Review Article

NR2F1-AS1:肿瘤发生中的功能性长链非编码RNA

卷 30, 期 37, 2023

发表于: 02 February, 2023

页: [4266 - 4276] 页: 11

弟呕挨: 10.2174/0929867330666230112165503

价格: $65

Open Access Journals Promotions 2
conference banner
摘要

背景:NR2F1-AS1是一种长链非编码RNA (lnc RNA),参与多种生物过程。它在人类疾病的病理生理,特别是肿瘤的发生和发展中起着不可或缺的作用。因此,它可能是许多肿瘤生物治疗药物的一个有希望的靶点。本综述旨在揭示RNA NR2F1-AS1在肿瘤细胞中的病理生理活动和过程。 方法:本综述的内容基于从PubMed获得的信息。在数据检索中,选择“NR2F1-AS1”作为第一个关键词,选择“cancer”作为第二个关键词。本综述选取并总结了2019-2021年间发表的关于NR2F1-AS1在肿瘤发生发展中的生物学功能和机制的研究。 结果:研究发现,NR2F1-AS1调控多种生物活性,如增殖、侵袭、迁移和凋亡。它作为一种致癌基因,因为它在多种恶性肿瘤中异常表达并促进癌症的进展,包括食管鳞状细胞癌、非小细胞肺癌、乳腺癌、神经母细胞瘤、子宫内膜癌、甲状腺癌和胃癌。然而,在宫颈鳞状细胞癌中,NR2F1-AS1明显抑制了癌症的进展。 结论:NR2F1-AS1是治疗多种癌症的潜在新生物标志物和治疗靶点。

关键词: NR2F1-AS1,长链非编码RNA, ceRNA,癌症,增殖,肿瘤发生。

« Previous
[1]
Mattick, J.S. Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep., 2001, 2(11), 986-991.
[http://dx.doi.org/10.1093/embo-reports/kve230] [PMID: 11713189]
[2]
Shi, X.; Sun, M.; Liu, H.; Yao, Y.; Song, Y. Long non-coding RNAs: A new frontier in the study of human diseases. Cancer Lett., 2013, 339(2), 159-166.
[http://dx.doi.org/10.1016/j.canlet.2013.06.013] [PMID: 23791884]
[3]
Bridges, M.C.; Daulagala, A.C.; Kourtidis, A. LNCcation: lncRNA localization and function. J. Cell Biol., 2021, 220(2), e202009045.
[http://dx.doi.org/10.1083/jcb.202009045] [PMID: 33464299]
[4]
Zhang, A.; Xu, M.; Mo, Y.Y. Role of the lncRNA-p53 regulatory network in cancer. J. Mol. Cell Biol., 2014, 6(3), 181-191.
[http://dx.doi.org/10.1093/jmcb/mju013] [PMID: 24721780]
[5]
Krawczyk, M.; Emerson, B.M. p50-associated COX-2 extragenic RNA (PACER) activates COX-2 gene expression by occluding repressive NF-κB complexes. eLife, 2014, 3, e01776.
[http://dx.doi.org/10.7554/eLife.01776] [PMID: 24843008]
[6]
Liu, B.; Sun, L.; Liu, Q.; Gong, C.; Yao, Y.; Lv, X.; Lin, L.; Yao, H.; Su, F.; Li, D.; Zeng, M.; Song, E. A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis. Cancer Cell, 2015, 27(3), 370-381.
[http://dx.doi.org/10.1016/j.ccell.2015.02.004] [PMID: 25759022]
[7]
Rapicavoli, N.A.; Qu, K.; Zhang, J.; Mikhail, M.; Laberge, R.M.; Chang, H.Y. A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. eLife, 2013, 2, e00762.
[http://dx.doi.org/10.7554/eLife.00762] [PMID: 23898399]
[8]
Peng, W-X.; Koirala, P.; Mo, Y-Y. LncRNA-mediated regulation of cell signaling in cancer. Oncogene, 2017, 36(41), 5661-5667.
[http://dx.doi.org/10.1038/onc.2017.184] [PMID: 28604750]
[9]
Khalil, B.D.; Sanchez, R.; Rahman, T.; Rodriguez-Tirado, C.; Moritsch, S.; Martinez, A.R.; Miles, B.; Farias, E.; Mezei, M.; Nobre, A.R.; Singh, D.; Kale, N.; Sproll, K.C.; Sosa, M.S.; Aguirre-Ghiso, J.A. An NR2F1-specific agonist suppresses metastasis by inducing cancer cell dormancy. J. Exp. Med., 2022, 219(1), e20210836.
[http://dx.doi.org/10.1084/jem.20210836] [PMID: 34812843]
[10]
Tocco, C.; Bertacchi, M.; Studer, M. Structural and functional aspects of the neurodevelopmental gene NR2F1: From animal models to human pathology. Front. Mol. Neurosci., 2021, 14, 767965.
[http://dx.doi.org/10.3389/fnmol.2021.767965] [PMID: 34975398]
[11]
Bertacchi, M.; Romano, A.L.; Loubat, A.; Tran Mau-Them, F.; Willems, M.; Faivre, L.; Khau van Kien, P.; Perrin, L.; Devillard, F.; Sorlin, A.; Kuentz, P.; Philippe, C.; Garde, A.; Neri, F.; Di Giaimo, R.; Oliviero, S.; Cappello, S.; D’Incerti, L.; Frassoni, C.; Studer, M. NR2F1 regulates regional progenitor dynamics in the mouse neocortex and cortical gyrification in BBSOAS patients. EMBO J., 2020, 39(13), e104163.
[http://dx.doi.org/10.15252/embj.2019104163] [PMID: 32484994]
[12]
Sosa, M.S.; Parikh, F.; Maia, A.G.; Estrada, Y.; Bosch, A.; Bragado, P.; Ekpin, E.; George, A.; Zheng, Y.; Lam, H.M.; Morrissey, C.; Chung, C.Y.; Farias, E.F.; Bernstein, E.; Aguirre-Ghiso, J.A. NR2F1 controls tumour cell dormancy via SOX9- and RARβ-driven quiescence programmes. Nat. Commun., 2015, 6(1), 6170.
[http://dx.doi.org/10.1038/ncomms7170] [PMID: 25636082]
[13]
Rusk, N. Understanding noncoding RNAs. Nat. Methods, 2015, 12(1), 35-35.
[http://dx.doi.org/10.1038/nmeth.3235] [PMID: 25699315]
[14]
Huang, H.; Chen, J.; Ding, C.M.; Jin, X.; Jia, Z.M.; Peng, J. Lnc RNA NR 2F1- AS 1 regulates hepatocellular carcinoma oxaliplatin resistance by targeting ABCC 1 via miR-363. J. Cell. Mol. Med., 2018, 22(6), 3238-3245.
[http://dx.doi.org/10.1111/jcmm.13605] [PMID: 29602203]
[15]
Ren, P.; Zhang, H.; Chang, L.; Hong, X.D.; Xing, L. LncRNA NR2F1-AS1 promotes proliferation and metastasis of ESCC cells via regulating EMT. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(7), 3686-3693.
[http://dx.doi.org/10.26355/eurrev_202004_20831] [PMID: 32329844]
[16]
Zhang, Y.; Zheng, A.; Xu, R.; Zhou, F.; Hao, A.; Yang, H.; Yang, P. NR2F1-induced NR2F1-AS1 promotes esophageal squamous cell carcinoma progression via activating Hedgehog signaling pathway. Biochem. Biophys. Res. Commun., 2019, 519(3), 497-504.
[http://dx.doi.org/10.1016/j.bbrc.2019.09.015] [PMID: 31530388]
[17]
Guo, F.; Fu, Q.; Wang, Y.; Sui, G. Long non-coding RNA NR2F1-AS1 promoted proliferation and migration yet suppressed apoptosis of thyroid cancer cells through regulating miRNA-338-3p/ CCND1 axis. J. Cell. Mol. Med., 2019, 23(9), 5907-5919.
[http://dx.doi.org/10.1111/jcmm.14386] [PMID: 31304680]
[18]
Yang, C.; Liu, Z.; Chang, X.; Xu, W.; Gong, J.; Chai, F.; Cui, D. NR2F1-AS1 regulated miR-423-5p/SOX12 to promote proliferation and invasion of papillary thyroid carcinoma. J. Cell. Biochem., 2020, 121(2), 2009-2018.
[http://dx.doi.org/10.1002/jcb.29435] [PMID: 31692033]
[19]
Zhang, C.; Wu, S.; Song, R.; Liu, C. Long noncoding RNA NR2F1-AS1 promotes the malignancy of non-small cell lung cancer via sponging microRNA-493-5p and thereby increasing ITGB1 expression. Aging, 2021, 13(5), 7660-7675.
[http://dx.doi.org/10.18632/aging.103564] [PMID: 32784268]
[20]
Zhang, Q.; Li, T.; Wang, Z.; Kuang, X.; Shao, N.; Lin, Y. lncRNA NR2F1-AS1 promotes breast cancer angiogenesis through activating IGF-1/IGF-1R/ERK pathway. J. Cell. Mol. Med., 2020, 24(14), 8236-8247.
[http://dx.doi.org/10.1111/jcmm.15499] [PMID: 32548873]
[21]
Liu, L.; Zhao, H.; He, H.H.; Huang, J.; Xu, Y.Y.; Li, X.L.; Wu, Y.; Wang, J.; Zhu, Y.B. Long non-coding RNA NR2F1-AS1 promoted neuroblastoma progression through miR-493-5p/TRIM2 axis. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(24), 12748-12756.
[http://dx.doi.org/10.26355/eurrev_202012_24174] [PMID: 33378023]
[22]
Wang, L.; Zhao, S.; Mingxin, Y.U. LncRNA NR2F1-AS1 is involved in the progression of endometrial cancer by sponging miR-363 to target SOX4. Pharmazie, 2019, 74(5), 295-300.
[http://dx.doi.org/10.1691/ph.2019.8905] [PMID: 31109400]
[23]
Peng, J.; Hou, F.; Zhu, W.; Li, J.; Teng, Z. lncRNA NR2F1-AS1 regulates miR-17/SIK1 axis to suppress the invasion and migration of cervical squamous cell carcinoma cells. Reprod. Sci., 2020, 27(7), 1534-1539.
[http://dx.doi.org/10.1007/s43032-020-00149-y] [PMID: 31994002]
[24]
Zuo, F.; Zhang, Y.; Li, J.; Yang, S.; Chen, X. Long noncoding RNA NR2F1-AS1 plays a carcinogenic role in gastric cancer by recruiting transcriptional factor SPI1 to upregulate ST8SIA1 expression. Bioengineered, 2021, 12(2), 12345-12356.
[http://dx.doi.org/10.1080/21655979.2021.2001168] [PMID: 34738863]
[25]
Liao, X.; Wen, L.; Luo, L. The effect and mechanism of lncRNA NR2F1-As1/miR-493-5p/MAP3K2 axis in the progression of gastric cancer. J. Oncol., 2021, 2021, 3881932.
[http://dx.doi.org/10.1155/2021/3881932] [PMID: 34335755]
[26]
Lv, J.; Zhang, S.; Liu, Y.; Li, C.; Guo, T.; Zhang, S.; Li, Z.; Jiao, Z.; Sun, H.; Zhang, Y.; Xu, L. NR2F1-AS1/miR-190a/PHLDB2 induces the epithelial–mesenchymal transformation process in gastric cancer by promoting phosphorylation of AKT3. Front. Cell Dev. Biol., 2021, 9, 688949.
[http://dx.doi.org/10.3389/fcell.2021.688949] [PMID: 34746118]
[27]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[28]
Chmielik, E.; Rusinek, D.; Oczko-Wojciechowska, M.; Jarzab, M.; Krajewska, J.; Czarniecka, A.; Jarzab, B. Heterogeneity of thyroid cancer. Pathobiology, 2018, 85(1-2), 117-129.
[http://dx.doi.org/10.1159/000486422]
[29]
Cheng, L.; Zhou, R.; Chen, M.; Feng, L.; Li, H. MicroRNA-150 targets Rho-associated protein kinase 1 to inhibit cell proliferation, migration and invasion in papillary thyroid carcinoma. Mol. Med. Rep., 2017, 16(2), 2217-2224.
[http://dx.doi.org/10.3892/mmr.2017.6842] [PMID: 28656254]
[30]
Carling, T.; Udelsman, R. Thyroid cancer. Annu. Rev. Med., 2014, 65(1), 125-137.
[http://dx.doi.org/10.1146/annurev-med-061512-105739] [PMID: 24274180]
[31]
Vasileiadis, I.; Boutzios, G.; Karalaki, M.; Misiakos, E.; Karatzas, T. Papillary thyroid carcinoma of the isthmus: Total thyroidectomy or isthmusectomy? Am. J. Surg., 2018, 216(1), 135-139.
[http://dx.doi.org/10.1016/j.amjsurg.2017.09.008] [PMID: 28954712]
[32]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[33]
Weis, S.M.; Cheresh, D.A. Tumor angiogenesis: Molecular pathways and therapeutic targets. Nat. Med., 2011, 17(11), 1359-1370.
[http://dx.doi.org/10.1038/nm.2537] [PMID: 22064426]
[34]
Sato, Y. Molecular diagnosis of tumor angiogenesis and anti-angiogenic cancer therapy. Int. J. Clin. Oncol., 2003, 8(4), 200-206.
[http://dx.doi.org/10.1007/s10147-003-0342-8] [PMID: 12955574]
[35]
Nakagawara, A.; Li, Y.; Izumi, H.; Muramori, K.; Inada, H.; Nishi, M. Neuroblastoma. Jpn. J. Clin. Oncol., 2018, 48(3), 214-241.
[http://dx.doi.org/10.1093/jjco/hyx176] [PMID: 29378002]
[36]
Ke, X.X.; Zhang, D.; Zhao, H.; Hu, R.; Dong, Z.; Yang, R.; Zhu, S.; Xia, Q.; Ding, H.F.; Cui, H. Phox2B correlates with MYCN and is a prognostic marker for neuroblastoma development. Oncol. Lett., 2015, 9(6), 2507-2514.
[http://dx.doi.org/10.3892/ol.2015.3088] [PMID: 26137098]
[37]
Yeramian, A.; Moreno-Bueno, G.; Dolcet, X.; Catasus, L.; Abal, M.; Colas, E.; Reventos, J.; Palacios, J.; Prat, J.; Matias-Guiu, X. Endometrial carcinoma: Molecular alterations involved in tumor development and progression. Oncogene, 2013, 32(4), 403-413.
[http://dx.doi.org/10.1038/onc.2012.76] [PMID: 22430211]
[38]
Cohen, P.A.; Jhingran, A.; Oaknin, A.; Denny, L. Cervical cancer. Lancet, 2019, 393(10167), 169-182.
[http://dx.doi.org/10.1016/S0140-6736(18)32470-X] [PMID: 30638582]
[39]
Imounga, L.M.; Plenet, J.; Belliardo, S.; Chine, E.C.; Louvel, D.; Cenciu, B.; Couppié, P.; Alsibai, K.D.; Nacher, M. Gastric cancer incidence and mortality in french guiana: South American or french? J. Gastrointest. Cancer, 2022, 53(1), 204-210.
[http://dx.doi.org/10.1007/s12029-020-00572-z] [PMID: 33411259]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy