] [PMID: 20053844]
[184]
Jordan, I.K.; Rogozin, I.B.; Wolf, Y.I.; Koonin, E.V. Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. Genome Res., 2002, 12(6), 962-968.
[http://dx.doi.org/10.1101/gr.87702] [PMID: 12045149]
[185]
Zhang, R.; Ou, H.Y.; Zhang, C.T. DEG: A database of essential genes. Nucleic Acids Res., 2004, 32(90001), 271D-272.
[http://dx.doi.org/10.1093/nar/gkh024] [PMID: 14681410]
[186]
Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol., 1990, 215(3), 403-410.
[http://dx.doi.org/10.1016/S0022-2836(05)80360-2] [PMID: 2231712]
[187]
Knox, C.; Law, V.; Jewison, T.; Liu, P.; Ly, S.; Frolkis, A.; Pon, A.; Banco, K.; Mak, C.; Neveu, V.; Djoumbou, Y.; Eisner, R.; Guo, A.C.; Wishart, D.S. DrugBank 3.0: A comprehensive resource for ‘Omics’ research on drugs. Nucleic Acids Res., 2011, 39(Database), D1035-D1041.
[http://dx.doi.org/10.1093/nar/gkq1126] [PMID: 21059682]
[188]
Chen, L.; Yang, J.; Yu, J.; Yao, Z.; Sun, L.; Shen, Y.; Jin, Q. VFDB: A reference database for bacterial virulence factors. Nucleic Acids Res., 2004, 33(Database issue), D325-D328.
[http://dx.doi.org/10.1093/nar/gki008] [PMID: 15608208]
[189]
Apweiler, R.; Bairoch, A.; Wu, C.H.; Barker, W.C.; Boeckmann, B.; Ferro, S.; Gasteiger, E.; Huang, H.; Lopez, R.; Magrane, M.; Martin, M.J.; Natale, D.A.; O’Donovan, C.; Redaschi, N.; Yeh, L.S. UniProt: The universal protein knowledgebase. Nucleic Acids Res., 2004, 32(90001), 115D-119.
[http://dx.doi.org/10.1093/nar/gkh131] [PMID: 14681372]
[190]
Yang, X.; Kui, L.; Tang, M.; Li, D.; Wei, K.; Chen, W.; Miao, J.; Dong, Y. High-throughput transcriptome profiling in drug and biomarker discovery. Front. Genet., 2020, 11(1), 19-31.
[http://dx.doi.org/10.3389/fgene.2020.00019] [PMID: 32117438]
[191]
Singh, A.; Kumar, N. A review on DNA microarray technology. Int. J. Curr. Res. Rev., 2013, 5(22), 1-5.
[192]
Eijkelkamp, B.A.; Hassan, K.A.; Paulsen, I.T.; Brown, M.H. Investigation of the human pathogen Acinetobacter baumannii under iron limiting conditions. BMC Genomics, 2011, 12(1), 126.
[http://dx.doi.org/10.1186/1471-2164-12-126] [PMID: 21342532]
[193]
LaBauve, A.E.; Wargo, M.J. Detection of host-derived sphingosine by Pseudomonas aeruginosa is important for survival in the murine lung. PLoS Pathog., 2014, 10(1), e1003889.
[http://dx.doi.org/10.1371/journal.ppat.1003889] [PMID: 24465209]
[194]
Bischler, T.; Tan, H.S.; Nieselt, K.; Sharma, C.M. Differential RNA-seq (dRNA-seq) for annotation of transcriptional start sites and small RNAs in Helicobacter pylori. Methods, 2015, 86, 89-101.
[http://dx.doi.org/10.1016/j.ymeth.2015.06.012] [PMID: 26091613]
[195]
Popella, L.; Jung, J.; Popova, K.; Ðurica-Mitić, S.; Barquist, L.; Vogel, J. Global RNA profiles show target selectivity and physiological effects of peptide-delivered antisense antibiotics. Nucleic Acids Res., 2021, 49(8), 4705-4724.
[http://dx.doi.org/10.1093/nar/gkab242] [PMID: 33849070]
[196]
Futamura, Y.; Muroi, M.; Osada, H. Target identification of small molecules based on chemical biology approaches. Mol. Biosyst., 2013, 9(5), 897-914.
[http://dx.doi.org/10.1039/c2mb25468a] [PMID: 23354001]
[197]
Alarcon-Barrera, J.C.; Kostidis, S.; Ondo-Mendez, A.; Giera, M. Recent advances in metabolomics analysis for early drug development. Drug Discov. Today, 2022, 27(6), 1763-1773.
[http://dx.doi.org/10.1016/j.drudis.2022.02.018] [PMID: 35218927]
[198]
Rabinowitz, J.; Purdy, J.; Vastag, L.; Shenk, T.; Koyuncu, E. Metabolomics in drug target discovery. Cold Spring Harb. Symp., 2011, 76(1), 235-246.
[199]
Aretz, I.; Meierhofer, D. Advantages and pitfalls of mass spectrometry-based metabolome profiling in systems biology. Int. J. Mol. Sci., 2016, 17(5), 632-646.
[http://dx.doi.org/10.3390/ijms17050632] [PMID: 27128910]
[200]
Lakin, S.M.; Dean, C.; Noyes, N.R.; Dettenwanger, A.; Ross, A.S.; Doster, E.; Rovira, P.; Abdo, Z.; Jones, K.L.; Ruiz, J.; Belk, K.E.; Morley, P.S.; Boucher, C. MEGARes: An antimicrobial resistance database for high throughput sequencing. Nucleic Acids Res., 2017, 45(D1), D574-D580.
[http://dx.doi.org/10.1093/nar/gkw1009] [PMID: 27899569]
[201]
Kushwaha, S.K.; Shakya, M. Protein interaction network analysis-approach for potential drug target identification in mycobacterium tuberculosis. J. Theor. Biol., 2010, 262(2), 284-294.
[http://dx.doi.org/10.1016/j.jtbi.2009.09.029] [PMID: 19833135]
[202]
Wishart, D.S.; Wu, A. Using drug bank for in silico drug exploration and discovery. Curr. Protoc. Bioinform., 2016, 54(1), 1.
[http://dx.doi.org/10.1002/cpbi.1]
[203]
Zhu, F.; Shi, Z.; Qin, C.; Tao, L.; Liu, X.; Xu, F.; Zhang, L.; Song, Y.; Liu, X.; Zhang, J.; Han, B.; Zhang, P.; Chen, Y. Therapeutic target database update 2012: A resource for facilitating target-oriented drug discovery. Nucleic Acids Res., 2012, 40(D1), D1128-D1136.
[http://dx.doi.org/10.1093/nar/gkr797] [PMID: 21948793]
[204]
Damte, D.; Suh, J.-W.; Lee, S.-J.; Yohannes, S.B.; Hossain, M.A.; Park, S.-C. Putative drug and vaccine target protein identification using comparative genomic analysis of KEGG annotated metabolic pathways of Mycoplasma hyopneumoniae. Genomics, 2013, 2013, 11.
[http://dx.doi.org/10.1016/j.ygeno.2013.04.011]
[205]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem substance and compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[206]
Forst, C.V. Host-pathogen systems biology. In: Infectious Disease Informatics, 1st ed; Vitali, S. Springer: Berlin, 2010, Vol. 367, pp. 123-147.
[http://dx.doi.org/10.1007/978-1-4419-1327-2_6]
[207]
C. Activities at the universal protein resource (UniProt). Nucleic Acids Res., 2014, 42(D1), D191-D198.
[http://dx.doi.org/10.1093/nar/gkt1140]
[208]
Hecker, N.; Ahmed, J.; von Eichborn, J.; Dunkel, M.; Macha, K.; Eckert, A.; Gilson, M.K.; Bourne, P.E.; Preissner, R. SuperTarget goes quantitative: Update on drug-target interactions. Nucleic Acids Res., 2012, 40(D1), D1113-D1117.
[http://dx.doi.org/10.1093/nar/gkr912] [PMID: 22067455]
[209]
Kalathur, R.K.R.; Pinto, J.P.; Hernández-Prieto, M.A.; Machado, R.S.R.; Almeida, D.; Chaurasia, G.; Futschik, M.E. UniHI 7: An enhanced database for retrieval and interactive analysis of human molecular interaction networks. Nucleic Acids Res., 2014, 42(D1), D408-D414.
[http://dx.doi.org/10.1093/nar/gkt1100] [PMID: 24214987]
[210]
Mazandu, G.K.; Mulder, N.J. Generation and analysis of large-scale data-driven Mycobacterium tuberculosis functional networks for drug target identification. Adv. Bioinforma., 2011, 2011(1), 1-14.
[http://dx.doi.org/10.1155/2011/801478] [PMID: 22190924]
[211]
Zhang, G.; Wang, H.; Zhu, K.; Yang, Y.; Li, J.; Jiang, H.; Liu, Z. Investigation of candidate molecular biomarkers for expression profile analysis of the Gene expression omnibus (GEO) in acute lymphocytic leukemia (ALL). Biomed. Pharmacother., 2019, 120(1), 109530-109540.
[http://dx.doi.org/10.1016/j.biopha.2019.109530] [PMID: 31606621]
[212]
Agüero, F.; Al-Lazikani, B.; Aslett, M.; Berriman, M.; Buckner, F.S.; Campbell, R.K.; Carmona, S.; Carruthers, I.M.; Chan, A.W.E.; Chen, F.; Crowther, G.J.; Doyle, M.A.; Hertz-Fowler, C.; Hopkins, A.L.; McAllister, G.; Nwaka, S.; Overington, J.P.; Pain, A.; Paolini, G.V.; Pieper, U.; Ralph, S.A.; Riechers, A.; Roos, D.S.; Sali, A.; Shanmugam, D.; Suzuki, T.; Van Voorhis, W.C.; Verlinde, C.L.M.J. Genomic-scale prioritization of drug targets: The TDR targets database. Nat. Rev. Drug Discov., 2008, 7(11), 900-907.
[http://dx.doi.org/10.1038/nrd2684] [PMID: 18927591]
[213]
Kuhn, M.; Szklarczyk, D.; Pletscher-Frankild, S.; Blicher, T.H.; von Mering, C.; Jensen, L.J.; Bork, P. STITCH 4: Integration of protein–chemical interactions with user data. Nucleic Acids Res., 2014, 42(D1), D401-D407.
[http://dx.doi.org/10.1093/nar/gkt1207] [PMID: 24293645]
[214]
Rosenthal, A.; Gabrielian, A.; Engle, E.; Hurt, D.E.; Alexandru, S.; Crudu, V.; Sergueev, E.; Kirichenko, V.; Lapitskii, V.; Snezhko, E.; Kovalev, V.; Astrovko, A.; Skrahina, A.; Taaffe, J.; Harris, M.; Long, A.; Wollenberg, K.; Akhundova, I.; Ismayilova, S.; Skrahin, A.; Mammadbayov, E.; Gadirova, H.; Abuzarov, R.; Seyfaddinova, M.; Avaliani, Z.; Strambu, I.; Zaharia, D.; Muntean, A.; Ghita, E.; Bogdan, M.; Mindru, R.; Spinu, V.; Sora, A.; Ene, C.; Vashakidze, S.; Shubladze, N.; Nanava, U.; Tuzikov, A.; Tartakovsky, M. The TB portals: An open-access, web- based platform for global drug-resistant-tuberculosis data sharing and analysis. J. Clin. Microbiol., 2017, 55(11), 3267-3282.
[http://dx.doi.org/10.1128/JCM.01013-17] [PMID: 28904183]
[215]
Gao, Z.; Li, H.; Zhang, H.; Liu, X.; Kang, L.; Luo, X.; Zhu, W.; Chen, K.; Wang, X.; Jiang, H. PDTD: A web-accessible protein database for drug target identification. BMC Bioinformatics, 2008, 9(1), 104-111.
[http://dx.doi.org/10.1186/1471-2105-9-104] [PMID: 18282303]
[216]
Loots, D.T. An altered mycobacterium tuberculosis metabolome induced by katG mutations resulting in isoniazid resistance. Antimicrob. Agents Chemother., 2014, 58(4), 2144-2149.
[http://dx.doi.org/10.1128/AAC.02344-13] [PMID: 24468786]
[217]
Bansal, P.; Arora, M.; Gupta, V.; Maithani, M. Bioinformatics-based tools and software in clinical research: A new emerging area. In: Bioinformatics and Drug Discovery, 1st ed; Richard, S.L., Ed.; Springer: New York, 2019; Vol. 1939, pp. 215-230.
[http://dx.doi.org/10.1007/978-1-4939-9089-4_12]
[218]
Hammami, R.; Fliss, I. Current trends in antimicrobial agent research: Chemo- and bioinformatics approaches. Drug Discov. Today, 2010, 15(13-14), 540-546.
[http://dx.doi.org/10.1016/j.drudis.2010.05.002] [PMID: 20546918]
[219]
Mandal, R.S.; Das, S. In silico approaches toward combating antibiotic resistance. In: Drug Resistance in Bacteria, Fungi, Malaria, and Cancer, 2nd ed; Gunjan, A., Ed.; Springer: Berlin, 2017; Vol. 369, pp. 577-593.
[http://dx.doi.org/10.1007/978-3-319-48683-3_25]
[220]
Merigueti, T.C.; Carneiro, M.W.; Carvalho-Assef, A.P.D.A.; Silva-Jr, F.P.; Silva, F.A.B. FindTargetsWeb: A user-friendly tool for identification of potential therapeutic targets in metabolic networks of bacteria. Front. Genet., 2019, 10(1), 633-647.
[http://dx.doi.org/10.3389/fgene.2019.00633] [PMID: 31333719]
[221]
Chanumolu, S.K.; Rout, C.; Chauhan, R.S. UniDrug-target: A computational tool to identify unique drug targets in pathogenic bacteria. PLoS One, 2012, 7(3), e32833.
[http://dx.doi.org/10.1371/journal.pone.0032833] [PMID: 22431985]
[222]
Gupta, R.; Pradhan, D.; Jain, A.K.; Rai, C.S. TiD: Standalone software for mining putative drug targets from bacterial proteome. Genomics, 2017, 109(1), 51-57.
[http://dx.doi.org/10.1016/j.ygeno.2016.11.005] [PMID: 27856224]
[223]
Nayak, S.; Pradhan, D.; Singh, H.; Reddy, M.S. Computational screening of potential drug targets for pathogens causing bacterial pneumonia. Microb. Pathog., 2019, 130(1), 271-282.
[http://dx.doi.org/10.1016/j.micpath.2019.03.024] [PMID: 30914386]
[224]
Sudha, R.; Prasad, P. Dtar-Finder: Program for drug target identification and characterization in bacteria. Bioinformation, 2019, 15(3), 209-213.
[http://dx.doi.org/10.6026/97320630015209] [PMID: 31354197]
[225]
Tang, Y.; Zhu, W.; Chen, K.; Jiang, H. New technologies in computer-aided drug design: Toward target identification and new chemical entity discovery. Drug Discov. Today. Technol., 2006, 3(3), 307-313.
[http://dx.doi.org/10.1016/j.ddtec.2006.09.004] [PMID: 24980533]
[226]
Li, H.; Gao, Z.; Kang, L.; Zhang, H.; Yang, K.; Yu, K.; Luo, X.; Zhu, W.; Chen, K.; Shen, J.; Wang, X.; Jiang, H. TarFisDock: A web server for identifying drug targets with docking approach. Nucleic Acids Res., 2006, 34(Web Server), W219-W224.
[http://dx.doi.org/10.1093/nar/gkl114] [PMID: 16844997]
[227]
Zhang, S.; Lu, W.; Liu, X.; Diao, Y.; Bai, F.; Wang, L.; Shan, L.; Huang, J.; Li, H.; Zhang, W. Fast and effective identification of the bioactive compounds and their targets from medicinal plants via computational chemical biology approach. Med. Chem. Comm.,2011, 2(6), 471-477.
[http://dx.doi.org/10.1039/C0MD00245C]
[228]
Li, H.; Zheng, M.; Luo, X.; Zhu, W.; Jiang, H. Computational Approaches to Drug Discovery and Development. Chemical Biology: Approaches to Drug Discovery and Development to Targeting Disease, 1st ed; Natanya CIVJAN. Wiley: New York, 2012, pp.23-40.
[http://dx.doi.org/10.1002/9781118435762]
[229]
Kim, S.S.; Aprahamian, M.L.; Lindert, S. Improving inverse docking target identification with Z-score selection. Chem. Biol. Drug Des.,2019, 93(6), 1105-1116.
[http://dx.doi.org/10.1111/cbdd.13453]
[230]
Kumar, A.; Thotakura, P.L.; Tiwary, B.K.; Krishna, R. Target identification in Fusobacterium nucleatum by subtractive genomics approach and enrichment analysis of host- pathogen protein-protein interactions. BMC Microbiol., 2016, 16(1), 84-96.
[http://dx.doi.org/10.1186/s12866-016-0700-0] [PMID: 27176600]
[231]
Gupta, S.K.; Padmanabhan, B.R.; Diene, S.M.; Lopez-Rojas, R.; Kempf, M.; Landraud, L.; Rolain, J.M. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother., 2014, 58(1), 212-220.
[http://dx.doi.org/10.1128/AAC.01310-13] [PMID: 24145532]
[232]
Yu, C.S.; Lin, C.J.; Hwang, J.K. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n -peptide compositions. Protein Sci., 2004, 13(5), 1402-1406.
[http://dx.doi.org/10.1110/ps.03479604] [PMID: 15096640]
[233]
Shao, Y.; He, X.; Harrison, E.M.; Tai, C.; Ou, H.Y.; Rajakumar, K.; Deng, Z. mGenomeSubtractor: A web-based tool for parallel in silico subtractive hybridization analysis of multiple bacterial genomes. Nucleic Acids Res., 2010, 38(Suppl. 2), W194-W200.
[http://dx.doi.org/10.1093/nar/gkq326] [PMID: 20435682]
[234]
Krogh, A.; Larsson, B.; von Heijne, G.; Sonnhammer, E.L.L. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes11Edited by F. Cohen. J. Mol. Biol., 2001, 305(3), 567-580.
[http://dx.doi.org/10.1006/jmbi.2000.4315] [PMID: 11152613]
[235]
Demchenko, Y.; Turkmen, F.; de Laat, C.; Hsu, C-H.; Blanchet, C.; Loomis, C. Cloud computing infrastructure for data intensive applications. In: Big Data Analytics for Sensor-Network Collected Intelligence, 1st ed; Hui-Huang, H., Ed.; Elsevier: Amsterdam, 2017; Vol. 429, pp. 21-62.
[http://dx.doi.org/10.1016/B978-0-12-809393-1.00002-7]
[236]
Parmar, K.M.; Gaikwad, S.L.; Dhakephalkar, P.K.; Kothari, R.; Singh, R.P. Intriguing interaction of bacteriophage-host association: An understanding in the era of omics. Front. Microbiol., 2017, 8(1), 559-665.
[http://dx.doi.org/10.3389/fmicb.2017.00559] [PMID: 28439260]
[237]
Azam, A.H.; Tanji, Y. Bacteriophage-host arm race: An update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy. Appl. Microbiol. Biotechnol., 2019, 103(5), 2121-2131.
[http://dx.doi.org/10.1007/s00253-019-09629-x] [PMID: 30680434]
[238]
De Smet, J.; Hendrix, H.; Blasdel, B.G.; Danis-Wlodarczyk, K.; Lavigne, R. Pseudomonas predators: Understanding and exploiting phage–host interactions. Nat. Rev. Microbiol., 2017, 15(9), 517-530.
[http://dx.doi.org/10.1038/nrmicro.2017.61] [PMID: 28649138]
[239]
Wan, X.; Hendrix, H.; Skurnik, M.; Lavigne, R. Phage-based target discovery and its exploitation towards novel antibacterial molecules. Curr. Opin. Biotechnol., 2021, 68, 1-7.
[http://dx.doi.org/10.1016/j.copbio.2020.08.015] [PMID: 33007632]
[240]
Liu, J.; Dehbi, M.; Moeck, G.; Arhin, F.; Bauda, P.; Bergeron, D.; Callejo, M.; Ferretti, V.; Ha, N.; Kwan, T.; McCarty, J.; Srikumar, R.; Williams, D.; Wu, J.J.; Gros, P.; Pelletier, J.; DuBow, M. Antimicrobial drug discovery through bacteriophage genomics. Nat. Biotechnol., 2004, 22(2), 185-191.
[http://dx.doi.org/10.1038/nbt932] [PMID: 14716317]
[241]
Dehbi, M.; Moeck, G.; Arhin, F.F.; Bauda, P.; Bergeron, D.; Kwan, T.; Liu, J.; McCarty, J.; DuBow, M.; Pelletier, J. Inhibition of transcription in Staphylococcus aureus by a primary sigma factor-binding polypeptide from phage G1. J. Bacteriol., 2009, 191(12), 3763-3771.
[http://dx.doi.org/10.1128/JB.00241-09] [PMID: 19376864]
[242]
Wagemans, J.; Delattre, A.S.; Uytterhoeven, B.; De Smet, J.; Cenens, W.; Aertsen, A.; Ceyssens, P.J.; Lavigne, R. Antibacterial phage ORFans of Pseudomonas aeruginosa phage LUZ24 reveal a novel MvaT inhibiting protein. Front. Microbiol., 2015, 6(1), 1242-1252.
[http://dx.doi.org/10.3389/fmicb.2015.01242] [PMID: 26594207]
[243]
Van den Bossche, A.; Ceyssens, P.J.; De Smet, J.; Hendrix, H.; Bellon, H.; Leimer, N.; Wagemans, J.; Delattre, A.S.; Cenens, W.; Aertsen, A.; Landuyt, B.; Minakhin, L.; Severinov, K.; Noben, J.P.; Lavigne, R. Systematic identification of hypothetical bacteriophage proteins targeting key protein complexes of Pseudomonas aeruginosa. J. Proteome Res., 2014, 13(10), 4446-4456.
[http://dx.doi.org/10.1021/pr500796n] [PMID: 25185497]
[244]
Klambauer, G.; Hochreiter, S.; Rarey, M. Machine learning in drug discovery. J. Chem. Inf. Model., 2019, 59(3), 945-946.
[http://dx.doi.org/10.1021/acs.jcim.9b00136] [PMID: 30905159]
[245]
Ding, Y.; Tang, J.; Guo, F. Identification of drug–target interactions via fuzzy bipartite local model. Neural Comput. Appl., 2020, 32(14), 10303-10319.
[http://dx.doi.org/10.1007/s00521-019-04569-z]
[246]
Ding, Y.; Tang, J.; Guo, F. Identification of drug-target interactions via multiple information integration. Inf. Sci., 2017, 418-419, 546-560.
[http://dx.doi.org/10.1016/j.ins.2017.08.045]
[247]
Patel, L.; Shukla, T.; Huang, X.; Ussery, D.W.; Wang, S. Machine learning methods in drug discovery. Molecules, 2020, 25(22), 5277-5294.
[http://dx.doi.org/10.3390/molecules25225277] [PMID: 33198233]
[248]
Giacobbe, D.R.; Mora, S.; Giacomini, M.; Bassetti, M. Machine learning and multidrug-resistant gram-negative bacteria: An interesting combination for current and future research. Antibiotics, 2020, 9(2), 54-62.
[http://dx.doi.org/10.3390/antibiotics9020054] [PMID: 32023986]
[249]
Zhang, X.; Acencio, M.L.; Lemke, N. Predicting essential genes and proteins based on machine learning and network topological features: A comprehensive review. Front. Physiol., 2016, 7(1), 75-86.
[PMID: 27014079]
[250]
Rifaioglu, A.S.; Atas, H.; Martin, M.J.; Cetin-Atalay, R.; Atalay, V.; Doğan, T. Recent applications of deep learning and machine intelligence on in silico drug discovery: Methods, tools and databases. Brief. Bioinform., 2019, 20(5), 1878-1912.
[http://dx.doi.org/10.1093/bib/bby061] [PMID: 30084866]
[251]
Cano, G.; Garcia-Rodriguez, M.J; Garcia-Garcia, A.; Perez-Sanchez, H.; Benediktsson, J.A.; Thapa, A.; Barr, A. Automatic selection of descriptors using random forest: Application to drug discovery. Expert Syst. Appl., 2017, 72(1), 151-159.
[http://dx.doi.org/10.1016/j.eswa.2016.12.008]
[252]
Heikamp, K.; Bajorath, J. Support vector machines for drug discovery. Expert Opin. Drug Discov., 2014, 9(1), 93-104.
[http://dx.doi.org/10.1517/17460441.2014.866943] [PMID: 24304044]
[253]
Lounkine, E.; Kutchukian, P.S.; Glick, M. Chemoinformatics for Drug Discovery Beyond Compound Ranking; Chemometric Applications of Naïve Bayesian Models in Drug Discovery, 1st ed; Jürgen, B., Ed.; WILEY: United States, 2013, Vol. 473, pp. 131-148.
[http://dx.doi.org/10.1002/9781118742785.ch7]
[254]
Madhukar, N.S.; Khade, P.K.; Huang, L.; Gayvert, K.; Galletti, G.; Stogniew, M.; Allen, J.E.; Giannakakou, P.; Elemento, O. A Bayesian machine learning approach for drug target identification using diverse data types. Nat. Commun., 2019, 10(1), 5221.
[http://dx.doi.org/10.1038/s41467-019-12928-6] [PMID: 31745082]
[255]
Steinmetz, L.M.; Scharfe, C.; Deutschbauer, A.M.; Mokranjac, D.; Herman, Z.S.; Jones, T.; Chu, A.M.; Giaever, G.; Prokisch, H.; Oefner, P.J.; Davis, R.W. Systematic screen for human disease genes in yeast. Nat. Genet., 2002, 31(4), 400-404.
[http://dx.doi.org/10.1038/ng929] [PMID: 12134146]
[256]
Lu, Y.; Deng, J.; Rhodes, J.C.; Lu, H.; Lu, L.J. Predicting essential genes for identifying potential drug targets in Aspergillus fumigatus. Comput. Biol. Chem., 2014, 50(1), 29-40.
[http://dx.doi.org/10.1016/j.compbiolchem.2014.01.011] [PMID: 24569026]
[257]
Najm, M.; Azencott, C-A.; Playe, B.; Stoven, V. Target identification of drug candidates with machine-learning algorithms: How to choose negative examples for training. BioRxiv, 2021, 4(3), 1-12.
[http://dx.doi.org/10.1101/2021.04.06.438561]
[258]
Kaiser, T.M.; Burger, P.B. Error tolerance of machine learning algorithms across contemporary biological targets. Molecules, 2019, 24(11), 2115-2132.
[http://dx.doi.org/10.3390/molecules24112115] [PMID: 31167452]
[259]
Nonejuie, P.; Trial, R.M.; Newton, G.L.; Lamsa, A.; Ranmali Perera, V.; Aguilar, J.; Liu, W.T.; Dorrestein, P.C.; Pogliano, J.; Pogliano, K. Application of bacterial cytological profiling to crude natural product extracts reveals the antibacterial arsenal of Bacillus subtilis. J. Antibiot., 2016, 69(5), 353-361.
[http://dx.doi.org/10.1038/ja.2015.116] [PMID: 26648120]
[260]
Farha, M.A.; Brown, E.D. Strategies for target identification of antimicrobial natural products. Nat. Prod. Rep., 2016, 33(5), 668-680.
[http://dx.doi.org/10.1039/C5NP00127G] [PMID: 26806527]
[261]
Nonejuie, P.; Burkart, M.; Pogliano, K.; Pogliano, J. Bacterial cytological profiling rapidly identifies the cellular pathways targeted by antibacterial molecules. Proc. Natl. Acad. Sci., 2013, 110(40), 16169-16174.
[http://dx.doi.org/10.1073/pnas.1311066110] [PMID: 24046367]
[262]
Wong, W.R.; Oliver, A.G.; Linington, R.G. Development of antibiotic activity profile screening for the classification and discovery of natural product antibiotics. Chem. Biol., 2012, 19(11), 1483-1495.
[http://dx.doi.org/10.1016/j.chembiol.2012.09.014] [PMID: 23177202]
[263]
Duay, S.A. Influence of local pH environment and Zn (II) on the Structure of the Antimicrobial Peptide clavanin A and its Dynamics with different membrane models in MD Simulations, PhD Thesis, University of Connecticut, Storr, 2020.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy