Review Article

标记基质金属蛋白酶

卷 30, 期 40, 2023

发表于: 24 February, 2023

页: [4569 - 4585] 页: 17

弟呕挨: 10.2174/0929867330666230113121728

价格: $65

conference banner
摘要

基质金属蛋白酶(Matrix metalloproteinases, MMPs)是一类含锌蛋白酶,在体内参与许多生理和病理过程。近年来,基于对其功能的深入了解,MMP网络已经建立起来。一些MMPs也被认为是各种疾病的生物标志物,包括炎症、神经疾病和癌症。因此,近几十年来,MMP标签受到了越来越多的关注。因此,用于MMP标记的试剂和技术得到了迅速发展。本文综述了近年来一些MMP标记方法的研究进展。本综述通过关键词(MMPs;标签;等)在ScienceDirect数据库、Scifinder、Web of Science和PubMed中的搜索,并使用典型案例进行归纳概述。尽管在MMP标记方面取得了进展,但特定MMP的选择性标记仍然是一个开放的问题。希望本文能对今后开发特异性MMP标记方法有所帮助。

关键词: 基质金属蛋白酶,生物靶向,蛋白质标记,放射性标记,荧光探针,含锌蛋白酶。

[1]
Gross, J.; Lapiere, C.M. Collagenolytic activity in amphibian tissues: A tissue culture assay. Proc. Natl. Acad. Sci. USA, 1962, 48(6), 1014-1022.
[http://dx.doi.org/10.1073/pnas.48.6.1014] [PMID: 13902219]
[2]
Gross, J. How tadpoles lose their tails: Path to discovery of the first matrix metalloproteinase. Matrix Biol., 2004, 23(1), 3-13.
[http://dx.doi.org/10.1016/j.matbio.2004.01.003] [PMID: 15172033]
[3]
Visse, R.; Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ. Res., 2003, 92(8), 827-839.
[http://dx.doi.org/10.1161/01.RES.0000070112.80711.3D] [PMID: 12730128]
[4]
Sbardella, D.; Fasciglione, G.F.; Gioia, M.; Ciaccio, C.; Tundo, G.R.; Marini, S.; Coletta, M. Human matrix metalloproteinases: An ubiquitarian class of enzymes involved in several pathological processes. Mol. Aspects Med., 2012, 33(2), 119-208.
[http://dx.doi.org/10.1016/j.mam.2011.10.015] [PMID: 22100792]
[5]
Kapoor, C.; Vaidya, S.; Wadhwan, V.; Hitesh; Kaur, G.; Pathak, A. Seesaw of matrix metalloproteinases (MMPs). J. Cancer Res. Ther., 2016, 12(1), 28-35.
[http://dx.doi.org/10.4103/0973-1482.157337] [PMID: 27072206]
[6]
Jackson, B.C.; Carpenter, C.; Nebert, D.W.; Vasiliou, V. Update of human and mouse forkhead box (FOX) gene families. Hum. Genomics, 2010, 4(5), 345-352.
[http://dx.doi.org/10.1186/1479-7364-4-5-345] [PMID: 20650821]
[7]
Wetmore, D.R.; Hardman, K.D. Roles of the propeptide and metal ions in the folding and stability of the catalytic domain of stromelysin (matrix metalloproteinase 3). Biochemistry, 1996, 35(21), 6549-6558.
[http://dx.doi.org/10.1021/bi9530752] [PMID: 8639603]
[8]
Wang, X.; Khalil, R.A. Matrix metalloproteinases, vascular remodeling, and vascular disease. Adv. Pharmacol., 2018, 81, 241-330.
[http://dx.doi.org/10.1016/bs.apha.2017.08.002] [PMID: 29310800]
[9]
Sternlicht, M.D.; Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol., 2001, 17(1), 463-516.
[http://dx.doi.org/10.1146/annurev.cellbio.17.1.463] [PMID: 11687497]
[10]
Chen, Q.; Jin, M.; Yang, F.; Zhu, J.; Xiao, Q.; Zhang, L. Matrix metalloproteinases: Inflammatory regulators of cell behaviors in vascular formation and remodeling. Mediators Inflamm., 2013, 2013, 1-14.
[http://dx.doi.org/10.1155/2013/928315] [PMID: 23840100]
[11]
Van Wart, H.E.; Birkedal-Hansen, H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc. Natl. Acad. Sci., 1990, 87(14), 5578-5582.
[http://dx.doi.org/10.1073/pnas.87.14.5578] [PMID: 2164689]
[12]
Klein, T.; Bischoff, R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids, 2011, 41(2), 271-290.
[http://dx.doi.org/10.1007/s00726-010-0689-x] [PMID: 20640864]
[13]
Maskos, K. Crystal structures of MMPs in complex with physiological and pharmacological inhibitors. Biochimie, 2005, 87(3-4), 249-263.
[http://dx.doi.org/10.1016/j.biochi.2004.11.019] [PMID: 15781312]
[14]
Tallant, C.; Marrero, A.; Gomis-Rüth, F.X. Matrix metalloproteinases: Fold and function of their catalytic domains. Biochim. Biophys. Acta Mol. Cell Res., 2010, 1803(1), 20-28.
[http://dx.doi.org/10.1016/j.bbamcr.2009.04.003] [PMID: 19374923]
[15]
Cui, N.; Hu, M.; Khalil, R.A. Biochemical and biological attributes of matrix metalloproteinases. Prog. Mol. Biol. Transl. Sci., 2017, 147, 1-73.
[http://dx.doi.org/10.1016/bs.pmbts.2017.02.005] [PMID: 28413025]
[16]
Liu, J.; Khalil, R.A. Matrix metalloproteinase inhibitors as investigational and therapeutic tools in unrestrained tissue remodeling and pathological disorders. Prog. Mol. Biol. Transl. Sci., 2017, 148, 355-420.
[http://dx.doi.org/10.1016/bs.pmbts.2017.04.003] [PMID: 28662828]
[17]
Mannello, F.; Medda, V. Nuclear localization of matrix metalloproteinases. Prog. Histochem. Cytochem., 2012, 47(1), 27-58.
[http://dx.doi.org/10.1016/j.proghi.2011.12.002] [PMID: 22226510]
[18]
Fischer, T.; Senn, N.; Riedl, R. Design and structural evolution of matrix metalloproteinase inhibitors. Chemistry, 2019, 25(34), 7960-7980.
[http://dx.doi.org/10.1002/chem.201805361] [PMID: 30720221]
[19]
Amălinei, C.; Căruntu, I.D.; Bălan, R.A. Biology of metalloproteinases. Rom. J. Morphol. Embryol., 2007, 48(4), 323-334.
[PMID: 18060181]
[20]
Huo, N.; Ichikawa, Y.; Kamiyama, M.; Ishikawa, T.; Hamaguchi, Y.; Hasegawa, S.; Nagashima, Y.; Miyazaki, K.; Shimada, H. MMP-7 (matrilysin) accelerated growth of human umbilical vein endothelial cells. Cancer Lett., 2002, 177(1), 95-100.
[http://dx.doi.org/10.1016/S0304-3835(01)00772-8] [PMID: 11809536]
[21]
Ito, T.K.; Ishii, G.; Saito, S.; Yano, K.; Hoshino, A.; Suzuki, T.; Ochiai, A. Degradation of soluble VEGF receptor-1 by MMP-7 allows VEGF access to endothelial cells. Blood, 2009, 113(10), 2363-2369.
[http://dx.doi.org/10.1182/blood-2008-08-172742] [PMID: 18974372]
[22]
Fingleton, B.; Vargo-Gogola, T.; Crawford, H.C.; Matrisian, L.M. Matrilysin [MMP-7] expression selects for cells with reduced sensitivity to apoptosis. Neoplasia, 2001, 3(6), 459-468.
[http://dx.doi.org/10.1038/sj.neo.7900190] [PMID: 11774028]
[23]
Gallego, R.; Codony-Servat, J.; García-Albéniz, X.; Carcereny, E.; Longarón, R.; Oliveras, A.; Tosca, M.; Augé, J.M.; Gascón, P.; Maurel, J. Serum IGF-I, IGFBP-3, and matrix metalloproteinase-7 levels and acquired chemo-resistance in advanced colorectal cancer. Endocr. Relat. Cancer, 2009, 16(1), 311-317.
[http://dx.doi.org/10.1677/ERC-08-0250] [PMID: 19109398]
[24]
Almendro, V.; Ametller, E.; García-Recio, S.; Collazo, O.; Casas, I.; Augé, J.M.; Maurel, J.; Gascón, P. The role of MMP7 and its cross-talk with the FAS/FASL system during the acquisition of chemoresistance to oxaliplatin. PLoS One, 2009, 4(3), e4728.
[http://dx.doi.org/10.1371/journal.pone.0004728] [PMID: 19266094]
[25]
Strand, S.; Vollmer, P.; van den Abeelen, L.; Gottfried, D.; Alla, V.; Heid, H.; Kuball, J.; Theobald, M.; Galle, P.R.; Strand, D. Cleavage of CD95 by matrix metalloproteinase-7 induces apoptosis resistance in tumour cells. Oncogene, 2004, 23(20), 3732-3736.
[http://dx.doi.org/10.1038/sj.onc.1207387] [PMID: 15077180]
[26]
Verma, R.P.; Hansch, C. Matrix metalloproteinases (MMPs): Chemical–biological functions and (Q)SARs. Bioorg. Med. Chem., 2007, 15(6), 2223-2268.
[http://dx.doi.org/10.1016/j.bmc.2007.01.011] [PMID: 17275314]
[27]
Tokuhara, C.K.; Santesso, M.R.; Oliveira, G.S.N.; Ventura, T.M.S.; Doyama, J.T.; Zambuzzi, W.F.; Oliveira, R.C. Updating the role of matrix metalloproteinases in mineralized tissue and related diseases. J. Appl. Oral Sci., 2019, 27, e20180596.
[http://dx.doi.org/10.1590/1678-7757-2018-0596] [PMID: 31508793]
[28]
Raffetto, J.D.; Barros, Y.V.R.; Wells, A.K.; Khalil, R.A. MMP-2 induced vein relaxation via inhibition of [Ca2+]e-dependent mechanisms of venous smooth muscle contraction. Role of RGD peptides. J. Surg. Res., 2010, 159(2), 755-764.
[http://dx.doi.org/10.1016/j.jss.2008.09.022] [PMID: 19482300]
[29]
Macfarlane, S.R.; Seatter, M.J.; Kanke, T.; Hunter, G.D.; Plevin, R. Proteinase-activated receptors. Pharmacol. Rev., 2001, 53(2), 245-282.
[PMID: 11356985]
[30]
Alexander, C.M.; Hansell, E.J.; Behrendtsen, O.; Flannery, M.L.; Kishnani, N.S.; Hawkes, S.P.; Werb, Z. Expression and function of matrix metalloproteinases and their inhibitors at the maternal-embryonic boundary during mouse embryo implantation. Development, 1996, 122(6), 1723-1736.
[http://dx.doi.org/10.1242/dev.122.6.1723] [PMID: 8674412]
[31]
Lin, J.; Davis, H.B.; Dai, Q.; Chou, Y.M.; Craig, T.; Hinojosa-Laborde, C.; Lindsey, M.L. Effects of early and late chronic pressure overload on extracellular matrix remodeling. Hypertens. Res., 2008, 31(6), 1225-1231.
[http://dx.doi.org/10.1291/hypres.31.1225] [PMID: 18716372]
[32]
Merchant, S.J.; Davidge, S.T. The role of matrix metalloproteinases in vascular function: Implications for normal pregnancy and pre-eclampsia. BJOG, 2004, 111(9), 931-939.
[http://dx.doi.org/10.1111/j.1471-0528.2004.00223.x] [PMID: 15327607]
[33]
Mittal, R.; Patel, A.P.; Debs, L.H.; Nguyen, D.; Patel, K.; Grati, M.; Mittal, J.; Yan, D.; Chapagain, P.; Liu, X.Z. Intricate functions of matrix metalloproteinases in physiological and pathological conditions. J. Cell. Physiol., 2016, 231(12), 2599-2621.
[http://dx.doi.org/10.1002/jcp.25430] [PMID: 27187048]
[34]
Vacek, T.; Rahman, S.; Yu, S.; Neamtu, D.; Givimani, S.; Tyagi, S. Matrix metalloproteinases in atherosclerosis: Role of nitric oxide, hydrogen sulfide, homocysteine, and polymorphisms. Vasc. Health Risk Manag., 2015, 11, 173-183.
[http://dx.doi.org/10.2147/VHRM.S68415] [PMID: 25767394]
[35]
Jones, C.; Sane, D.C.; Herrington, D.M. Matrix metalloproteinases A review of their structure and role in acute coronary syndrome. Cardiovasc. Res., 2003, 59(4), 812-823.
[http://dx.doi.org/10.1016/S0008-6363(03)00516-9] [PMID: 14553821]
[36]
Román-García, P.; Coto, E.; Reguero, J.R.; Cannata-Andía, J.B.; Lozano, Í.; Avanzas, P.; Morís, C.; Rodríguez, I. Matrix metalloproteinase 1 promoter polymorphisms and risk of myocardial infarction: A case–control study in a Spanish population. Coron. Artery Dis., 2009, 20(6), 383-386.
[http://dx.doi.org/10.1097/MCA.0b013e32832fa9cf] [PMID: 19620856]
[37]
Chang, J.; Stanfill, A.; Pourmotabbed, T. The role of matrix metalloproteinase polymorphisms in ischemic stroke. Int. J. Mol. Sci., 2016, 17(8), 1323.
[http://dx.doi.org/10.3390/ijms17081323] [PMID: 27529234]
[38]
Martinez-Aguilar, E.; Gomez-Rodriguez, V.; Orbe, J.; Rodriguez, J.A.; Fernández-Alonso, L.; Roncal, C.; Páramo, J.A. Matrix metalloproteinase 10 is associated with disease severity and mortality in patients with peripheral arterial disease. J. Vasc. Surg., 2015, 61(2), 428-435.
[http://dx.doi.org/10.1016/j.jvs.2014.09.002] [PMID: 25441671]
[39]
Razavian, M.; Zhang, J.; Nie, L.; Tavakoli, S.; Razavian, N.; Dobrucki, L.W.; Sinusas, A.J.; Edwards, D.S.; Azure, M.; Sadeghi, M.M. Molecular imaging of matrix metalloproteinase activation to predict murine aneurysm expansion in vivo. J. Nucl. Med., 2010, 51(7), 1107-1115.
[http://dx.doi.org/10.2967/jnumed.110.075259] [PMID: 20554725]
[40]
Serra, R.; Gallelli, L.; Buffone, G.; Molinari, V.; Stillitano, D.M.; Palmieri, C.; de Franciscis, S. Doxycycline speeds up healing of chronic venous ulcers. Int. Wound J., 2015, 12(2), 179-184.
[http://dx.doi.org/10.1111/iwj.12077] [PMID: 23557025]
[41]
Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther., 2001, 69(3), 89-95.
[http://dx.doi.org/10.1067/mcp.2001.113989] [PMID: 11240971]
[42]
Ii, M.; Yamamoto, H.; Adachi, Y.; Maruyama, Y.; Shinomura, Y. Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp. Biol. Med., 2006, 231(1), 20-27.
[http://dx.doi.org/10.1177/153537020623100103] [PMID: 16380641]
[43]
Kuhlmann, K.F.D.; van Till, J.W.O.; Boermeester, M.A.; de Reuver, P.R.; Tzvetanova, I.D.; Offerhaus, G.J.A.; ten Kate, F.J.W.; Busch, O.R.C.; van Gulik, T.M.; Gouma, D.J.; Crawford, H.C. Evaluation of matrix metalloproteinase 7 in plasma and pancreatic juice as a biomarker for pancreatic cancer. Cancer Epidemiol. Biomarkers Prev., 2007, 16(5), 886-891.
[http://dx.doi.org/10.1158/1055-9965.EPI-06-0779] [PMID: 17507610]
[44]
He, L.; Ip, D.K.M.; Tam, G.; Lui, V.C.H.; Tam, P.K.H.; Chung, P.H.Y. Biomarkers for the diagnosis and post-Kasai portoenterostomy prognosis of biliary atresia: A systematic review and meta-analysis. Sci. Rep., 2021, 11(1), 11692.
[http://dx.doi.org/10.1038/s41598-021-91072-y] [PMID: 34083585]
[45]
Im, N.R.; Kim, B.; Jung, K.Y.; Baek, S.K. Usefulness of matrix metalloproteinase-7 in saliva as a diagnostic biomarker for laryngopharyngeal reflux disease. Sci. Rep., 2021, 11(1), 17071.
[http://dx.doi.org/10.1038/s41598-021-96554-7] [PMID: 34426628]
[46]
Tanioka, Y.; Yoshida, T.; Yagawa, T.; Saiki, Y.; Takeo, S.; Harada, T.; Okazawa, T.; Yanai, H.; Okita, K. Matrix metalloproteinase-7 and matrix metalloproteinase-9 are associated with unfavourable prognosis in superficial oesophageal cancer. Br. J. Cancer, 2003, 89(11), 2116-2121.
[http://dx.doi.org/10.1038/sj.bjc.6601372] [PMID: 14647147]
[47]
Irvine, K.M.; Okano, S.; Patel, P.J.; Horsfall, L.U.; Williams, S.; Russell, A.; Powell, E.E. Serum matrix metalloproteinase 7 (MMP7) is a biomarker of fibrosis in patients with non-alcoholic fatty liver disease. Sci. Rep., 2021, 11(1), 2858.
[http://dx.doi.org/10.1038/s41598-021-82315-z] [PMID: 33536476]
[48]
Scheau, C.; Badarau, I.A.; Costache, R.; Neagu, M. The role of matrix metalloproteinases in the epithelial-mesenchymal transition of hepatocellular carcinoma. Anal Cell Pathol, 2019, 2019, 9423907.
[49]
Asgari, R.; Mansouri, K.; Abdolmaleki, A.; Bakhtiari, M. Association of matrix metalloproteinases with male reproductive functions; with focus on MMP2, 7, and 9. Meta Gene, 2021, 29, 100906.
[http://dx.doi.org/10.1016/j.mgene.2021.100906]
[50]
Cheng, Z.; Limbu, M.; Wang, Z.; Liu, J.; Liu, L.; Zhang, X.; Chen, P.; Liu, B. MMP-2 and 9 in chronic kidney disease. Int. J. Mol. Sci., 2017, 18(4), 776.
[http://dx.doi.org/10.3390/ijms18040776] [PMID: 28397744]
[51]
Yong, V.W. Metalloproteinases: Mediators of pathology and regeneration in the CNS. Nat. Rev. Neurosci., 2005, 6(12), 931-944.
[http://dx.doi.org/10.1038/nrn1807] [PMID: 16288297]
[52]
Gajewska, B.; Śliwińska-Mossoń, M. Association of MMP-2 and MMP-9 polymorphisms with diabetes and pathogenesis of diabetic complications. Int. J. Mol. Sci., 2022, 23(18), 10571.
[http://dx.doi.org/10.3390/ijms231810571] [PMID: 36142480]
[53]
Vandooren, J.; Van Damme, J.; Opdenakker, G. On the Structure and functions of gelatinase B/Matrix metalloproteinase-9 in neuroinflammation. Prog. Brain Res., 2014, 214, 193-206.
[http://dx.doi.org/10.1016/B978-0-444-63486-3.00009-8] [PMID: 25410359]
[54]
Vafadari, B.; Salamian, A.; Kaczmarek, L. MMP-9 in translation: From molecule to brain physiology, pathology, and therapy. J. Neurochem., 2016, 139(Suppl. 2), 91-114.
[http://dx.doi.org/10.1111/jnc.13415] [PMID: 26525923]
[55]
Speers, A.E.; Cravatt, B.F. A tandem orthogonal proteolysis strategy for high-content chemical proteomics. J. Am. Chem. Soc., 2005, 127(28), 10018-10019.
[http://dx.doi.org/10.1021/ja0532842] [PMID: 16011363]
[56]
Patton, W.F. A thousand points of light: The application of fluorescence detection technologies to two-dimensional gel electrophoresis and proteomics. Electrophoresis, 2000, 21(6), 1123-1144.
[http://dx.doi.org/10.1002/(SICI)1522-2683(20000401)21:6<1123::AID-ELPS1123>3.0.CO;2-E] [PMID: 10786886]
[57]
Shiraiwa, K.; Cheng, R.; Nonaka, H.; Tamura, T.; Hamachi, I. Chemical tools for endogenous protein labeling and profiling. Cell Chem. Biol., 2020, 27(8), 970-985.
[http://dx.doi.org/10.1016/j.chembiol.2020.06.016] [PMID: 32679042]
[58]
Xue, L.; Karpenko, I.A.; Hiblot, J.; Johnsson, K. Imaging and manipulating proteins in live cells through covalent labeling. Nat. Chem. Biol., 2015, 11(12), 917-923.
[http://dx.doi.org/10.1038/nchembio.1959] [PMID: 26575238]
[59]
Shi, Y.; Ma, X.; Fang, G.; Tian, X.; Ge, C. Matrix metalloproteinase inhibitors (MMPIs) as attractive therapeutic targets: Recent progress and current challenges. NanoImpact, 2021, 21, 100293.
[http://dx.doi.org/10.1016/j.impact.2021.100293] [PMID: 35559782]
[60]
Tsien, R.Y. Building and breeding molecules to spy on cells and tumors. FEBS Lett., 2005, 579(4), 927-932.
[http://dx.doi.org/10.1016/j.febslet.2004.11.025] [PMID: 15680976]
[61]
Terai, T.; Nagano, T. Small-molecule fluorophores and fluorescent probes for bioimaging. Pflugers Arch., 2013, 465(3), 347-359.
[http://dx.doi.org/10.1007/s00424-013-1234-z] [PMID: 23412659]
[62]
Ong, S.E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D.B.; Steen, H.; Pandey, A.; Mann, M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics, 2002, 1(5), 376-386.
[http://dx.doi.org/10.1074/mcp.M200025-MCP200] [PMID: 12118079]
[63]
Kopka, K.; Schober, O.; Wagner, S. 18F-labelled cardiac PET tracers: Selected probes for the molecular imaging of transporters, receptors and proteases. Basic Res. Cardiol., 2008, 103(2), 131-143.
[http://dx.doi.org/10.1007/s00395-008-0703-6] [PMID: 18324369]
[64]
Zheng, O-H.; Hutchins, G.D.; Mock, B.H.; Winkle, W.L. MMP Inhibitor radiotracer [11C]methyl-CGS 27023A: A new pet breast cancer imaging agent. J. Labelled Comp. Radiopharm., 2001, 44(S1), S104-S106.
[http://dx.doi.org/10.1002/jlcr.2580440136]
[65]
Matusiak, N.; Waarde, A.; Bischoff, R.; Oltenfreiter, R.; Wiele, C.; Dierckx, R.; Elsinga, P. Probes for non-invasive matrix metalloproteinase-targeted imaging with PET and SPECT. Curr. Pharm. Des., 2013, 19(25), 4647-4672.
[http://dx.doi.org/10.2174/1381612811319250011] [PMID: 23339739]
[66]
Fei, X.; Zheng, Q.H.; Hutchins, G.D.; Liu, X.; Stone, K.L.; Carlson, K.A.; Mock, B.H.; Winkle, W.L.; Glick-Wilson, B.E.; Miller, K.D.; Fife, R.S.; Sledge, G.W.; Sun, H.B.; Carr, R.E. Synthesis of MMP inhibitor radiotracers [11C]methyl-CGS 27023A and its analogs, new potential PET breast cancer imaging agents. J. Labelled Comp. Radiopharm., 2002, 45(6), 449-470.
[http://dx.doi.org/10.1002/jlcr.570]
[67]
Fei, X.; Zheng, Q.H.; Liu, X.; Wang, J.Q.; Sun, H.B.; Mock, B.H.; Stone, K.L.; Miller, K.D.; Sledge, G.W.; Hutchins, G.D. Synthesis of radiolabeled biphenylsulfonamide matrix metalloproteinase inhibitors as new potential PET cancer imaging agents. Bioorg. Med. Chem. Lett., 2003, 13(13), 2217-2222.
[http://dx.doi.org/10.1016/S0960-894X(03)00382-2] [PMID: 12798337]
[68]
Kopka, K.; Breyholz, H.J.; Wagner, S.; Law, M.P.; Riemann, B.; Schröer, S.; Trub, M.; Guilbert, B.; Levkau, B.; Schober, O.; Schäfers, M. Synthesis and preliminary biological evaluation of new radioiodinated MMP inhibitors for imaging MMP activity in vivo. Nucl. Med. Biol., 2004, 31(2), 257-267.
[http://dx.doi.org/10.1016/j.nucmedbio.2003.08.003] [PMID: 15013492]
[69]
Wagner, S.; Breyholz, H.J.; Law, M.P.; Faust, A.; Höltke, C.; Schröer, S.; Haufe, G.; Levkau, B.; Schober, O.; Schäfers, M.; Kopka, K. Novel fluorinated derivatives of the broad-spectrum MMP inhibitors N-hydroxy-2(R)-[[(4-methoxyphenyl)sulfonyl](benzyl)- and (3-picolyl)-amino]-3-methyl-butanamide as potential tools for the molecular imaging of activated MMPs with PET. J. Med. Chem., 2007, 50(23), 5752-5764.
[http://dx.doi.org/10.1021/jm0708533] [PMID: 17956082]
[70]
Hohn, M.; Chang, M.; Meisel, J.E.; Frost, E.; Schwegmann, K.; Hermann, S.; Schäfers, M.; Riemann, B.; Haufe, G.; Breyholz, H.J.; Wagner, S. Synthesis and preliminary in vitro and in vivo evaluation of thiirane-based slow-binding MMP inhibitors as potential radiotracers for PET imaging. ChemistrySelect, 2018, 3(42), 11729-11736.
[http://dx.doi.org/10.1002/slct.201803093]
[71]
Scherer, R.L.; McIntyre, J.O.; Matrisian, L.M. Imaging matrix metalloproteinases in cancer. Cancer Metastasis Rev., 2008, 27(4), 679-690.
[http://dx.doi.org/10.1007/s10555-008-9152-9] [PMID: 18465089]
[72]
Breyholz, H.J.; Schäfers, M.; Wagner, S.; Höltke, C.; Faust, A.; Rabeneck, H.; Levkau, B.; Schober, O.; Kopka, K. C-5-disubstituted barbiturates as potential molecular probes for noninvasive matrix metalloproteinase imaging. J. Med. Chem., 2005, 48(9), 3400-3409.
[http://dx.doi.org/10.1021/jm049145x] [PMID: 15857146]
[73]
Breyholz, H.J.; Wagner, S.; Faust, A.; Riemann, B.; Höltke, C.; Hermann, S.; Schober, O.; Schäfers, M.; Kopka, K. Radiofluorinated pyrimidine-2,4,6-triones as molecular probes for noninvasive MMP-targeted imaging. ChemMedChem, 2010, 5(5), 777-789.
[http://dx.doi.org/10.1002/cmdc.201000013] [PMID: 20373323]
[74]
Selivanova, S.V.; Stellfeld, T.; Heinrich, T.K.; Müller, A.; Krämer, S.D.; Schubiger, P.A.; Schibli, R.; Ametamey, S.M.; Vos, B.; Meding, J.; Bauser, M.; Hütter, J.; Dinkelborg, L.M. Design, synthesis, and initial evaluation of a high affinity positron emission tomography probe for imaging matrix metalloproteinases 2 and 9. J. Med. Chem., 2013, 56(12), 4912-4920.
[http://dx.doi.org/10.1021/jm400156p] [PMID: 23688254]
[75]
Müller, A.; Krämer, S.D.; Meletta, R.; Beck, K.; Selivanova, S.V.; Rancic, Z.; Kaufmann, P.A.; Vos, B.; Meding, J.; Stellfeld, T.; Heinrich, T.K.; Bauser, M.; Hütter, J.; Dinkelborg, L.M.; Schibli, R.; Ametamey, S.M. Gene expression levels of matrix metalloproteinases in human atherosclerotic plaques and evaluation of radiolabeled inhibitors as imaging agents for plaque vulnerability. Nucl. Med. Biol., 2014, 41(7), 562-569.
[http://dx.doi.org/10.1016/j.nucmedbio.2014.04.085] [PMID: 24853402]
[76]
Hakimzadeh, N.; Pinas, V.A.; Molenaar, G.; de Waard, V.; Lutgens, E.; van Eck-Smit, B.L.F.; de Bruin, K.; Piek, J.J.; Eersels, J.L.H.; Booij, J.; Verberne, H.J.; Windhorst, A.D. Novel molecular imaging ligands targeting matrix metalloproteinases 2 and 9 for imaging of unstable atherosclerotic plaques. PLoS One, 2017, 12(11), e0187767.
[http://dx.doi.org/10.1371/journal.pone.0187767] [PMID: 29190653]
[77]
Higashikata, T.; Yamagishi, M.; Higashi, T.; Nagata, I.; Iihara, K.; Miyamoto, S.; Ishibashi-Ueda, H.; Nagaya, N.; Iwase, T.; Tomoike, H.; Sakamoto, A. Altered expression balance of matrix metalloproteinases and their inhibitors in human carotid plaque disruption: Results of quantitative tissue analysis using real-time RT-PCR method. Atherosclerosis, 2006, 185(1), 165-172.
[http://dx.doi.org/10.1016/j.atherosclerosis.2005.05.039] [PMID: 16039658]
[78]
Honold, L.; Austrup, M.; Faust, A.; Konken, C.P.; Schwegmann, K.; Zinnhardt, B.; Daniliuc, C.G.; Haufe, G.; Schäfers, M.; Kopka, K.; Hermann, S. Towards optimized bioavailability of 99mTc-Labeled barbiturates for non-invasive imaging of matrix metalloproteinase activity. Mol. Imaging Biol., 2022, 24(3), 434-443.
[http://dx.doi.org/10.1007/s11307-021-01668-z] [PMID: 34750717]
[79]
Giepmans, B.N.G.; Adams, S.R.; Ellisman, M.H.; Tsien, R.Y. The fluorescent toolbox for assessing protein location and function. Science, 2006, 312(5771), 217-224.
[http://dx.doi.org/10.1126/science.1124618] [PMID: 16614209]
[80]
Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem., 1998, 67(1), 509-544.
[http://dx.doi.org/10.1146/annurev.biochem.67.1.509] [PMID: 9759496]
[81]
Waggoner, A. Fluorescent labels for proteomics and genomics. Curr. Opin. Chem. Biol., 2006, 10(1), 62-66.
[http://dx.doi.org/10.1016/j.cbpa.2006.01.005] [PMID: 16418012]
[82]
Stack, M.S.; Gray, R.D. Comparison of vertebrate collagenase and gelatinase using a new fluorogenic substrate peptide. J. Biol. Chem., 1989, 264(8), 4277-4281.
[http://dx.doi.org/10.1016/S0021-9258(18)83736-X] [PMID: 2538433]
[83]
Knight, C.G.; Willenbrock, F.; Murphy, G. A novel coumarin-labelled peptide for sensitive continuous assays of the matrix metalloproteinases. FEBS Lett., 1992, 296(3), 263-266.
[http://dx.doi.org/10.1016/0014-5793(92)80300-6] [PMID: 1537400]
[84]
Welch, A.R.; Holman, C.M.; Browner, M.F.; Gehring, M.R.; Kan, C.C.; Van Wart, H.E. Purification of human matrilysin produced in Escherichia coli and characterization using a new optimized fluorogenic peptide substrate. Arch. Biochem. Biophys., 1995, 324(1), 59-64.
[http://dx.doi.org/10.1006/abbi.1995.9929] [PMID: 7503560]
[85]
(a) Oliver McINTYRE, J.; Fingleton, B.; Wells, K.S.; Piston, D.W.; Lynch, C.C.; Gautam, S.; Matrisian, L.M. Development of a novel fluorogenic proteolytic beacon for in vivo detection and imaging of tumour-associated matrix metalloproteinase-7 activity. Biochem. J., 2004, 377(3), 617-628.
[http://dx.doi.org/10.1042/bj20030582] [PMID: 14556651];
(b) Wang, Y.; Shen, P.; Li, C.; Wang, Y.; Liu, Z. Upconversion fluorescence resonance energy transfer based biosensor for ultrasensitive detection of matrix metalloproteinase-2 in blood. Anal. Chem., 2012, 84(3), 1466-1473.
[86]
Weissleder, R.; Tung, C.H.; Mahmood, U.; Bogdanov, A., Jr In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat. Biotechnol., 1999, 17(4), 375-378.
[http://dx.doi.org/10.1038/7933] [PMID: 10207887]
[87]
Bremer, C.; Tung, C.H.; Weissleder, R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat. Med., 2001, 7(6), 743-748.
[http://dx.doi.org/10.1038/89126] [PMID: 11385514]
[88]
Zhu, L.; Ma, Y.; Kiesewetter, D.O.; Wang, Y.; Lang, L.; Lee, S.; Niu, G.; Chen, X. Rational design of matrix metalloproteinase-13 activatable probes for enhanced specificity. ACS Chem. Biol., 2014, 9(2), 510-516.
[http://dx.doi.org/10.1021/cb400698s] [PMID: 24266806]
[89]
Aguilera, T.A.; Olson, E.S.; Timmers, M.M.; Jiang, T.; Tsien, R.Y. Systemic in vivo distribution of activatable cell penetrating peptides is superior to that of cell penetrating peptides. Integr. Biol., 2009, 1(5-6), 371-381.
[http://dx.doi.org/10.1039/b904878b] [PMID: 20023744]
[90]
Myochin, T.; Hanaoka, K.; Komatsu, T.; Terai, T.; Nagano, T. Design strategy for a near-infrared fluorescence probe for matrix metalloproteinase utilizing highly cell permeable boron dipyrromethene. J. Am. Chem. Soc., 2012, 134(33), 13730-13737.
[http://dx.doi.org/10.1021/ja303931b] [PMID: 22830429]
[91]
Warren, A.D.; Kwong, G.A.; Wood, D.K.; Lin, K.Y.; Bhatia, S.N. Point-of-care diagnostics for noncommunicable diseases using synthetic urinary biomarkers and paper microfluidics. Proc. Natl. Acad. Sci., 2014, 111(10), 3671-3676.
[http://dx.doi.org/10.1073/pnas.1314651111] [PMID: 24567404]
[92]
Palomar, Q.; Xu, X.; Selegård, R.; Aili, D.; Zhang, Z. Peptide decorated gold nanoparticle/carbon nanotube electrochemical sensor for ultrasensitive detection of matrix metalloproteinase-7. Sens. Actuators B Chem., 2020, 325, 128789.
[http://dx.doi.org/10.1016/j.snb.2020.128789]
[93]
Kobe, B.; Kemp, B.E. Active site-directed protein regulation. Nature, 1999, 402(6760), 373-376.
[http://dx.doi.org/10.1038/46478] [PMID: 10586874]
[94]
Jessani, N.; Cravatt, B.F. The development and application of methods for activity-based protein profiling. Curr. Opin. Chem. Biol., 2004, 8(1), 54-59.
[http://dx.doi.org/10.1016/j.cbpa.2003.11.004] [PMID: 15036157]
[95]
Speers, A.E.; Cravatt, B.F. Chemical strategies for activity-based proteomics. ChemBioChem, 2004, 5(1), 41-47.
[http://dx.doi.org/10.1002/cbic.200300721] [PMID: 14695510]
[96]
Liu, Y.; Patricelli, M.P.; Cravatt, B.F. Activity-based protein profiling: The serine hydrolases. Proc. Natl. Acad. Sci., 1999, 96(26), 14694-14699.
[http://dx.doi.org/10.1073/pnas.96.26.14694] [PMID: 10611275]
[97]
Chan, E.W.S.; Chattopadhaya, S.; Panicker, R.C.; Huang, X.; Yao, S.Q. Developing photoactive affinity probes for proteomic profiling: Hydroxamate-based probes for metalloproteases. J. Am. Chem. Soc., 2004, 126(44), 14435-14446.
[http://dx.doi.org/10.1021/ja047044i] [PMID: 15521763]
[98]
Saghatelian, A.; Jessani, N.; Joseph, A.; Humphrey, M.; Cravatt, B.F. Activity-based probes for the proteomic profiling of metalloproteases. Proc. Natl. Acad. Sci., 2004, 101(27), 10000-10005.
[http://dx.doi.org/10.1073/pnas.0402784101] [PMID: 15220480]
[99]
Sieber, S.A.; Niessen, S.; Hoover, H.S.; Cravatt, B.F. Proteomic profiling of metalloprotease activities with cocktails of active-site probes. Nat. Chem. Biol., 2006, 2(5), 274-281.
[http://dx.doi.org/10.1038/nchembio781] [PMID: 16565715]
[100]
Leeuwenburgh, M.A.; Geurink, P.P.; Klein, T.; Kauffman, H.F.; van der Marel, G.A.; Bischoff, R.; Overkleeft, H.S. Solid-phase synthesis of succinylhydroxamate peptides: Functionalized matrix metalloproteinase inhibitors. Org. Lett., 2006, 8(8), 1705-1708.
[http://dx.doi.org/10.1021/ol060409e] [PMID: 16597146]
[101]
Dabert-Gay, A.S.; Czarny, B.; Lajeunesse, E.; Thai, R.; Nagase, H.; Dive, V. Covalent modification of matrix metalloproteinases by a photoaffinity probe: influence of nucleophilicity and flexibility of the residue in position 241. Bioconjug. Chem., 2009, 20(2), 367-375.
[http://dx.doi.org/10.1021/bc800478b] [PMID: 19138112]
[102]
Faust, A.; Waschkau, B.; Waldeck, J.; Höltke, C.; Breyholz, H.J.; Wagner, S.; Kopka, K.; Schober, O.; Heindel, W.; Schäfers, M.; Bremer, C. Synthesis and evaluation of a novel hydroxamate based fluorescent photoprobe for imaging of matrix metalloproteinases. Bioconjug. Chem., 2009, 20(5), 904-912.
[http://dx.doi.org/10.1021/bc8004478] [PMID: 19374404]
[103]
Waschkau, B.; Faust, A.; Schäfers, M.; Bremer, C. Performance of a new fluorescence-labeled MMP inhibitor to image tumor MMP activity in vivo in comparison to an MMP-activatable probe. Contrast Media Mol. Imaging, 2013, 8(1), 1-11.
[http://dx.doi.org/10.1002/cmmi.1486] [PMID: 23109387]
[104]
Tsukiji, S.; Miyagawa, M.; Takaoka, Y.; Tamura, T.; Hamachi, I. Ligand-directed tosyl chemistry for protein labeling in vivo. Nat. Chem. Biol., 2009, 5(5), 341-343.
[http://dx.doi.org/10.1038/nchembio.157] [PMID: 19330012]
[105]
Fujishima, S.; Yasui, R.; Miki, T.; Ojida, A.; Hamachi, I. Ligand-directed acyl imidazole chemistry for labeling of membrane-bound proteins on live cells. J. Am. Chem. Soc., 2012, 134(9), 3961-3964.
[http://dx.doi.org/10.1021/ja2108855] [PMID: 22352855]
[106]
Kaminska, M.; Bruyat, P.; Malgorn, C.; Doladilhe, M.; Cassar-Lajeunesse, E.; Fruchart Gaillard, C.; De Souza, M.; Beau, F.; Thai, R.; Correia, I.; Galat, A.; Georgiadis, D.; Lequin, O.; Dive, V.; Bregant, S.; Devel, L. Ligand-directed modification of active matrix metalloproteases: new activity-based probes with no photolabile group. Angew. Chem. Int. Ed., 2021, 60(33), 18272-18279.
[http://dx.doi.org/10.1002/anie.202106117]
[107]
Qiu, W.; Xu, J.; Li, X.; Zhong, L.; Li, J.; Li, J.; Nan, F. Design and synthesis of matrix metalloprotease photoaffinity trimodular probes. Chin. J. Chem., 2009, 27(4), 825-833.
[http://dx.doi.org/10.1002/cjoc.200990138]
[108]
Geurink, P.P.; Klein, T.; Prèly, L.; Paal, K.; Leeuwenburgh, M.A.; van der Marel, G.A.; Kauffman, H.F.; Overkleeft, H.S.; Bischoff, R. Design of peptide hydroxamate-based photoreactive activity-based probes of zinc-dependent metalloproteases. Eur. J. Org. Chem., 2010, 2010(11), 2100-2112.
[http://dx.doi.org/10.1002/ejoc.200901385]
[109]
Lepage, M.; Dow, W.C.; Melchior, M.; You, Y.; Fingleton, B.; Quarles, C.C.; Pépin, C.; Gore, J.C.; Matrisian, L.M.; McIntyre, J.O. Noninvasive detection of matrix metalloproteinase activity in vivo using a novel magnetic resonance imaging contrast agent with a solubility switch. Mol. Imaging, 2007, 6(6), 7290.2007.00035.
[http://dx.doi.org/10.2310/7290.2007.00035] [PMID: 18053410]
[110]
Gringeri, C.V.; Menchise, V.; Rizzitelli, S.; Cittadino, E.; Catanzaro, V.; Dati, G.; Chaabane, L.; Digilio, G.; Aime, S. Novel Gd(III)-based probes for MR molecular imaging of matrix metalloproteinases. Contrast Media Mol. Imaging, 2012, 7(2), 175-184.
[http://dx.doi.org/10.1002/cmmi.478] [PMID: 22434630]
[111]
Liu, G.; Wang, J.; Wunschel, D.S.; Lin, Y. Electrochemical proteolytic beacon for detection of matrix metalloproteinase activities. J. Am. Chem. Soc., 2006, 128(38), 12382-12383.
[http://dx.doi.org/10.1021/ja0626638] [PMID: 16984165]
[112]
Miki, K.; Imaizumi, N.; Nogita, K.; Oe, M.; Mu, H.; Huo, W.; Ohe, K. Aluminum naphthalocyanine conjugate as an MMP-2-activatable photoacoustic probe for in vivo tumor imaging. Methods Enzymol., 2021, 657, 89-109.
[http://dx.doi.org/10.1016/bs.mie.2021.07.001] [PMID: 34353500]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy