Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

GSK3β/ITCH/c-FLIP Axis Counteracts TRAIL-induced Apoptosis in Human Lung Adenocarcinoma Cells

Author(s): Xiaofen Zheng, Donglan Huang, Xiaohui Liu, Qiu-Yu Liu, Xuejuan Gao* and Langxia Liu*

Volume 30, Issue 3, 2023

Published on: 10 February, 2023

Page: [242 - 249] Pages: 8

DOI: 10.2174/0929866530666230112165515

Price: $65

conference banner
Abstract

Aims: Further investigation on the mechanism of action of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in NSCLC would shed light on the understanding of TRAIL resistance and provide new clues for the counter-strategy.

Background: Cellular FLICE-inhibitory protein (c-FLIP) is a critical inhibitor of TRAIL-induced apoptosis. Our previous study suggested that glycogen synthase kinase 3β (GSK3β) positively regulated c-FLIP expression in human lung adenocarcinoma cells. Meanwhile, other studies reported that c-FLIP was degraded by HECT-type E3 ligase ITCH (Itchy E3 Ubiquitin Protein Ligase) via the proteasome pathway.

Objective: We will explore whether ITCH is involved in the expression regulation of c-FLIP positively controlled by GSK3β during the treatment of TRAIL.

Methods: Human lung adenocarcinoma cells were used to stably overexpress and knockdown GSK3β. Quantitative real-time PCR (qRT-PCR) assay was used to test the expressional level of mRNA of genes. Western blot analysis was employed to detect the expression of proteins at the protein level. siRNA of ITCH was used to knock down its expression. TRAIL treatment was used to cause apoptosis.

Results: In the present study, we have confirmed the degradation of c-FLIP by ITCH protein and the downregulation of ITCH expression by GSK3β in lung adenocarcinoma cells. Moreover, ITCH silencing reversed the downregulation of c-FLIP protein caused by GSK3β-knockdown in the cells. Accordingly, TRAIL-induced apoptosis facilitated by GSK3β knockdown was blocked by the combined interference of ITCH.

Conclusion: These results suggested that GSK3β/ITCH axis regulated the stability of c-FLIP and influenced TRAIL-induced apoptosis. Taken together, our study revealed a GSK3β/ITCH/c-FLIP axis, which counteracts TRAIL-induced apoptosis in human lung adenocarcinoma cells.

Keywords: ITCH, GSK3β, c-FLIP, TRAIL, lung adenocarcinoma, E3 ligase.

Graphical Abstract
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Liu, S.; Polsdofer, E.V.; Zhou, L.; Ruan, S.; Lyu, H.; Hou, D.; Liu, H.; Thor, A.D.; He, Z.; Liu, B. Upregulation of endogenous TRAIL-elicited apoptosis is essential for metformin-mediated antitumor activity against TNBC and NSCLC. Mol. Ther. Oncolytics, 2021, 21, 303-314.
[PMID: 34141868]
[3]
Mariniello, A.; Novello, S.; Scagliotti, G.V.; Ramalingam, S.S. Double immune checkpoint blockade in advanced NSCLC. Crit. Rev. Oncol. Hematol., 2020, 152, 102980.
[http://dx.doi.org/10.1016/j.critrevonc.2020.102980] [PMID: 32516722]
[4]
Walczak, H.; Miller, R.E.; Ariail, K.; Gliniak, B.; Griffith, T.S.; Kubin, M.; Chin, W.; Jones, J.; Woodward, A.; Le, T.; Smith, C.; Smolak, P.; Goodwin, R.G.; Rauch, C.T.; Schuh, J.C.L.; Lynch, D.H. Tumoricidal activity of tumor necrosis factor–related apoptosis-inducing ligand in vivo. Nat. Med., 1999, 5(2), 157-163.
[http://dx.doi.org/10.1038/5517] [PMID: 9930862]
[5]
Todaro, M.; Lombardo, Y.; Francipane, M.G.; Alea, M.P.; Cammareri, P.; Iovino, F.; Di Stefano, A.B.; Di Bernardo, C.; Agrusa, A.; Condorelli, G.; Walczak, H.; Stassi, G. Apoptosis resistance in epithelial tumors is mediated by tumor-cell-derived interleukin-4. Cell Death Differ., 2008, 15(4), 762-772.
[http://dx.doi.org/10.1038/sj.cdd.4402305] [PMID: 18202702]
[6]
Shi, L.; Xiong, Y.; Hu, X.; Wang, Z.; Xie, C. BRD4 inhibition promotes TRAIL-induced apoptosis by suppressing the transcriptional activity of NF-κB in NSCLC. Int. J. Med. Sci., 2021, 18(14), 3090-3096.
[PMID: 34400879]
[7]
Deng, D.; Shah, K. TRAIL of hope meeting resistance in cancer. Trends Cancer, 2020, 6(12), 989-1001.
[PMID: 32718904]
[8]
Hietakangas, V.; Poukkula, M.; Heiskanen, K.M.; Karvinen, J.T.; Sistonen, L.; Eriksson, J.E. Erythroid differentiation sensitizes K562 leukemia cells to TRAIL-induced apoptosis by downregu-lation of c-FLIP. Mol. Cell. Biol., 2003, 23(4), 1278-1291.
[PMID: 12556488]
[9]
Zhuang, H.; Jiang, W.; Zhang, X.; Qiu, F.; Gan, Z.; Cheng, W.; Zhang, J.; Guan, S.; Tang, B.; Huang, Q.; Wu, X.; Huang, X.; Jiang, W.; Hu, Q.; Lu, M.; Hua, Z.C. Suppression of HSP70 expression sensitizes NSCLC cell lines to TRAIL-induced apoptosis by upregulating DR4 and DR5 and downregulating c-FLIP-L expressions. J. Mol. Med. , 2013, 91(2), 219-235.
[http://dx.doi.org/10.1007/s00109-012-0947-3] [PMID: 22948392]
[10]
Wajant, H. Targeting the FLICE inhibitory protein (FLIP) in cancer therapy. Mol. Interv., 2003, 3(3), 124-127.
[PMID: 14993418]
[11]
Safa, A.R. c-FLIP, a master anti-apoptotic regulator. Exp. Oncol., 2012, 34(3), 176-184.
[PMID: 23070002]
[12]
Safa, A.R.; Pollok, K.E. Targeting the anti-apoptotic protein c-FLIP for cancer therapy. Cancers , 2011, 3(2), 1639-1671.
[http://dx.doi.org/10.3390/cancers3021639] [PMID: 22348197]
[13]
Ricci, M.S.; Jin, Z.; Dews, M.; Yu, D.; Thomas-Tikhonenko, A.; Dicker, D.T.; El-Deiry, W.S. Direct repression of FLIP expression by c-myc is a major determinant of TRAIL sensitivity. Mol. Cell. Biol., 2004, 24(19), 8541-8555.
[PMID: 15367674]
[14]
Siegmund, D.; Hadwiger, P.; Pfizenmaier, K.; Vornlocher, H.P.; Wajant, H. Selective inhibition of FLICE-like inhibitory protein expression with small interfering RNA oligonucleotides is sufficient to sensitize tumor cells for TRAIL-induced apoptosis. Mol. Med., 2002, 8(11), 725-732.
[PMID: 12520089]
[15]
Gao, X.; Feng, J.; He, Y.; Xu, F.; Fan, X.; Huang, W.; Xiong, H.; Liu, Q.; Liu, W.; Liu, X.; Sun, X.; He, Q.Y.; Zhang, Q.; Liu, L. hnRNPK inhibits GSK3β Ser9 phosphorylation, thereby stabilizing c-FLIP and contributes to TRAIL resistance in H1299 lung adenocarcinoma cells. Sci. Rep., 2016, 6, 22999.
[PMID: 26972480]
[16]
Le Clorennec, C.; Lazrek, Y.; Dubreuil, O.; Sampaio, C.; Larbouret, C.; Lanotte, R.; Poul, M.A.; Barret, J.M.; Prost, J.F.; Pèlegrin, A.; Chardès, T. ITCH-dependent proteasomal degradation of c-FLIP induced by the anti-HER3 antibody 9F7-F11 promotes DR5/caspase 8-mediated apoptosis of tumor cells. Cell Commun. Signal., 2019, 17(1), 106.
[http://dx.doi.org/10.1186/s12964-019-0413-8] [PMID: 31443721]
[17]
Yang, F.; Tay, K.H.; Dong, L.; Thorne, R.F.; Jiang, C.C.; Yang, E.; Tseng, H-Y.; Liu, H.; Christopherson, R.; Hersey, P.; Zhang, X.D. Cystatin B inhibition of TRAIL-induced apoptosis is associated with the protection of FLIPL from degradation by the E3 ligase itch in human melanoma cells. Cell Death Differ., 2010, 17(8), 1354-1367.
[http://dx.doi.org/10.1038/cdd.2010.29] [PMID: 20300110]
[18]
Chang, L.; Kamata, H.; Solinas, G.; Luo, J.L.; Maeda, S.; Venuprasad, K.; Liu, Y.C.; Karin, M. The E3 ubiquitin ligase itch couples JNK activation to TNF alpha-induced cell death by inducing c-FLIP(L) turnover. Cell, 2006, 124(3), 601-613.
[PMID: 16469705]
[19]
Bagnoli, M.; Canevari, S.; Mezzanzanica, D. Cellular FLICE-inhibitory protein (c-FLIP) signalling: A key regulator of receptor-mediated apoptosis in physiologic context and in cancer. Int. J. Biochem. Cell Biol., 2010, 42(2), 210-213.
[http://dx.doi.org/10.1016/j.biocel.2009.11.015] [PMID: 19932761]
[20]
Deng, C.; Liu, X.; Zhang, C.; Li, L.; Wen, S.; Gao, X.; Liu, L. ANXA1–GSK3β interaction and its involvement in NSCLC metastasis. Acta Biochim. Biophys. Sin. , 2021, 53(7), 912-924.
[http://dx.doi.org/10.1093/abbs/gmab067] [PMID: 34002210]
[21]
Xu, L.; Zhang, T.; Huang, W.; Liu, X.; Lu, J.; Gao, X.; Zhang, Y.F.; Liu, L. YAP mediates the positive regulation of hnRNPK on the lung adenocarcinoma H1299 cell growth. Acta Biochim. Biophys. Sin. , 2019, 51(7), 677-687.
[http://dx.doi.org/10.1093/abbs/gmz053] [PMID: 31187136]
[22]
Mori, T.; Doi, R.; Toyoda, E.; Koizumi, M.; Ito, D.; Kami, K.; Kida, A.; Masui, T.; Kawaguchi, Y.; Fujimoto, K. Regulation of the resistance to TRAIL-induced apoptosis as a new strategy for pancreatic cancer. Surgery, 2005, 138(1), 71-77.
[http://dx.doi.org/10.1016/j.surg.2005.03.001] [PMID: 16003319]
[23]
Liu, Y.; Bertram, C.C.; Shi, Q.; Zinkel, S.S. Proapoptotic Bid mediates the Atr-directed DNA damage response to replicative stress. Cell Death Differ., 2011, 18(5), 841-852.
[http://dx.doi.org/10.1038/cdd.2010.151] [PMID: 21113148]
[24]
Soutto, M.; Peng, D.; Katsha, A.; Chen, Z.; Piazuelo, M.B.; Washington, M.K.; Belkhiri, A.; Correa, P.; El-Rifai, W. Activation of β-catenin signalling by TFF1 loss promotes cell proliferation and gastric tumorigenesis. Gut, 2015, 64(7), 1028-1039.
[http://dx.doi.org/10.1136/gutjnl-2014-307191] [PMID: 25107557]
[25]
Schwarz, S.E.; Rosa, J.L.; Scheffner, M. Characterization of human hect domain family members and their interaction with UbcH5 and UbcH7. J. Biol. Chem., 1998, 273(20), 12148-12154.
[PMID: 9575161]
[26]
Hernandez, A.; Thomas, R.; Smith, F.; Sandberg, J.; Kim, S.; Chung, D.H.; Evers, B.M. Butyrate sensitizes human colon cancer cells to TRAIL-mediated apoptosis. Surgery, 2001, 130(2), 265-272.
[http://dx.doi.org/10.1067/msy.2001.115897] [PMID: 11490359]
[27]
Embi, N.; Rylatt, D.B.; Cohen, P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur. J. Biochem., 1980, 107(2), 519-527.
[PMID: 6249596]
[28]
Doble, B.W.; Woodgett, J.R. GSK-3: Tricks of the trade for a multi-tasking kinase. J. Cell Sci., 2003, 116(7), 1175-1186.
[http://dx.doi.org/10.1242/jcs.00384] [PMID: 12615961]
[29]
Cross, D.A.E.; Alessi, D.R.; Cohen, P.; Andjelkovich, M.; Hemmings, B.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 1995, 378(6559), 785-789.
[http://dx.doi.org/10.1038/378785a0] [PMID: 8524413]
[30]
Eldar-Finkelman, H.; Seger, R.; Vandenheede, J.R.; Krebs, E.G. Inactivation of glycogen synthase kinase-3 by epidermal growth factor is mediated by mitogen-activated protein kinase/p90 ribosomal protein S6 kinase signaling pathway in NIH/3T3 cells. J. Biol. Chem., 1995, 270(3), 987-990.
[http://dx.doi.org/10.1074/jbc.270.3.987] [PMID: 7836418]
[31]
Kim, L.; Liu, J.; Kimmel, A.R. The novel tyrosine kinase ZAK1 activates GSK3 to direct cell fate specification. Cell, 1999, 99(4), 399-408.
[http://dx.doi.org/10.1016/S0092-8674(00)81526-3] [PMID: 10571182]
[32]
Klein, P.S.; Melton, D.A. A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. USA, 1996, 93(16), 8455-8459.
[http://dx.doi.org/10.1073/pnas.93.16.8455] [PMID: 8710892]
[33]
Ryves, W.J.; Dajani, R.; Pearl, L.; Harwood, A.J. Glycogen synthase kinase-3 inhibition by lithium and beryllium suggests the presence of two magnesium binding sites. Biochem. Biophys. Res. Commun., 2002, 290(3), 967-972.
[http://dx.doi.org/10.1006/bbrc.2001.6305] [PMID: 11798168]
[34]
Domoto, T.; Pyko, I.V.; Furuta, T.; Miyashita, K.; Uehara, M.; Shimasaki, T.; Nakada, M.; Minamoto, T. Glycogen synthase kinase-3β is a pivotal mediator of cancer invasion and resistance to therapy. Cancer Sci., 2016, 107(10), 1363-1372.
[PMID: 27486911]
[35]
Lin, J.; Song, T.; Li, C.; Mao, W. GSK-3β in DNA repair, apoptosis, and resistance of chemotherapy, radiotherapy of cancer. Biochim. Biophys. Acta Mol. Cell Res., 2020, 1867(5), 118659.
[PMID: 31978503]
[36]
Gao, X.; Xu, F.; Zhang, H.T.; Chen, M.; Huang, W.; Zhang, Q.; Zeng, Q.; Liu, L. PKCα-GSK3β-NF-κB signaling pathway and the possible involvement of TRIM21 in TRAIL-induced apoptosis. Biochem. Cell Biol., 2016, 94(3), 256-264.
[http://dx.doi.org/10.1139/bcb-2016-0009] [PMID: 27219672]
[37]
Beurel, E.; Blivet-Van Eggelpoël, M.J.; Kornprobst, M.; Moritz, S.; Delelo, R.; Paye, F.; Housset, C.; Desbois-Mouthon, C. Glycogen synthase kinase-3 inhibitors augment TRAIL-induced apoptotic death in human hepatoma cells. Biochem. Pharmacol., 2009, 77(1), 54-65.
[http://dx.doi.org/10.1016/j.bcp.2008.09.026] [PMID: 18938143]
[38]
Beurel, E.; Jope, R.S. The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog. Neurobiol., 2006, 79(4), 173-189.
[PMID: 16935409]
[39]
Bernassola, F.; Karin, M.; Ciechanover, A.; Melino, G. The HECT family of E3 ubiquitin ligases: Multiple players in cancer development. Cancer Cell, 2008, 14(1), 10-21.
[http://dx.doi.org/10.1016/j.ccr.2008.06.001] [PMID: 18598940]
[40]
Santini, S.; Stagni, V.; Giambruno, R.; Fianco, G.; Di Benedetto, A.; Mottolese, M.; Pellegrini, M.; Barilà, D. ATM kinase activity modulates ITCH E3-ubiquitin ligase activity. Oncogene, 2014, 33(9), 1113-1123.
[http://dx.doi.org/10.1038/onc.2013.52] [PMID: 23435430]
[41]
Panner, A.; Crane, C.A.; Weng, C.; Feletti, A.; Fang, S.; Parsa, A.T.; Pieper, R.O. Ubiquitin-specific protease 8 links the PTEN-Akt-AIP4 pathway to the control of FLIPS stability and TRAIL sensitivity in glioblastoma multiforme. Cancer Res., 2010, 70(12), 5046-5053.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3979] [PMID: 20484045]
[42]
Liu, Y.; Lau, J.; Li, W.; Tempel, W.; Li, L.; Dong, A.; Narula, A.; Qin, S.; Min, J. Structural basis for the regulatory role of the PPxY motifs in the thioredoxin-interacting protein TXNIP. Biochem. J., 2016, 473(2), 179-187.
[http://dx.doi.org/10.1042/BJ20150830] [PMID: 26527736]
[43]
Chastagner, P.; Israël, A.; Brou, C. AIP4/Itch regulates Notch receptor degradation in the absence of ligand. PLoS One, 2008, 3(7), e2735.
[PMID: 18628966]
[44]
Marcotullio, L.D.; Ferretti, E.; Greco, A.; De Smaele, E.; Po, A.; Sico, M.A.; Alimandi, M.; Giannini, G.; Maroder, M.; Screpanti, I.; Gulino, A. Numb is a suppressor of Hedgehog signalling and targets Gli1 for Itch-dependent ubiquitination. Nat. Cell Biol., 2006, 8(12), 1415-1423.
[http://dx.doi.org/10.1038/ncb1510] [PMID: 17115028]
[45]
Rossi, M.; Aqeilan, R.I.; Neale, M.; Candi, E.; Salomoni, P.; Knight, R.A.; Croce, C.M.; Melino, G. The E3 ubiquitin ligase Itch controls the protein stability of p63. Proc. Natl. Acad. Sci. USA, 2006, 103(34), 12753-12758.
[http://dx.doi.org/10.1073/pnas.0603449103] [PMID: 16908849]
[46]
Rossi, M.; De Laurenzi, V.; Munarriz, E.; Green, D.R.; Liu, Y.C.; Vousden, K.H.; Cesareni, G.; Melino, G. The ubiquitin-protein ligase Itch regulates p73 stability. EMBO J., 2005, 24(4), 836-848.
[PMID: 15678106]
[47]
Di Marcotullio, L.; Greco, A.; Mazzà, D.; Canettieri, G.; Pietrosanti, L.; Infante, P.; Coni, S.; Moretti, M.; De Smaele, E.; Ferretti, E.; Screpanti, I.; Gulino, A. Numb activates the E3 ligase Itch to control Gli1 function through a novel degradation signal. Oncogene, 2011, 30(1), 65-76.
[http://dx.doi.org/10.1038/onc.2010.394] [PMID: 20818436]
[48]
Oberst, A.; Malatesta, M.; Aqeilan, R.I.; Rossi, M.; Salomoni, P.; Murillas, R.; Sharma, P.; Kuehn, M.R.; Oren, M.; Croce, C.M.; Bernassola, F.; Melino, G. The Nedd4-binding partner 1 (N4BP1) protein is an inhibitor of the E3 ligase Itch. Proc. Natl. Acad. Sci. USA, 2007, 104(27), 11280-11285.
[http://dx.doi.org/10.1073/pnas.0701773104] [PMID: 17592138]
[49]
Wang, X.; Fang, Z.; Wang, A.; Luo, C.; Cheng, X.; Lu, M. Lithium suppresses hedgehog signaling via promoting ITCH E3 ligase activity and Gli1-SUFU interaction in PDA cells. Front. Pharmacol., 2017, 8, 820.
[http://dx.doi.org/10.3389/fphar.2017.00820] [PMID: 29249966]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy