Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Impact of Microgravity on Virulence, Antibiotic Resistance and Gene Expression in Beneficial and Pathogenic Microorganisms

Author(s): Maryam Salavatifar, Seyedeh Meysameh Ahmadi, Svetoslav Dimitrov Todorov, Kianoush Khosravi-Darani* and Abhishek Tripathy

Volume 23, Issue 16, 2023

Published on: 27 January, 2023

Page: [1608 - 1622] Pages: 15

DOI: 10.2174/1389557523666230109160620

conference banner
Abstract

During space missions, the impact of the space conditions (both microgravity and radiation) on physiologic and metabolic aspects of the microbiota of astronauts' bodies should be considered. Changes depend on the mission's duration, types of organisms, and ecology. Reported alterations are related to changes in morphology, growth, gene expression, and physiology of cells, resulting in increased virulence, acid, antibiotic resistance, biofilm formation, secondary metabolism, and microbial mutations. Accordingly, recent research indicates the impacts of simulated microgravity on human physiology and bacterial characteristics. This paper has reviewed the aspects of microgravity on changes in microbiota, including virulence, antibiotic resistance, and gene expression. Microgravity can undermine humans and makes influence bacterial pathogenicity. The review of papers shows that some microorganisms showed higher pathogenicity under microgravity conditions. Moreover, sulfamethoxazole had the highest resistance among Gram-positive microorganisms, and gentamicin had the highest resistance in Gram-negative bacteria. All antibiotics reviewed under microgravity conditions were robust in both groups of microorganisms compared to the gravity condition. Furthermore, some gene expression was altered in bacteria under microgravity conditions compared to Earth conditions (standard bacterial growth conditions). Changes in microbial behavior under microgravity directly influence astronauts' health conditions, and a detailed analysis of known facts can provide essential information for the selection of appropriate probiotics for these specific cases during the missions and after the recovery processes. Moreover, the study of microorganisms changes in the absence of gravity will help to understand the mechanisms of causing diseases on Earth and may be applied in clinical practice.

Keywords: Simulated microgravity, microgravity, virulence, antibiotic resistance, gene expression, beneficial microorganism, pathogenic microorganisms.

Graphical Abstract
[1]
Voorhies, A.A.; Mark Ott, C.; Mehta, S.; Pierson, D.L.; Crucian, B.E.; Feiveson, A.; Oubre, C.M.; Torralba, M.; Moncera, K.; Zhang, Y.; Zurek, E.; Lorenzi, H.A. Study of the impact of long-duration space missions at the international space station on the astronaut microbiome. Sci. Rep., 2019, 9(1), 9911.
[http://dx.doi.org/10.1038/s41598-019-46303-8] [PMID: 30626917]
[2]
Zoghi, A.; Khosravi-Darani, K.; Mohammadi, R. Application of edible films containing probiotics in food products. J. Verbraucherschutz Lebensmsicherh., 2020, 15(4), 307-320.
[http://dx.doi.org/10.1007/s00003-020-01286-x]
[3]
Zoghi, A.; Khosravi-Darani, K.; Sohrabvandi, S.; Attar, H.; Alavi, S.A. Effect of probiotics on patulin content reduction of synbiotic apple juice. J. Food Technol. Res., 2019, 16(3), 1-6.
[http://dx.doi.org/10.1002/jsfa.8082] [PMID: 27785791]
[4]
Ghasemnezhad, R.; Razavilar, V.; Khosravi Darani, K. Producig of chocolate milk containing microencapuslated probiotic bacteria as a functional food for use in time of war. EBNESINA, 2016, 18, 61-66.
[5]
Jazayeri, S.; Khosravi-Darani, K.; Solati, Z.; Mohammadpour, N.; Tehrani-Doost, M.; Hosseini, M.; Asemi, Z.; Adab, Z.; Djalali, M.; Eghtesadi, S.; Mohammadi, A.A. Effects of probiotics on biomarkers of oxidative stress and inflammatory factors in petrochemical workers: A randomized, double-blind, placebo-controlled trial. Int. J. Prev. Med., 2015, 6(1), 82.
[http://dx.doi.org/10.4103/2008-7802.164146] [PMID: 26445629]
[6]
Zoghi, A.; Khosravi-Darani, K.; Sohrabvandi, S.; Attar, H.; Alavi, S.A. Survival of probiotics in synbiotic apple juice during refrigeration and subsequent exposure to simulated gastro-intestinal conditions. Iran. J. Chem. Chem. Eng., 2019, 38(2), 159-170.
[7]
Santos, R.O.; Silva, M.V.F.; Nascimento, K.O.; Batista, A.L.D.; Moraes, J.; Andrade, M.M.; Andrade, L.G.Z.S.; Khosravi-Darani, K.; Freitas, M.Q.; Raices, R.S.L.; Silva, M.C.; Barbosa Junior, J.L.; Barbosa, M.I.M.J.; Cruz, A.G. Prebiotic flours in dairy food processing: Technological and sensory implications. Int. J. Dairy Technol., 2018, 71, 1-10.
[http://dx.doi.org/10.1111/1471-0307.12394]
[8]
Khosravi-Darani, K.; Barzegar, F.; Baghdadi, M. Detoxification of heterocyclic aromatic amines by probiotic to inhibit medical hazards. Mini Rev. Med. Chem., 2019, 19(15), 1196-1203.
[http://dx.doi.org/10.2174/1389557519666190318102201] [PMID: 30887924]
[9]
Massoud, R.; Fadaei, V.; Khosravi-Darani, K.; Nikbakht, H.R. Improving the viability of probiotic bacteria in yoghurt by homogenization. J. Food Process. Preserv., 2015, 39(6), 2984-2990.
[http://dx.doi.org/10.1111/jfpp.12551]
[10]
Mohammadi, A.A.; Jazayeri, S.; Khosravi-Darani, K.; Solati, Z.; Mohammadpour, N.; Asemi, Z.; Adab, Z.; Djalali, M.; Tehrani-Doost, M.; Hosseini, M.; Eghtesadi, S. The effects of probiotics on mental health and hypothalamic–pituitary–adrenal axis: A randomized, double-blind, placebo-controlled trial in petrochemical workers. Nutr. Neurosci., 2016, 19(9), 387-395.
[http://dx.doi.org/10.1179/1476830515Y.0000000023] [PMID: 25879690]
[11]
Kamada, N.; Chen, G.Y.; Inohara, N.; Núñez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol., 2013, 14(7), 685-690.
[http://dx.doi.org/10.1038/ni.2608] [PMID: 23778796]
[12]
Turroni, S.; Magnani, M.; Kc, P.; Lesnik, P.; Vidal, H.; Heer, M. Gut microbiome and space travelers’ health: state of the art and possible pro/prebiotic strategies for long-term space missions. Front. Physiol., 2020, 11, 553929.
[http://dx.doi.org/10.3389/fphys.2020.553929] [PMID: 33013480]
[13]
Bijlani, S.; Stephens, E.; Singh, N.K.; Venkateswaran, K.; Wang, C.C. Advances in space microbiology. iSci, 2021, 24(5), 102395.
[http://dx.doi.org/10.1016/j.isci.2021.102395]
[14]
Huang, B.; Li, D.G.; Huang, Y.; Liu, C.T. Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism. Mil. Med. Res., 2018, 5(1), 18.
[http://dx.doi.org/10.1186/s40779-018-0162-9] [PMID: 29807538]
[15]
Padgen, M.R.; Lera, M.P.; Parra, M.P.; Ricco, A.J.; Chin, M.; Chinn, T.N.; Cohen, A.; Friedericks, C.R.; Henschke, M.B.; Snyder, T.V.; Spremo, S.M.; Wang, J.H.; Matin, A.C. EcAMSat spaceflight measurements of the role of σs in antibiotic resistance of stationary phase Escherichia coli in microgravity. Life Sci. Space Res., 2020, 24, 18-24.
[http://dx.doi.org/10.1016/j.lssr.2019.10.007] [PMID: 31987476]
[16]
Sobisch, L.Y.; Rogowski, K.M.; Fuchs, J.; Schmieder, W.; Vaishampayan, A.; Oles, P.; Novikova, N.; Grohmann, E. Biofilm forming antibiotic resistant gram-positive pathogens isolated from surfaces on the international space station. Front. Microbiol., 2019, 10, 543.
[http://dx.doi.org/10.3389/fmicb.2019.00543] [PMID: 30941112]
[17]
Tirumalai, M.R.; Karouia, F.; Tran, Q.; Stepanov, V.G.; Bruce, R.J.; Ott, C.M.; Pierson, D.L.; Fox, G.E. Evaluation of acquired antibiotic resistance in Escherichia coli exposed to long-term low-shear modeled microgravity and background antibiotic exposure. MBio, 2019, 10(1), e02637-18.
[http://dx.doi.org/10.1128/mBio.02637-18] [PMID: 30647159]
[18]
Matin, A.C.; Wang, J.H.; Keyhan, M.; Singh, R.; Benoit, M.; Parra, M.P.; Padgen, M.R.; Ricco, A.J.; Chin, M.; Friedericks, C.R.; Chinn, T.N.; Cohen, A.; Henschke, M.B.; Snyder, T.V.; Lera, M.P.; Ross, S.S.; Mayberry, C.M.; Choi, S.; Wu, D.T.; Tan, M.X.; Boone, T.D.; Beasley, C.C.; Piccini, M.E.; Spremo, S.M. Payload hardware and experimental protocol development to enable future testing of the effect of space microgravity on the resistance to gentamicin of uropathogenic Escherichia coli and its σ s -deficient mutant. Life Sci. Space Res., 2017, 15, 1-10.
[http://dx.doi.org/10.1016/j.lssr.2017.05.001] [PMID: 29198308]
[19]
Zhang, B.; Bai, P.; Zhao, X.; Yu, Y.; Zhang, X.; Li, D.; Liu, C. Increased growth rate and amikacin resistance of Salmonella enteritidis after one‐month spaceflight on China’s Shenzhou‐11 spacecraft. MicrobiologyOpen, 2019, 8(9), e00833.
[http://dx.doi.org/10.1002/mbo3.833] [PMID: 30912318]
[20]
Harada, K.; Sugahara, T.; Ohnishi, T.; Ozaki, Y.; Obiya, Y.; Miki, S.; Miki, T.; Imamura, M.; Kobayashi, Y.; Watanabe, H.; Akashi, M.; Furusawa, Y.; Mizuma, N.; Yamanaka, H.; Ohashi, E.; Yamaoka, C.; Yajima, M.; Fukui, M.; Nakano, T.; Takahashi, S.; Amano, T.; Sekikawa, K.; Yanagawa, K.; Nagaoka, S. Inhibition in a microgravity environment of the recovery of Escherichia coli cells damaged by heavy ion beams during the NASDA ISS phase I program of NASA Shuttle/Mir mission no. 6. Int. J. Mol. Med., 1998, 1(5), 817-822.
[http://dx.doi.org/10.3892/ijmm.1.5.817] [PMID: 9852301]
[21]
Mastroleo, F.; Van Houdt, R.; Leroy, B.; Benotmane, M.A.; Janssen, A.; Mergeay, M.; Vanhavere, F.; Hendrickx, L.; Wattiez, R.; Leys, N. Experimental design and environmental parameters affect Rhodospirillum rubrum S1H response to space flight. ISME J., 2009, 3(12), 1402-1419.
[http://dx.doi.org/10.1038/ismej.2009.74] [PMID: 19571896]
[22]
Crucian, B.E.; Choukèr, A.; Simpson, R.J.; Mehta, S.; Marshall, G.; Smith, S.M.; Zwart, S.R.; Heer, M.; Ponomarev, S.; Whitmire, A.; Frippiat, J.P.; Douglas, G.L.; Lorenzi, H.; Buchheim, J.I.; Makedonas, G.; Ginsburg, G.S.; Ott, C.M.; Pierson, D.L.; Krieger, S.S.; Baecker, N.; Sams, C. Immune system dysregulation during spaceflight: Potential countermeasures for deep space exploration missions. Front. Immunol., 2018, 9, 1437.
[http://dx.doi.org/10.3389/fimmu.2018.01437] [PMID: 30018614]
[23]
Abshire, C.F.; Prasai, K.; Soto, I.; Shi, R.; Concha, M.; Baddoo, M.; Flemington, E.K.; Ennis, D.G.; Scott, R.S.; Harrison, L. Exposure of Mycobacterium marinum to low-shear modeled microgravity: effect on growth, the transcriptome and survival under stress. NPJ Microgravity, 2016, 2(1), 16038.
[http://dx.doi.org/10.1038/npjmgrav.2016.38] [PMID: 28725743]
[24]
Ott, C.M.; Crabbé, A.; Wilson, J.W.; Barrila, J.; Castro-Wallace, S.L.; Nickerson, C.A. Microbial stress: Spaceflight-induced alterations in microbial virulence and infectious disease risks for the crew. In: Stress challenges and immunity in space: From mechanisms to monitoring and preventive strategies; Chouke’r, A., Ed.; Springer: Cham, 2020; pp. 327-355.
[http://dx.doi.org/10.1007/978-3-030-16996-1_18]
[25]
Hammond, T.G.; Benes, E.; O’Reilly, K.C.; Wolf, D.A.; Linnehan, R.M.; Taher, A.; Kaysen, J.H.; Allen, P.L.; Goodwin, T.J. Mechanical culture conditions effect gene expression: Gravity-induced changes on the space shuttle. Physiol. Genomics, 2000, 3(3), 163-173.
[http://dx.doi.org/10.1152/physiolgenomics.2000.3.3.163] [PMID: 11015612]
[26]
Klaus, D. Microgravity and its implications for fermentation biotechnology. Trends Biotechnol., 1998, 16(9), 369-373.
[http://dx.doi.org/10.1016/S0167-7799(98)01197-4] [PMID: 9776612]
[27]
Benoit, M.R.; Klaus, D.M. Microgravity, bacteria, and the influence of motility. Adv. Space Res., 2007, 39(7), 1225-1232.
[http://dx.doi.org/10.1016/j.asr.2006.10.009]
[28]
Klaus, D.M.; Benoit, M.R.; Nelson, E.S.; Hammond, T.G. Extracellular mass transport considerations for space flight research concerning suspended and adherent in vitro cell cultures. J. Gravit. Physiol., 2004, 11(1), 17-27.
[PMID: 16145796]
[29]
Zea, L.; Larsen, M.; Estante, F.; Qvortrup, K.; Moeller, R.; Dias de Oliveira, S.; Stodieck, L.; Klaus, D. Phenotypic changes exhibited by E. coli cultured in space. Front. Microbiol., 2017, 8, 1598.
[http://dx.doi.org/10.3389/fmicb.2017.01598] [PMID: 28894439]
[30]
Baker, P.W.; Leff, L. The effect of simulated microgravity on bacteria from the mir space station. Microgravity Sci. Technol., 2004, 15(1), 35-41.
[http://dx.doi.org/10.1007/BF02870950] [PMID: 15773020]
[31]
Tirumalai, M.R.; Karouia, F.; Tran, Q.; Stepanov, V.G.; Bruce, R.J.; Ott, C.M.; Pierson, D.L.; Fox, G.E. The adaptation of Escherichia coli cells grown in simulated microgravity for an extended period is both phenotypic and genomic. NPJ Microgravity, 2017, 3(1), 15.
[http://dx.doi.org/10.1038/s41526-017-0020-1] [PMID: 28649637]
[32]
Senatore, G.; Mastroleo, F.; Leys, N.; Mauriello, G. Effect of microgravity & space radiation on microbes. Future Microbiol., 2018, 13(7), 831-847.
[http://dx.doi.org/10.2217/fmb-2017-0251] [PMID: 29745771]
[33]
Moissl-Eichinger, C.; Cockell, C.; Rettberg, P. Venturing into new realms? Microorganisms in space. FEMS Microbiol. Rev., 2016, 40(5), 722-737.
[http://dx.doi.org/10.1093/femsre/fuw015] [PMID: 27354346]
[34]
Holden, J.F. Extremophiles: Hot environments; Academic Press: Oxford, 2009, pp. 127-146.
[http://dx.doi.org/10.1016/B978-012373944-5.00281-9]
[35]
Moeller, R.; Horneck, G.; Rabbow, E.; Reitz, G.; Meyer, C.; Hornemann, U.; Stöffler, D. Role of DNA protection and repair in resistance of Bacillus subtilis spores to ultrahigh shock pressures simulating hypervelocity impacts. Appl. Environ. Microbiol., 2008, 74(21), 6682-6689.
[http://dx.doi.org/10.1128/AEM.01091-08] [PMID: 18791028]
[36]
Nóbrega, F.; Duarte, R.T.; Torres-Ballesteros, A.M.; Queiroz, L.L.; Whyte, L.G.; Pellizari, V.H. Cold adapted desiccation-tolerant bacteria isolated from polar soils presenting high resistance to anhydrobiosis. BioRxiv, 2021, 430066.
[http://dx.doi.org/10.1101/2021.02.06.430066]
[37]
Kim, H.W.; Rhee, M.S. Influence of low-shear modeled microgravity on heat resistance.; membrane fatty acid composition, and heat stress-related gene expression in Escherichia coli O157: H7 ATCC 35150, ATCC 43889, ATCC 43890, and ATCC 43895. Appl. Environ. Microbiol., 2016, 82(10), 2893-2901.
[http://dx.doi.org/10.1128/AEM.00050-16] [PMID: 26944847]
[38]
Lawal, A.; Jejelowo, O.A.; Rosenzweig, J.A. The effects of low-shear mechanical stress on Yersinia pestis virulence. Astrobiology, 2010, 10(9), 881-888.
[http://dx.doi.org/10.1089/ast.2010.0493] [PMID: 21118021]
[39]
Yang, J.; Barrila, J.; Roland, K.L.; Ott, C.M.; Nickerson, C.A. Physiological fluid shear alters the virulence potential of invasive multidrug-resistant non-typhoidal Salmonella typhimurium D23580. NPJ Microgravity, 2016, 2(1), 16021.
[http://dx.doi.org/10.1038/npjmgrav.2016.21] [PMID: 28725732]
[40]
Loudon, C.M.; Nicholson, N.; Finster, K.; Leys, N.; Byloos, B.; Van Houdt, R.; Rettberg, P.; Moeller, R.; Fuchs, F.M.; Demets, R.; Krause, J.; Vukich, M.; Mariani, A.; Cockell, C. BioRock: new experiments and hardware to investigate microbe–mineral interactions in space. Int. J. Astrobiol., 2018, 17(4), 303-313.
[http://dx.doi.org/10.1017/S1473550417000234]
[41]
Pacello, F.; Rotilio, G.; Battistoni, A. Low-shear modeled microgravity enhances Salmonella enterica resistance to hydrogen peroxide through a mechanism involving KatG and KatN. Open Microbiol. J., 2012, 6(1), 53-64.
[http://dx.doi.org/10.2174/1874285801206010053] [PMID: 22888375]
[42]
Sheet, S.; Yesupatham, S.; Ghosh, K.; Choi, M.S.; Shim, K.S.; Lee, Y.S. Modulatory effect of low-shear modeled microgravity on stress resistance, membrane lipid composition, virulence, and relevant gene expression in the food-borne pathogen Listeria monocytogenes. Enzyme Microb. Technol., 2020, 133, 109440.
[http://dx.doi.org/10.1016/j.enzmictec.2019.109440] [PMID: 31874690]
[43]
Soni, A.; O’Sullivan, L.; Quick, L.N.; Ott, C.M.; Nickerson, C.A.; Wilson, J.W. Conservation of the low-shear modeled microgravity res-ponse in Enterobacteriaceae and analysis of the trp genes in this response. Open Microbiol. J., 2014, 8(1), 51-58.
[http://dx.doi.org/10.2174/1874285801408010051] [PMID: 25006354]
[44]
Wilson, J.W.; Ramamurthy, R.; Porwollik, S.; McClelland, M.; Hammond, T.; Allen, P.; Ott, C.M.; Pierson, D.L.; Nickerson, C.A. Microarray analysis identifies Salmonella genes belonging to the low-shear modeled microgravity regulon. Proc. Natl. Acad. Sci., 2002, 99(21), 13807-13812.
[http://dx.doi.org/10.1073/pnas.212387899] [PMID: 12370447]
[45]
Crabb, A.; De Boever, P.; Van Houdt, R.; Moors, H.; Mergeay, M.; Cornelis, P. Use of the rotating wall vessel technology to study the effect of shear stress on growth behaviour of Pseudomonas aeruginosa PA01. Environ. Microbiol., 2008, 10(8), 2098-2110.
[http://dx.doi.org/10.1111/j.1462-2920.2008.01631.x] [PMID: 18430020]
[46]
Allen, C.; Galindo, C.; Williams, N.; Pandya, U.; Chopra, A.; Niesel, D. A global transcriptional analysis of Streptococcus pneumoniae in response to low-shear modeled microgravity. Gravit. Space Res., 2007, 19(2)
[47]
Kalpana, D.; Im, C.; Lee, Y.S. Comparative growth, cross stress resistance, transcriptomics of Streptococcus pyogenes cultured under low shear modeled microgravity and normal gravity. Saudi J. Biol. Sci., 2016, 23(1), 24-33.
[http://dx.doi.org/10.1016/j.sjbs.2015.02.004] [PMID: 26858535]
[48]
Karouia, F.; Tirumalai, M.R.; Nelman-Gonzalez, M.A.; Sams, C.F.; Ott, M.C.; Willson, R.C.; Pierson, D.L.; Fox, G.E. Long-term exposure of bacterial cells to simulated microgravity. Instruments. Methods and Missions for Astrobiol., 2012, 15, 140-145.
[http://dx.doi.org/10.1117/12.975009]
[49]
Morrison, M.D.; Fajardo-Cavazos, P.; Nicholson, W.L. Comparison of Bacillus subtilis transcriptome profiles from two separate missions to the International Space Station. NPJ Microgravity, 2019, 5(1), 1.
[http://dx.doi.org/10.1038/s41526-018-0061-0] [PMID: 30623021]
[50]
Kim, W.; Tengra, F.K.; Shong, J.; Marchand, N.; Chan, H.K.; Young, Z.; Pangule, R.C.; Parra, M.; Dordick, J.S.; Plawsky, J.L.; Collins, C.H. Effect of spaceflight on Pseudomonas aeruginosa final cell density is modulated by nutrient and oxygen availability. BMC Microbiol., 2013, 13(1), 241.
[http://dx.doi.org/10.1186/1471-2180-13-241] [PMID: 24192060]
[51]
Gilbert, R.; Torres, M.; Clemens, R.; Hateley, S.; Hosamani, R.; Wade, W.; Bhattacharya, S. Spaceflight and simulated microgravity conditions increase virulence of Serratia marcescens in the Drosophila melanogaster infection model. NPJ Microgravity, 2020, 6(1), 4.
[http://dx.doi.org/10.1038/s41526-019-0091-2] [PMID: 32047838]
[52]
Bryan, N.C.; Lebreton, F.; Gilmore, M.; Ruvkun, G.; Zuber, M.T.; Carr, C.E. Genomic and functional characterization of Enterococcus faecalis isolates recovered from the international space station and their potential for pathogenicity. Front. Microbiol., 2021, 11, 515319.
[http://dx.doi.org/10.3389/fmicb.2020.515319] [PMID: 33505359]
[53]
Nickerson, C.A.; Ott, C.M.; Mister, S.J.; Morrow, B.J.; Burns-Keliher, L.; Pierson, D.L. Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence. Infect. Immun., 2000, 68(6), 3147-3152.
[http://dx.doi.org/10.1128/IAI.68.6.3147-3152.2000] [PMID: 10816456]
[54]
Crabbé, A.; Schurr, M.J.; Monsieurs, P.; Morici, L.; Schurr, J.; Wilson, J.W.; Ott, C.M.; Tsaprailis, G.; Pierson, D.L.; Stefanyshyn-Piper, H.; Nickerson, C.A. Transcriptional and proteomic responses of Pseudomonas aeruginosa PAO1 to spaceflight conditions involve Hfq regulation and reveal a role for oxygen. Appl. Environ. Microbiol., 2011, 77(4), 1221-1230.
[http://dx.doi.org/10.1128/AEM.01582-10] [PMID: 21169425]
[55]
Schiwon, K.; Arends, K.; Rogowski, K.M.; Fürch, S.; Prescha, K.; Sakinc, T.; Van Houdt, R.; Werner, G.; Grohmann, E. Comparison of antibiotic resistance, biofilm formation and conjugative transfer of Staphylococcus and Enterococcus isolates from international space station and antarctic research station concordia. Microb. Ecol., 2013, 65(3), 638-651.
[http://dx.doi.org/10.1007/s00248-013-0193-4] [PMID: 23411852]
[56]
Hammond, T.G.; Stodieck, L.; Koenig, P.; Hammond, J.S.; Gunter, M.A.; Allen, P.L.; Birdsall, H.H. effects of microgravity and clinorotation on the virulence of Klebsiella, Streptococcus, Proteus, and Pseudomonas. Gravit. Space Res., 2016, 4(1), 39-50.
[http://dx.doi.org/10.2478/gsr-2016-0004]
[57]
Huang, B.; Liu, N.; Rong, X.; Ruan, J.; Huang, Y. Effects of simulated microgravity and spaceflight on morphological differentiation and secondary metabolism of Streptomyces coelicolor A3(2). Appl. Microbiol. Biotechnol., 2015, 99(10), 4409-4422.
[http://dx.doi.org/10.1007/s00253-015-6386-7] [PMID: 25634016]
[58]
Santa Maria, S.R.; Marina, D.B.; Massaro Tieze, S.; Liddell, L.C.; Bhattacharya, S. BioSentinel: long-term Saccharomyces cerevisiae preservation for a deep space biosensor mission. Astrobiol, 2020.
[http://dx.doi.org/10.1089/ast.2019.2073]
[59]
Altenburg, S.D.; Nielsen-Preiss, S.M.; Hyman, L.E. Increased filamentous growth of Candida albicans in simulated microgravity. Genomics Proteomics Bioinformatics, 2008, 6(1), 42-50.
[http://dx.doi.org/10.1016/S1672-0229(08)60019-4] [PMID: 18558384]
[60]
Senatore, G.; Mastroleo, F.; Leys, N.; Mauriello, G. Growth of lactobacillus reuteri DSM17938 Under two simulated microgravity systems: changes in Reuterin production, gastrointestinal passage resistance, and stress genes expression response. Astrobiology, 2020, 20(1), 1-14.
[http://dx.doi.org/10.1089/ast.2019.2082] [PMID: 31977256]
[61]
Sundaresan, A.; Mann, V.; Mehta, S.; Crucian, B.; Doursout, M.; Devakottai, S. Effects of microgravity and other space stressors in immunosuppression and viral reactivation with potential nervous system involvement. Neurol. India, 2019, 67(8)(Suppl.), 198.
[http://dx.doi.org/10.4103/0028-3886.259125] [PMID: 31134910]
[62]
Sugita, T.; Yamazaki, T.; Makimura, K.; Cho, O.; Yamada, S.; Ohshima, H.; Mukai, C. Comprehensive analysis of the skin fungal microbiota of astronauts during a half-year stay at the International Space Station. Med. Mycol., 2016, 54(3), 232-239.
[http://dx.doi.org/10.1093/mmy/myv121] [PMID: 26773135]
[63]
Krüger, M.; Melnik, D.; Kopp, S.; Buken, C.; Sahana, J.; Bauer, J.; Wehland, M.; Hemmersbach, R.; Corydon, T.J.; Infanger, M.; Grimm, D. Fighting thyroid cancer with microgravity research. Int. J. Mol. Sci., 2019, 20(10), 2553.
[http://dx.doi.org/10.3390/ijms20102553] [PMID: 31137658]
[64]
Infanger, M.; Kossmehl, P.; Shakibaei, M.; Schulze-Tanzil, G.; Cogoli, A.; Faramarzi, S.; Bauer, J.; Curcio, F.; Paul, M.; Grimm, D. Longterm conditions of mimicked weightlessness influences the cytoskeleton in thyroid cells. J. Gravit. Physiol., 2004, 11(2), 169-172.
[PMID: 16237826]
[65]
Ulbrich, C.; Pietsch, J.; Grosse, J.; Wehland, M.; Schulz, H.; Saar, K.; Hübner, N.; Hauslage, J.; Hemmersbach, R.; Braun, M.; van Loon, J.; Vagt, N.; Egli, M.; Richter, P.; Einspanier, R.; Sharbati, S.; Baltz, T.; Infanger, M.; Ma, X.; Grimm, D. Differential gene regulation under altered gravity conditions in follicular thyroid cancer cells: relationship between the extracellular matrix and the cytoskeleton. Cell. Physiol. Biochem., 2011, 28(2), 185-198.
[http://dx.doi.org/10.1159/000331730] [PMID: 21865726]
[66]
Kossmehl, P.; Shakibaei, M.; Cogoli, A.; Infanger, M.; Curcio, F.; Schönberger, J.; Eilles, C.; Bauer, J.; Pickenhahn, H.; Schulze-Tanzil, G.; Paul, M.; Grimm, D. Weightlessness induced apoptosis in normal thyroid cells and papillary thyroid carcinoma cells via extrinsic and intrinsic pathways. Endocrinology, 2003, 144(9), 4172-4179.
[http://dx.doi.org/10.1210/en.2002-0171] [PMID: 12933692]
[67]
Battista, N.; Meloni, M.A.; Bari, M.; Mastrangelo, N.; Galleri, G.; Rapino, C.; Dainese, E.; Agro, A.F.; Pippia, P.; Maccarrone, M. 5‐Lipoxygenase‐dependent apoptosis of human lymphocytes in the International Space Station: data from the ROALD experiment. The FASEB Journal., 2012, 26(5), 1791-1798.
[http://dx.doi.org/10.1096/fj.11-199406]
[68]
Jiang, P.; Green, S.J.; Chlipala, G.E.; Turek, F.W.; Vitaterna, M.H. Reproducible changes in the gut microbiome suggest a shift in microbial and host metabolism during spaceflight. Microbiome, 2019, 7(1), 113.
[http://dx.doi.org/10.1186/s40168-019-0724-4] [PMID: 31399081]
[69]
Voorhies, A.A.; Lorenzi, H.A. The challenge of maintaining a healthy microbiome during long-duration space missions. Front. Astron. Space Sci., 2016, 3, 23.
[http://dx.doi.org/10.3389/fspas.2016.00023]
[70]
Siddiqui, R.; Akbar, N.; Khan, N.A. Gut microbiome and human health under the space environment. J. Appl. Microbiol., 2021, 130(1), 14-24.
[http://dx.doi.org/10.1111/jam.14789] [PMID: 32692438]
[71]
Byrd, A.L.; Belkaid, Y.; Segre, J.A. The human skin microbiome. Nat. Rev. Microbiol., 2018, 16(3), 143-155.
[http://dx.doi.org/10.1038/nrmicro.2017.157] [PMID: 29332945]
[72]
Garrett-Bakelman, F.E.; Darshi, M.; Green, S.J.; Gur, R.C.; Lin, L.; Macias, B.R.; McKenna, M.J.; Meydan, C.; Mishra, T.; Nasrini, J.; Piening, B.D.; Rizzardi, L.F.; Sharma, K.; Siamwala, J.H.; Taylor, L.; Vitaterna, M.H.; Afkarian, M.; Afshinnekoo, E.; Ahadi, S.; Ambati, A.; Arya, M.; Bezdan, D.; Callahan, C.M.; Chen, S.; Choi, A.M.K.; Chlipala, G.E.; Contrepois, K.; Covington, M.; Crucian, B.E.; De Vivo, I.; Dinges, D.F.; Ebert, D.J.; Feinberg, J.I.; Gandara, J.A.; George, K.A.; Goutsias, J.; Grills, G.S.; Hargens, A.R.; Heer, M.; Hillary, R.P.; Hoofnagle, A.N.; Hook, V.Y.H.; Jenkinson, G.; Jiang, P.; Keshavarzian, A.; Laurie, S.S.; Lee-McMullen, B.; Lumpkins, S.B.; MacKay, M.; Maienschein-Cline, M.G.; Melnick, A.M.; Moore, T.M.; Nakahira, K.; Patel, H.H.; Pietrzyk, R.; Rao, V.; Saito, R.; Salins, D.N.; Schilling, J.M.; Sears, D.D.; Sheridan, C.K.; Stenger, M.B.; Tryggvadottir, R.; Urban, A.E.; Vaisar, T.; Van Espen, B.; Zhang, J.; Ziegler, M.G.; Zwart, S.R.; Charles, J.B.; Kundrot, C.E.; Scott, G.B.I.; Bailey, S.M.; Basner, M.; Feinberg, A.P.; Lee, S.M.C.; Mason, C.E.; Mignot, E.; Rana, B.K.; Smith, S.M.; Snyder, M.P.; Turek, F.W. The NASA twins study: A multidimensional analysis of a year-long human spaceflight. Science, 2019, 364(6436), eaau8650.
[http://dx.doi.org/10.1126/science.aau8650] [PMID: 30975860]
[73]
Nickerson, C.A.; Ott, C.M.; Wilson, J.W.; Ramamurthy, R.; Pierson, D.L. Microbial responses to microgravity and other low-shear environments. Microbiol. Mol. Biol. Rev., 2004, 68(2), 345-361.
[http://dx.doi.org/10.1128/MMBR.68.2.345-361.2004] [PMID: 15187188]
[74]
National Academies of Sciences, Engineering, and Medicine; A Midterm Assessment of Implementation of the Decadal Survey on Life and Physical Sciences Research at NASA; National Academies Press (US): Washington (DC), 2017.
[75]
Herranz, R.; Anken, R.; Boonstra, J.; Braun, M.; Christianen, P.C.M.; de Geest, M.; Hauslage, J.; Hilbig, R.; Hill, R.J.A.; Lebert, M.; Medina, F.J.; Vagt, N.; Ullrich, O.; van Loon, J.J.W.A.; Hemmersbach, R. Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology, 2013, 13(1), 1-17.
[http://dx.doi.org/10.1089/ast.2012.0876] [PMID: 23252378]
[76]
Fajardo-Cavazos, P.; Leehan, J.D.; Nicholson, W.L. Alterations in the spectrum of spontaneous rifampicin-resistance mutations in the Bacillus subtilis rpoB gene after cultivation in the human spaceflight environment. Front. Microbiol., 2018, 9, 192.
[http://dx.doi.org/10.3389/fmicb.2018.00192] [PMID: 29491852]
[77]
Jules, K.; McPherson, K.; Hrovat, K.; Kelly, E.; Reckart, T. A status report on the characterization of the microgravity environment of the International Space Station. Acta Astronaut., 2004, 55(3-9), 335-364.
[http://dx.doi.org/10.1016/j.actaastro.2004.05.057]
[78]
Tryggvason, B.V.; Duval, W.M.B.; Smith, R.W.; Rezkallah, K.S.; Varma, S.; Redden, R.F.; Herring, R.A. The vibration environment on the international space station: its significance to fluid-based experiments. Acta Astronaut., 2001, 48(2-3), 59-70.
[http://dx.doi.org/10.1016/S0094-5765(00)00140-5]
[79]
Briegleb, W. Some qualitative and quantitative aspects of the fast-rotating clinostat as a research tool. ASGSB Bulletin. Publication of the American Society for Gravitational and Space Biology., 1992, 5(2), 23-30.
[80]
Kraft, T.F.B.; van Loon, J.J.W.A.; Kiss, J.Z. Plastid position in Arabidopsis columella cells is similar in microgravity and on a random-positioning machine. Planta, 2000, 211(3), 415-422.
[http://dx.doi.org/10.1007/s004250000302] [PMID: 10987561]
[81]
Schwarz, R.P.; Goodwin, T.J.; Wolf, D.A. Cell culture for three-dimensional modeling in rotating-wall vessels: An application of simulated microgravity. J. Tissue Cult. Methods, 1992, 14(2), 51-57.
[http://dx.doi.org/10.1007/BF01404744] [PMID: 11541102]
[82]
Berry, M.V.; Geim, A.K. Of flying frogs and levitrons. Eur. J. Phys., 1997, 18(4), 307-313.
[http://dx.doi.org/10.1088/0143-0807/18/4/012]
[83]
Hoson, T.; Kamisaka, S.; Masuda, Y.; Yamashita, M.; Buchen, B. Evaluation of the three-dimensional clinostat as a simulator of weightlessness. Planta, 1997, 203(S1)(Suppl.), S187-S197.
[http://dx.doi.org/10.1007/PL00008108] [PMID: 9299798]
[84]
Orsini, S.S.; Lewis, A.M.; Rice, K.C. Investigation of simulated microgravity effects on Streptococcus mutans physiology and global gene expression. NPJ Microgravity, 2017, 3(1), 4.
[http://dx.doi.org/10.1038/s41526-016-0006-4] [PMID: 28649626]
[85]
Checinska Sielaff, A.; Urbaniak, C.; Mohan, G.B.M.; Stepanov, V.G.; Tran, Q.; Wood, J.M.; Minich, J.; McDonald, D.; Mayer, T.; Knight, R.; Karouia, F.; Fox, G.E.; Venkateswaran, K. Characterization of the total and viable bacterial and fungal communities associated with the International Space Station surfaces. Microbiome, 2019, 7(1), 50.
[http://dx.doi.org/10.1186/s40168-019-0666-x] [PMID: 30955503]
[86]
Crucian, B.E.; Stowe, R.P.; Pierson, D.L.; Sams, C.F. Immune system dysregulation following short vs. long-duration spaceflight. Aviat. Space Environ. Med., 2008, 79(9), 835-843.
[http://dx.doi.org/10.3357/ASEM.2276.2008] [PMID: 18785351]
[87]
Crucian, B.; Stowe, R.P.; Mehta, S.; Quiriarte, H.; Pierson, D.; Sams, C. Alterations in adaptive immunity persist during long-duration spaceflight. NPJ Microgravity, 2015, 1(1), 15013.
[http://dx.doi.org/10.1038/npjmgrav.2015.13] [PMID: 28725716]
[88]
Mauclaire, L.; Egli, M. Effect of simulated microgravity on growth and production of exopolymeric substances of Micrococcus luteus space and earth isolates. FEMS Immunol. Med. Microbiol., 2010, 59(3), 350-356.
[http://dx.doi.org/10.1111/j.1574-695X.2010.00683.x] [PMID: 20482631]
[89]
Castro-Wallace, S.; Stahl, S.; Voorhies, A.; Lorenzi, H.; Douglas, G.L. Response of Lactobacillus acidophilus ATCC 4356 to low-shear modeled microgravity. Acta Astronaut., 2017, 139, 463-468.
[http://dx.doi.org/10.1016/j.actaastro.2017.07.033]
[90]
Lynch, S.V.; Mukundakrishnan, K.; Benoit, M.R.; Ayyaswamy, P.S.; Matin, A. Escherichia coli biofilms formed under low-shear modeled microgravity in a ground-based system. Appl. Environ. Microbiol., 2006, 72(12), 7701-7710.
[http://dx.doi.org/10.1128/AEM.01294-06] [PMID: 17028231]
[91]
Nair, A. A change in microbial virulence under simulated microgravity might hold a strategic value for Salmonella. HSOA J. Infect. Non Infect. Dis., 2015, 1(2), 1-5.
[http://dx.doi.org/10.24966/INID-8654/100009]
[92]
Aviles, H.; Belay, T.; Fountain, K.; Vance, M.; Sonnenfeld, G. Increased susceptibility to Pseudomonas aeruginosa infection under hindlimb-unloading conditions. J. Appl. Physiol., 2003, 95(1), 73-80.
[http://dx.doi.org/10.1152/japplphysiol.00968.2002] [PMID: 12626488]
[93]
Xu, B.; Li, C.; Zheng, Y.; Si, S.; Shi, Y.; Huang, Y.; Zhang, J.; Cui, Y.; Cui, Y. Simulated microgravity affects ciprofloxacin susceptibility and expression of acrAB-tolC genes in E. coli ATCC25922. Int. J. Clin. Exp. Pathol., 2015, 8(7), 7945-7952.
[PMID: 26339360]
[94]
Juergensmeyer, M.A.; Juergensmeyer, E.A.; Guikema, J.A. Long-term exposure to spaceflight conditions affects bacterial response to antibiotics. Microgravity Sci. Technol., 1999, 12(1), 41-47.
[PMID: 11543359]
[95]
Foster, J.W.; Spector, M.P. How Salmonella survive against the odds. Annu. Rev. Microbiol., 1995, 49(1), 145-174.
[http://dx.doi.org/10.1146/annurev.mi.49.100195.001045] [PMID: 8561457]
[96]
Bascove, M.; Huin-Schohn, C.; Guèguinou, N.; Tschirhart, E.; Frippiat, J.P. Spaceflight‐associated changes in immunoglobulin VH gene expression in the amphibian Pleurodeles waltl. FASEB J., 2009, 23(5), 1607-1615.
[http://dx.doi.org/10.1096/fj.08-121327] [PMID: 19141535]
[97]
Mortazavi, S.M.J. Acquired antibiotic resistance in Escherichia coli exposed to simulated microgravity: Possible role of other space stressors and adaptive responses. MBio, 2019, 10(2), e00165-19.
[http://dx.doi.org/10.1128/mBio.00165-19] [PMID: 30914503]
[98]
Morrison, M.D.; Fajardo-Cavazos, P.; Nicholson, W.L. Cultivation in space flight produces minimal alterations in the susceptibility of Bacillus subtilis cells to 72 different antibiotics and growth-inhibiting compounds. Appl. Environ. Microbiol., 2017, 83(21), e01584-e17.
[http://dx.doi.org/10.1128/AEM.01584-17] [PMID: 28821547]
[99]
Zea, L.; Nisar, Z.; Rubin, P.; Cortesão, M.; Luo, J.; McBride, S.A.; Moeller, R.; Klaus, D.; Müller, D.; Varanasi, K.K.; Muecklich, F.; Stodieck, L. Design of a spaceflight biofilm experiment. Acta Astronaut., 2018, 148, 294-300.
[http://dx.doi.org/10.1016/j.actaastro.2018.04.039] [PMID: 30449911]
[100]
Wang, Y.; Zhao, W.; Shi, J.; Wang, J.; Hao, J.; Pang, X.; Huang, X.; Chen, X.; Li, Y.; Jin, R.; Ge, Q. Intestinal microbiota contributes to altered glucose metabolism in simulated microgravity mouse model. FASEB J., 2019, 33(9), 10140-10151.
[http://dx.doi.org/10.1096/fj.201900238RR] [PMID: 31238017]
[101]
Saint-Ruf, C.; Crussard, S.; Franceschi, C.; Orenga, S.; Ouattara, J.; Ramjeet, M.; Surre, J.; Matic, I. Antibiotic susceptibility testing of the Gram-negative bacteria based on flow cytometry. Front. Microbiol., 2016, 7, 1121.
[http://dx.doi.org/10.3389/fmicb.2016.01121] [PMID: 27507962]
[102]
Mora, M.; Perras, A.; Alekhova, T.A.; Wink, L.; Krause, R.; Aleksandrova, A.; Novozhilova, T.; Moissl-Eichinger, C. Resilient microorganisms in dust samples of the international space station—survival of the adaptation specialists. Microbiome, 2016, 4(1), 65.
[http://dx.doi.org/10.1186/s40168-016-0217-7] [PMID: 27998314]
[103]
Vaishampayan, A.; Grohmann, E. Multi-resistant biofilm-forming pathogens on the International Space Station. J. Biosci., 2019, 44(5), 125.
[http://dx.doi.org/10.1007/s12038-019-9929-8] [PMID: 31719234]
[104]
Shao, D.; Yao, L. riaz, M.; Zhu, J.; Shi, J.; Jin, M.; Huang, Q.; Yang, H. Simulated microgravity affects some biological characteristics of Lactobacillus acidophilus. Appl. Microbiol. Biotechnol., 2017, 101(8), 3439-3449.
[http://dx.doi.org/10.1007/s00253-016-8059-6] [PMID: 28013406]
[105]
Checinska Sielaff, A.; Singh, N.K.; Allen, J.E.; Thissen, J.; Jaing, C.; Venkateswaran, K. Draft genome sequences of biosafety level 2 opportunistic pathogens isolated from the environmental surfaces of the International Space Station. Genome Announc., 2016, 4(6), e01263-16.
[http://dx.doi.org/10.1128/genomeA.01263-16] [PMID: 28034853]
[106]
O’Rourke, A.; Beyhan, S.; Choi, Y.; Morales, P.; Chan, A.P.; Espinoza, J.L.; Dupont, C.L.; Meyer, K.J.; Spoering, A.; Lewis, K.; Nierman, W.C.; Nelson, K.E. Mechanism-of-action classification of antibiotics by global transcriptome profiling. Antimicrob. Agents Chemother., 2020, 64(3), e01207-19.
[http://dx.doi.org/10.1128/AAC.01207-19] [PMID: 31907190]
[107]
Singh, N.K.; Bezdan, D.; Checinska Sielaff, A.; Wheeler, K.; Mason, C.E.; Venkateswaran, K. Multi-drug resistant Enterobacter bugandensis species isolated from the International Space Station and comparative genomic analyses with human pathogenic strains. BMC Microbiol., 2018, 18(1), 175.
[http://dx.doi.org/10.1186/s12866-018-1325-2] [PMID: 30466389]
[108]
Dornmayr-Pfaffenhuemer, M.; Legat, A.; Schwimbersky, K.; Fendrihan, S.; Stan-Lotter, H. Responses of haloarchaea to simulated microgravity. Astrobiology, 2011, 11(3), 199-205.
[http://dx.doi.org/10.1089/ast.2010.0536] [PMID: 21417742]
[109]
Taylor, P. Impact of space flight on bacterial virulence and antibiotic susceptibility. Infect. Drug Resist., 2015, 8, 249-262.
[http://dx.doi.org/10.2147/IDR.S67275] [PMID: 26251622]
[110]
Doĝanay, M.; Aydin, N. Antimicrobial susceptibility of Bacillus anthracis. Scand. J. Infect. Dis., 1991, 23(3), 333-335.
[http://dx.doi.org/10.3109/00365549109024319] [PMID: 1909051]
[111]
Rigsby, R.E.; Fillgrove, K.L.; Beihoffer, L.A.; Armstrong, R.N. Fosfomycin resistance proteins: a nexus of glutathione transferases and epoxide hydrolases in a metalloenzyme superfamily. Methods Enzymol., 2005, 401, 367-379.
[http://dx.doi.org/10.1016/S0076-6879(05)01023-2] [PMID: 16399398]
[112]
Fajardo-Cavazos, P.; Nicholson, W.L. Cultivation of Staphylococcus epidermidis in the human spaceflight environment leads to alterations in the frequency and spectrum of spontaneous rifampicin-resistance mutations in the rpoB Gene. Front. Microbiol., 2016, 7, 999.
[http://dx.doi.org/10.3389/fmicb.2016.00999] [PMID: 27446039]
[113]
Tixador, R.; Richoilley, G.; Gasset, G.; Templier, J.; Bes, J.C.; Moatti, N.; Lapchine, L. Study of minimal inhibitory concentration of antibiotics on bacteria cultivated in vitro in space (Cytos 2 experiment). Aviat. Space Environ. Med., 1985, 56(8), 748-751.
[PMID: 3899095]
[114]
Prasad, B.; Richter, P.; Vadakedath, N.; Mancinelli, R.; Krüger, M.; Strauch, S.M.; Grimm, D.; Darriet, P.; Chapel, J.P.; Cohen, J.; Lebert, M. Exploration of space to achieve scientific breakthroughs. Biotechnol. Adv., 2020, 43, 107572.
[http://dx.doi.org/10.1016/j.biotechadv.2020.107572] [PMID: 32540473]
[115]
Acres, J.M.; Youngapelian, M.J.; Nadeau, J. The influence of spaceflight and simulated microgravity on bacterial motility and chemotaxis. NPJ Microgravity, 2021, 7(1), 7.
[http://dx.doi.org/10.1038/s41526-021-00135-x] [PMID: 33619250]
[116]
Aunins, T.R.; Erickson, K.E.; Prasad, N.; Levy, S.E.; Jones, A.; Shrestha, S.; Mastracchio, R.; Stodieck, L.; Klaus, D.; Zea, L.; Chatterjee, A. Spaceflight modifies Escherichia coli gene expression in response to antibiotic exposure and reveals role of oxidative stress response. Front. Microbiol., 2018, 9, 310.
[http://dx.doi.org/10.3389/fmicb.2018.00310] [PMID: 29615983]
[117]
Wilson, J.W.; Ott, C.M.; zu Bentrup, K.H.; Ramamurthy, R.; Quick, L.; Porwollik, S.; Cheng, P.; McClelland, M.; Tsaprailis, G.; Radabaugh, T.; Hunt, A.; Fernandez, D.; Richter, E.; Shah, M.; Kilcoyne, M.; Joshi, L.; Nelman-Gonzalez, M.; Hing, S.; Parra, M.; Dumars, P.; Norwood, K.; Bober, R.; Devich, J.; Ruggles, A.; Goulart, C.; Rupert, M.; Stodieck, L.; Stafford, P.; Catella, L.; Schurr, M.J.; Buchanan, K.; Morici, L.; McCracken, J.; Allen, P.; Baker-Coleman, C.; Hammond, T.; Vogel, J.; Nelson, R.; Pierson, D.L.; Stefanyshyn-Piper, H.M.; Nickerson, C.A. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc. Natl. Acad. Sci., 2007, 104(41), 16299-16304.
[http://dx.doi.org/10.1073/pnas.0707155104] [PMID: 17901201]
[118]
Rosado, H.; O’Neill, A.J.; Blake, K.L.; Walther, M.; Long, P.F.; Hinds, J.; Taylor, P.W. Rotating wall vessel exposure alters protein secretion and global gene expression in Staphylococcus aureus. Int. J. Astrobiol., 2012, 11(2), 71-81.
[http://dx.doi.org/10.1017/S1473550411000346]
[119]
Vukanti, R.; Mintz, E.; Leff, L. Changes in gene expression of E. coli under conditions of modeled reduced gravity. Microgravity Sci. Technol., 2008, 20(1), 41-57.
[http://dx.doi.org/10.1007/s12217-008-9012-9]
[120]
Timmery, S.; Hu, X.; Mahillon, J. Characterization of bacilli isolated from the confined environments of the antarctic concordia station and the international space station. Astrobiology, 2011, 11(4), 323-334.
[http://dx.doi.org/10.1089/ast.2010.0573] [PMID: 21563959]
[121]
Bai, P.; Zhang, B.; Zhao, X.; Li, D.; Yu, Y.; Zhang, X.; Huang, B.; Liu, C. Decreased metabolism and increased tolerance to extreme environments in Staphylococcus warneri during long‐term spaceflight. MicrobiologyOpen, 2019, 8(12), e917.
[http://dx.doi.org/10.1002/mbo3.917] [PMID: 31414557]
[122]
Rosado, H.; Doyle, M.; Hinds, J.; Taylor, P.W. Low-shear modelled microgravity alters expression of virulence determinants of Staphylococcus aureus. Acta Astronaut., 2010, 66(3-4), 408-413.
[http://dx.doi.org/10.1016/j.actaastro.2009.06.007]
[123]
Arunasri, K.; Adil, M.; Venu Charan, K.; Suvro, C.; Himabindu Reddy, S.; Shivaji, S. Effect of simulated microgravity on E. coli K12 MG1655 growth and gene expression. PLoS One, 2013, 8(3), e57860.
[http://dx.doi.org/10.1371/journal.pone.0057860] [PMID: 23472115]
[124]
Kim, H.W.; Rhee, M.S. Space food and bacterial infections: Realities of the risk and role of science. Trends Food Sci. Technol., 2020, 106, 275-287.
[http://dx.doi.org/10.1016/j.tifs.2020.10.023]
[125]
Burgos, E.; Vroom, M.M.; Rotman, E.; Murphy-Belcaster, M.; Foster, J.S.; Mandel, M.J. Bacterial gene essentiality under modeled microgravity. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.08.13.250431]
[126]
Jennings, M.E.; Quick, L.N.; Soni, A.; Davis, R.R.; Crosby, K.; Ott, C.M.; Nickerson, C.A.; Wilson, J.W. Characterization of the Salmonella enterica serovar Typhimurium ydcI gene, which encodes a conserved DNA binding protein required for full acid stress resistance. J. Bacteriol., 2011, 193(9), 2208-2217.
[http://dx.doi.org/10.1128/JB.01335-10] [PMID: 21398541]
[127]
Coleman, C.B.; Allen, P.L.; Rupert, M.; Goulart, C.; Hoehn, A.; Stodieck, L.S.; Hammond, T.G. Novel Sfp1 transcriptional regulation of Saccharomyces cerevisiae gene expression changes during spaceflight. Astrobiology, 2008, 8(6), 1071-1078.
[http://dx.doi.org/10.1089/ast.2007.0211] [PMID: 19191537]
[128]
Van Mulders, S.E.; Stassen, C.; Daenen, L.; Devreese, B.; Siewers, V.; van Eijsden, R.G.; Nielsen, J.; Delvaux, F.R.; Willaert, R. The influence of microgravity on invasive growth in Saccharomyces cerevisiae. Astrobiol., 2011, 11(1), 45-55.
[http://dx.doi.org/10.1089/ast.2010.0518]
[129]
Lange, R.; Hengge-Aronis, R. Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol. Microbiol., 1991, 5(1), 49-59.
[http://dx.doi.org/10.1111/j.1365-2958.1991.tb01825.x] [PMID: 1849609]
[130]
August, J.T.; Eoyang, L.; De Fernandez, M.T.; Hasegawa, S.; Kuo, C.H.; Rensing, U.; Shapiro, L. Phage-specific and host proteins in the replication of bacteriophage RNA. Fed. Proc., 1970, 29(3), 1170-1175.
[PMID: 4315363]
[131]
Ishino, F.; Park, W.; Tomioka, S.; Tamaki, S.; Takase, I.; Kunugita, K.; Matsuzawa, H.; Asoh, S.; Ohta, T.; Spratt, B.G. Peptidoglycan synthetic activities in membranes of Escherichia coli caused by overproduction of penicillin-binding protein 2 and rodA protein. J. Biol. Chem., 1986, 261(15), 7024-7031.
[http://dx.doi.org/10.1016/S0021-9258(19)62717-1] [PMID: 3009484]
[132]
Teunissen, A.W.R.H.; Steensma, H.Y. The dominant flocculation genes ofSaccharomyces cerevisiae constitute a new subtelomeric gene family. Yeast, 1995, 11(11), 1001-1013.
[http://dx.doi.org/10.1002/yea.320111102] [PMID: 7502576]
[133]
Matin, A.; Lynch, S.V.; Benoit, M.R. Increased bacterial resistance and virulence in simulated microgravity and its molecular basis. Gravit. Space Res., 2007, 19(2), 1-12.
[134]
Liu, Z.; Luo, G.; Du, R.; Sun, W.; Li, J.; Lan, H.; Chen, P.; Yuan, X.; Cao, D.; Li, Y.; Liu, C.; Liang, S.; Jin, X.; Yang, R.; Bi, Y.; Han, Y.; Cao, P.; Zhao, W.; Ling, S.; Li, Y. Effects of spaceflight on the composition and function of the human gut microbiota. Gut Microbes, 2020, 11(4), 807-819.
[http://dx.doi.org/10.1080/19490976.2019.1710091] [PMID: 31924114]
[135]
Tomko, D.; Souza, K.; Smith, J.; Mains, R.; Sato, K.; Levine, H.; Quincy, C.; Mills, A.; Zeituni, A. Space Biology Science Plan 2016–2025; NASA, 2016.

© 2024 Bentham Science Publishers | Privacy Policy