Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Biosensors - A Miraculous Detecting Tool in Combating the War against COVID-19

Author(s): Rohitas Deshmukh*, Sakshi Mishra and Rajesh Singh

Volume 24, Issue 11, 2023

Published on: 20 January, 2023

Page: [1430 - 1448] Pages: 19

DOI: 10.2174/1389201024666230102121605

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), commonly known as COVID-19, created rack and ruin and erupted as a global epidemic. Nearly 482.3 million cases and approximately 6.1 million deaths have been reported. The World Health Organization (WHO) designated it an international medical emergency on January 30, 2020; shortly in March 2020, it was declared a pandemic. To address this situation, governments and scientists around the globe were urged to combat and prevent its spread, mainly when no treatment was available. Presently, quantitative real-time polymerase chain reaction (qRT-PCR) is the most widely utilized technique for diagnosing SARS-CoV-2. But this method is cumbersome, tedious, and might not be quickly accessible in isolated areas with a circumscribed budget. Therefore, there is a quest for novel diagnostic techniques which can diagnose the disease in a lesser time in an economical way. This paper outlines the potential of biosensors in the diagnosis of SARS-CoV-2. This review highlights the current state of presently available detection techniques, expected potential limits, and the benefits of biosensor-implicated tests against SARS-Cov-2 diagnosis. CRISPR-Cas9 implanted paper strip, field-effect transistor (FET) implanted sensor, nucleic-acid centric, aptamers-implanted biosensor, antigen-Au/Ag nanoparticles-based electrochemical biosensor, surface-enhanced Raman scattering (SERS)-based biosensor, Surface Plasmon Resonance, potential electrochemical biosensor, optical biosensor, as well as artificial intelligence (AI) are some of the novel biosensing devices that are being utilized in the prognosis of coronaviruses.

Keywords: COVID-19, biosensors, SARS-CoV-2, respiratory, syndrome, virus, CRISPR-Cas9.

Graphical Abstract
[1]
Samson, R.; Navale, G.R.; Dharne, M.S. Biosensors: Frontiers in rapid detection of COVID-19. 3 Biotech, 2020, 10(9), 385-385.
[2]
Bohra, G.K.; Kumar, D.; Garg, M.K. COVID-19 and infectious disease speciality - a necessity of time in india. Infect. Disord. Drug Targets, 2022, 22(2), e170322191976.
[http://dx.doi.org/10.2174/1871526521666210302155650] [PMID: 33653257]
[3]
Alhalaili, B.; Popescu, I.N.; Kamoun, O.; Alzubi, F.; Alawadhia, S.; Vidu, R. Nanobiosensors for the detection of novel coronavirus 2019-ncov and other pandemic/epidemic respiratory viruses: A review. Sensors, 2020, 20(22), 6591.
[http://dx.doi.org/10.3390/s20226591] [PMID: 33218097]
[4]
Qiu, G.; Gai, Z.; Tao, Y.; Schmitt, J.; Kullak-Ublick, G.A.; Wang, J. Dual-functional plasmonic photothermal biosensors for highly accu-rate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano, 2020, 14(5), 5268-5277.
[http://dx.doi.org/10.1021/acsnano.0c02439] [PMID: 32281785]
[5]
Verma, R.; Devi, K.; Qizilbash, F.F.; Verma, S.; Vyas, M.; Haque, A.; Taleuzzaman, M. Management of COVID-19: A review. Antiinfect. Agents, 2022, 20(2), e130621188859.
[http://dx.doi.org/10.2174/2211352518999201208201557]
[6]
Panati, K.; Tatireddygari, V.R.A.; Narala, V.R. An overview on COVID-19 pandemic: from discovery to treatment. Infect. Disord. Drug Targets, 2021, 21(7), e160921187709.
[http://dx.doi.org/10.2174/1871526520666201109115820] [PMID: 33167846]
[7]
Bordi, L.; Piralla, A.; Lalle, E.; Giardina, F.; Colavita, F.; Tallarita, M.; Sberna, G.; Novazzi, F.; Meschi, S.; Castilletti, C.; Brisci, A.; Min-nucci, G.; Tettamanzi, V.; Baldanti, F.; Capobianchi, M.R. Rapid and sensitive detection of SARS-CoV-2 RNA using the Simplexa™ COVID-19 direct assay. J. Clinical Virol., 2020, 128, 104416.
[8]
Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA, 2020, 323(18), 1843-1844.
[http://dx.doi.org/10.1001/jama.2020.3786] [PMID: 32159775]
[9]
Hellewell, J.; Abbott, S.; Gimma, A.; Bosse, N.I.; Jarvis, C.I.; Russell, T.W.; Munday, J.D.; Kucharski, A.J.; Edmunds, W.J.; Funk, S.; Eggo, R.M.; Sun, F.; Flasche, S.; Quilty, B.J.; Davies, N.; Liu, Y.; Clifford, S.; Klepac, P.; Jit, M.; Diamond, C.; Gibbs, H.; van Zandvoort, K. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob. Health, 2020, 8(4), e488-e496.
[http://dx.doi.org/10.1016/S2214-109X(20)30074-7] [PMID: 32119825]
[10]
Wu, Y.C.; Chen, C.S.; Chan, Y.J. The outbreak of COVID-19: An overview. J. Chin. Med. Assoc., 2020, 83(3), 217-220.
[http://dx.doi.org/10.1097/JCMA.0000000000000270] [PMID: 32134861]
[11]
Cui, F.; Zhou, H.S. Diagnostic methods and potential portable biosensors for coronavirus disease 2019. Biosens. Bioelectron., 2020, 165, 112349.
[http://dx.doi.org/10.1016/j.bios.2020.112349] [PMID: 32510340]
[12]
Sharma, P.; Veer, K. How india fights with COVID-19 learning from highly affected countries. Curr. Signal Transduct. Ther., 2021, 16(3), 197-199.
[http://dx.doi.org/10.2174/1574362415999200807154418]
[13]
Hussein, H.A.; Hassan, R.Y.A.; Chino, M.; Febbraio, F. Point-of-care diagnostics of COVID-19: From current work to future perspectives. Sensors, 2020, 20(15), 4289.
[http://dx.doi.org/10.3390/s20154289] [PMID: 32752043]
[14]
Lisco, G.; Giagulli, V.A.; De Pergola, G.; De Tullio, A.; Guastamacchia, E.; Triggiani, V. COVID-19 in Man: A very dangerous affair. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(9), 1544-1554.
[http://dx.doi.org/10.2174/22123873MTEyAOTQiz] [PMID: 33388025]
[15]
Foroozanfar, E.; Forouzanfar, M.; Farkhondeh, T.; Samarghandian, S.; Forouzanfar, F. ACE2 as a potential target for management of nov-el coronavirus (nCoV-2019). Curr. Drug Discov. Technol., 2021, 18(6), 6-9.
[http://dx.doi.org/10.2174/1570163817999201228215911] [PMID: 33371835]
[16]
Harwansh, R.K.; Bahadur, S. Herbal medicines to fight against COVID-19: New battle with an old weapon. Curr. Pharm. Biotechnol., 2022, 23(2), 235-260.
[http://dx.doi.org/10.2174/1389201022666210322124348] [PMID: 33749558]
[17]
Agrawal, N.; Pathak, S.; Goyal, A. Potential papain-like protease inhibitors against COVID-19: A comprehensive in silico based review. Comb. Chem. High Throughput Screen., 2022, 25(11), 1838-1858.
[http://dx.doi.org/10.2174/1386207325666211122123602] [PMID: 34809541]
[18]
Singh, S.; Kumar, A.; Sharma, H. In-vitro and in-vivo experimental models for MERS-CoV, SARSCoV, and SARS-CoV-2 viral infection: a compendious review. Recent Pat. Biotechnol., 2022, 16(2), 82-101.
[http://dx.doi.org/10.2174/1872208316666220124101611] [PMID: 35068398]
[19]
Rabi, F.A.; Al Zoubi, M.S.; Kasasbeh, G.A.; Salameh, D.M.; Al-Nasser, A.D. SARS-CoV-2 and coronavirus disease 2019: What we know so far. Pathogens, 2020, 9(3), 231.
[http://dx.doi.org/10.3390/pathogens9030231] [PMID: 32245083]
[20]
Mancini, F.; Barbanti, F.; Scaturro, M.; Errico, G.; Iacobino, A.; Bella, A.; Riccardo, F.; Marsili, G.; Stefanelli, P.; Pezzotti, P.; Rezza, G.; Ciervo, A. Laboratory management for SARS-CoV-2 detection: a user-friendly combination of the heat treatment approach and rt-real-time PCR testing. Emerg. Microbes Infect., 2020, 9(1), 1393-1396.
[http://dx.doi.org/10.1080/22221751.2020.1775500] [PMID: 32552549]
[21]
Xu, K. Integrated silicon directly modulated light source using p-well in standard CMOS Technology. IEEE Sens. J., 2016, 16(16), 6184-6191.
[http://dx.doi.org/10.1109/JSEN.2016.2582840]
[22]
Layqah, L.A.; Eissa, S. An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Mikrochim. Acta, 2019, 186(4), 224.
[http://dx.doi.org/10.1007/s00604-019-3345-5] [PMID: 30847572]
[23]
Kakodkar, P.; Kaka, N.; Baig, M.N. A comprehensive literature review on the clinical presentation, and management of the pandemic coronavirus disease 2019 (COVID-19). Cureus, 2020, 12(4), e7560.
[http://dx.doi.org/10.7759/cureus.7560] [PMID: 32269893]
[24]
Yusof, M.F.; Eltahir, Y.M.; Serhan, W.S.; Hashem, F.M.; Elsayed, E.A.; Marzoug, B.A.; Abdelazim, A.S.; Bensalah, O.K.A.; Al Muhairi, S.S. Prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Abu Dhabi Emirate, United Arab Emirates. Virus Genes, 2015, 50(3), 509-513.
[http://dx.doi.org/10.1007/s11262-015-1174-0] [PMID: 25653016]
[25]
Krishnamurthy, P.T. Coronavirus disease 2019: Virology and drug targets. Infect. Disord. Drug Targets, 2021, 21(8), e160921188929.
[http://dx.doi.org/10.2174/1871526520666201209145302] [PMID: 33297920]
[26]
Sharma, H.; Singh, S.; Pathak, S. Pathogenesis of COVID-19, Disease Outbreak: A Review. Curr. Pharm. Biotechnol., 2021, 22(12), 1591-1601.
[http://dx.doi.org/10.2174/1389201022666210127113441] [PMID: 33504302]
[27]
Chen, S.; Chen, L.; Tan, J.; Chen, J.; Du, L.; Sun, T.; Shen, J.; Chen, K.; Jiang, H.; Shen, X. Severe acute respiratory syndrome corona-virus 3C-like proteinase N terminus is indispensable for proteolytic activity but not for enzyme dimerization. Biochemical and thermody-namic investigation in conjunction with molecular dynamics simulations. J. Biol. Chem., 2005, 280(1), 164-173.
[http://dx.doi.org/10.1074/jbc.M408211200] [PMID: 15507456]
[28]
Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W.; Bao, L.; Zhang, B.; Liu, G.; Wang, Z.; Chappell, M.; Liu, Y.; Zheng, D.; Leibbrandt, A.; Wada, T.; Slutsky, A.S.; Liu, D.; Qin, C.; Jiang, C.; Penninger, J.M. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med., 2005, 11(8), 875-879.
[http://dx.doi.org/10.1038/nm1267] [PMID: 16007097]
[29]
Seo, G.; Lee, G.; Kim, M.J.; Baek, S.H.; Choi, M.; Ku, K.B.; Lee, C.S.; Jun, S.; Park, D.; Kim, H.G.; Kim, S.J.; Lee, J.O.; Kim, B.T.; Park, E.C.; Kim, S.I. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano, 2020, 14(4), 5135-5142.
[http://dx.doi.org/10.1021/acsnano.0c02823] [PMID: 32293168]
[30]
Meng, Z.; Guo, S.; Zhou, Y.; Li, M.; Wang, M.; Ying, B. Applications of laboratory findings in the prevention, diagnosis, treatment, and monitoring of COVID-19. Signal Transduct. Target. Ther., 2021, 6(1), 316.
[http://dx.doi.org/10.1038/s41392-021-00731-z] [PMID: 34433805]
[31]
Schoeman, D.; Fielding, B.C. Coronavirus envelope protein: Current knowledge. Virol. J., 2019, 16(1), 69.
[http://dx.doi.org/10.1186/s12985-019-1182-0] [PMID: 31133031]
[32]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[33]
Cheng, Z.J.; Li, B.; Zhan, Z.; Zhao, Z.; Xue, M.; Zheng, P.; Lyu, J.; Hu, C.; He, J.; Chen, R.; Sun, B. Clinical application of antibody im-munity against SARS-CoV-2: Comprehensive review on immunoassay and immunotherapy. Clin. Rev. Allergy Immunol., 2022, 1-16.
[http://dx.doi.org/10.1007/s12016-021-08912-y] [PMID: 35031959]
[34]
Bubonja-Šonje, M.; Batičić, L.; Abram, M.; Cekinović Grbeša, Đ. Diagnostic accuracy of three SARS-CoV-2 antibody detection assays, neutralizing effect and longevity of serum antibodies. J. Virol. Methods, 2021, 293, 114173.
[http://dx.doi.org/10.1016/j.jviromet.2021.114173] [PMID: 33930473]
[35]
Ding, Y.; He, L.; Zhang, Q.; Huang, Z.; Che, X.; Hou, J.; Wang, H.; Shen, H.; Qiu, L.; Li, Z.; Geng, J.; Cai, J.; Han, H.; Li, X.; Kang, W.; Weng, D.; Liang, P.; Jiang, S. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: Implications for pathogenesis and virus transmission pathways. J. Pathol., 2004, 203(2), 622-630.
[http://dx.doi.org/10.1002/path.1560] [PMID: 15141376]
[36]
Park, T.J.; Lee, S.J.; Kim, D.K.; Heo, N.S.; Park, J.Y.; Lee, S.Y. Development of label-free optical diagnosis for sensitive detection of influenza virus with genetically engineered fusion protein. Talanta, 2012, 89, 246-252.
[http://dx.doi.org/10.1016/j.talanta.2011.12.021] [PMID: 22284487]
[37]
Chan, J.F.W.; Yuan, S.; Kok, K.H.; To, K.K.W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.Y.; Poon, R.W.S.; Tsoi, H.W.; Lo, S.K.F.; Chan, K.H.; Poon, V.K.M.; Chan, W.M.; Ip, J.D.; Cai, J.P.; Cheng, V.C.C.; Chen, H.; Hui, C.K.M.; Yuen, K.Y. A familial cluster of pneu-monia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet, 2020, 395(10223), 514-523.
[http://dx.doi.org/10.1016/S0140-6736(20)30154-9] [PMID: 31986261]
[38]
Mujwar, S.; Harwansh, R.K. In silico bioprospecting of taraxerol as a main protease inhibitor of SARS-CoV-2 to develop therapy against COVID-19. Struct. Chem., 2022, 33(5), 1517-1528.
[http://dx.doi.org/10.1007/s11224-022-01943-x] [PMID: 35502321]
[39]
Yakoh, A.; Chaiyo, S.; Siangproh, W.; Chailapakul, O. 3D capillary-driven paper-based sequential microfluidic device for electrochemical sensing applications. ACS Sens., 2019, 4(5), 1211-1221.
[http://dx.doi.org/10.1021/acssensors.8b01574] [PMID: 30969113]
[40]
Perlman, S.; Netland, J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat. Rev. Microbiol., 2009, 7(6), 439-450.
[http://dx.doi.org/10.1038/nrmicro2147] [PMID: 19430490]
[41]
Vodnar, D.-C.; Mitrea, L.; Teleky, B.-E.; Szabo, K.; Călinoiu, L.-F.; Nemeş, S.-A.; Martău, G.-A. Coronavirus disease (COVID-19) caused by (SARS-CoV-2) infections: A real challenge for human gut microbiota. Front Cell Infect Microbiol, 2020, 10, 575559.
[42]
Sawicki, S.G.; Sawicki, D.L.; Siddell, S.G. A contemporary view of coronavirus transcription. J. Virol., 2007, 81(1), 20-29.
[http://dx.doi.org/10.1128/JVI.01358-06] [PMID: 16928755]
[43]
Park, J.A.; Kim, J.; Kim, S.M.; Sohn, H.; Park, C.; Kim, T.H.; Lee, J.H.; Lee, M.H.; Lee, T. Fabrication of electrochemical influenza virus (H1N1) biosensor composed of multifunctional dna four-way junction and molybdenum disulfide hybrid material. Materials, 2021, 14(2)
[44]
Kim, D.; Lee, J.Y.; Yang, J.S.; Kim, J.W.; Kim, V.N.; Chang, H. The architecture of SARS-CoV-2 transcriptome. Cell, 2020, 181(4), 914-921.e10.
[http://dx.doi.org/10.1016/j.cell.2020.04.011] [PMID: 32330414]
[45]
Acter, T.; Uddin, N.; Das, J.; Akhter, A.; Choudhury, T.R.; Kim, S. Evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as coronavirus disease 2019 (COVID-19) pandemic: A global health emergency. Sci. Total Environ., 2020, 730, 138996.
[http://dx.doi.org/10.1016/j.scitotenv.2020.138996] [PMID: 32371230]
[46]
Talebian, S.; Wallace, G.G.; Schroeder, A.; Stellacci, F.; Conde, J. Nanotechnology-based disinfectants and sensors for SARS-CoV-2. Nat. Nanotechnol., 2020, 15(8), 618-621.
[http://dx.doi.org/10.1038/s41565-020-0751-0] [PMID: 32728083]
[47]
Bertram, S.; Heurich, A.; Lavender, H.; Gierer, S.; Danisch, S.; Perin, P.; Lucas, J.M.; Nelson, P.S.; Pöhlmann, S.; Soilleux, E.J. Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts. PLoS One, 2012, 7(4), e35876.
[http://dx.doi.org/10.1371/journal.pone.0035876] [PMID: 22558251]
[48]
Osman, B.; Uzun, L.; Beşirli, N.; Denizli, A. Microcontact imprinted surface plasmon resonance sensor for myoglobin detection. Mater. Sci. Eng. C, 2013, 33(7), 3609-3614.
[http://dx.doi.org/10.1016/j.msec.2013.04.041] [PMID: 23910256]
[49]
Hou, Y.J.; Okuda, K.; Edwards, C.E.; Martinez, D.R.; Asakura, T.; Dinnon, K.H., III; Kato, T.; Lee, R.E.; Yount, B.L.; Mascenik, T.M.; Chen, G.; Olivier, K.N.; Ghio, A.; Tse, L.V.; Leist, S.R.; Gralinski, L.E.; Schäfer, A.; Dang, H.; Gilmore, R.; Nakano, S.; Sun, L.; Fulcher, M.L.; Livraghi-Butrico, A.; Nicely, N.I.; Cameron, M.; Cameron, C.; Kelvin, D.J.; de Silva, A.; Margolis, D.M.; Markmann, A.; Bartelt, L.; Zumwalt, R.; Martinez, F.J.; Salvatore, S.P.; Borczuk, A.; Tata, P.R.; Sontake, V.; Kimple, A.; Jaspers, I.; O’Neal, W.K.; Randell, S.H.; Boucher, R.C.; Baric, R.S. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell, 2020, 182(2), 429-446.e14.
[http://dx.doi.org/10.1016/j.cell.2020.05.042] [PMID: 32526206]
[50]
Pan, L.; Mu, M.; Yang, P.; Sun, Y.; Wang, R.; Yan, J.; Li, P.; Hu, B.; Wang, J.; Hu, C.; Jin, Y.; Niu, X.; Ping, R.; Du, Y.; Li, T.; Xu, G.; Hu, Q.; Tu, L. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: A descriptive, cross-sectional, multi-center study. Am. J. Gastroenterol., 2020, 115(5), 766-773.
[http://dx.doi.org/10.14309/ajg.0000000000000620] [PMID: 32287140]
[51]
Liang, L.; Ren, H.; Cao, R.; Hu, Y.; Qin, Z.; Li, C.; Mei, S. The effect of COVID-19 on youth mental health. Psychiatr. Q., 2020, 91(3), 841-852.
[http://dx.doi.org/10.1007/s11126-020-09744-3] [PMID: 32319041]
[52]
Olaimat, A.N.; Shahbaz, H.M.; Fatima, N.; Munir, S.; Holley, R.A. Food safety during and after the era of COVID-19 pandemic. Front. Microbiol., 2020, 11, 1854.
[http://dx.doi.org/10.3389/fmicb.2020.01854] [PMID: 32849446]
[53]
Shah, K.; Verma, T.; Sinha, M.; Nitin, B.; Yadav, S.R.; Chauhan, N. A review on coronavirus disease and potentially active drugs targeting coronavirus. Biomed. Biotechnol. Res. J. (BBRJ), 2021, 5(2), 110.
[http://dx.doi.org/10.4103/bbrj.bbrj_14_21]
[54]
Kudr, J.; Michalek, P.; Ilieva, L.; Adam, V.; Zitka, O. COVID-19: A challenge for electrochemical biosensors. Trends Analyt. Chem., 2021, 136, 116192.
[http://dx.doi.org/10.1016/j.trac.2021.116192] [PMID: 33487783]
[55]
Sodhi, G.K.; Kaur, S.; Gaba, G.S.; Kansal, L.; Sharma, A.; Dhiman, G. COVID-19: Role of robotics, artificial intelligence and machine learning during the pandemic. Curr. Med. Imaging Rev., 2022, 18(2), 124-134.
[http://dx.doi.org/10.2174/1573405617666210224115722] [PMID: 33655845]
[56]
Demeke Teklemariam, A.; Samaddar, M.; Alharbi, M.G.; Al-Hindi, R.R.; Bhunia, A.K. Biosensor and molecular-based methods for the detection of human coronaviruses: A review. Mol. Cell. Probes, 2020, 54, 101662.
[http://dx.doi.org/10.1016/j.mcp.2020.101662] [PMID: 32911064]
[57]
Monteil, V.; Kwon, H.; Prado, P.; Hagelkrüys, A.; Wimmer, R.A.; Stahl, M.; Leopoldi, A.; Garreta, E.; Hurtado del Pozo, C.; Prosper, F.; Romero, J.P.; Wirnsberger, G.; Zhang, H.; Slutsky, A.S.; Conder, R.; Montserrat, N.; Mirazimi, A.; Penninger, J.M. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell, 2020, 181(4), 905-913.e7.
[http://dx.doi.org/10.1016/j.cell.2020.04.004] [PMID: 32333836]
[58]
Palomar, Q.; Xu, X.; Gondran, C.; Holzinger, M.; Cosnier, S.; Zhang, Z. Voltammetric sensing of recombinant viral dengue virus 2 NS1 based on Au nanoparticle–decorated multiwalled carbon nanotube composites. Mikrochim. Acta, 2020, 187(6), 363.
[http://dx.doi.org/10.1007/s00604-020-04339-y] [PMID: 32488309]
[59]
Mavrikou, S.; Moschopoulou, G.; Tsekouras, V.; Kintzios, S. Development of a portable, ultra-rapid and ultra-sensitive cell-based biosensor for the direct detection of the SARS-CoV-2 S1 spike protein antigen. Sensors, 2020, 20(11), 3121.
[http://dx.doi.org/10.3390/s20113121] [PMID: 32486477]
[60]
Yan, C.; Cui, J.; Huang, L.; Du, B.; Chen, L.; Xue, G.; Li, S.; Zhang, W.; Zhao, L.; Sun, Y.; Yao, H.; Li, N.; Zhao, H.; Feng, Y.; Liu, S.; Zhang, Q.; Liu, D.; Yuan, J. Rapid and visual detection of 2019 novel coronavirus (SARS-CoV-2) by a reverse transcription loop-mediated isothermal amplification assay. Clinical Microbiol. Infect., 2020, 26(6), 773-779.
[61]
Asif, M.; Ajmal, M.; Ashraf, G.; Muhammad, N.; Aziz, A.; Iftikhar, T.; Wang, J.; Liu, H. The role of biosensors in coronavirus disease-2019 outbreak. Curr. Opin. Electrochem., 2020, 23, 174-184.
[http://dx.doi.org/10.1016/j.coelec.2020.08.011] [PMID: 32984642]
[62]
Hamadi, A.; Mahzari, A.; Hakami, A.; Hindawi, S.; Dobie, G.; Sayyed, M.I.; Hamdi, F.; Nahari, M.; Jackson, D.E. An overview on COVID-19 and its effect on cardiovascular diseases. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(11), 1949-1953.
[http://dx.doi.org/10.2174/1871530321999201228214718] [PMID: 33371840]
[63]
Ajebli, M.; Amssayef, A.; Akdad, M.; Algharrass, Y.; Babakhouya, A.; Ghanimi, D.; Eddouks, M. Chronic diseases and COVID-19: A Review. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(10), 1781-1803.
[http://dx.doi.org/10.2174/1871530320666201201110148] [PMID: 33261545]
[64]
Islam, A.; Sharma, K.; Sharma, A. In: Advances in Mechanical Engineering; Springer: Heidelberg, 2021, pp. 301-309.
[http://dx.doi.org/10.1007/978-981-16-0942-8_28]
[65]
Kumar, A.; Sharma, K.; Dixit, A.R. Role of graphene in biosensor and protective textile against viruses. Med. Hypotheses, 2020, 144, 110253.
[http://dx.doi.org/10.1016/j.mehy.2020.110253] [PMID: 33254558]
[66]
Merkoçi, A.; Li, C.; Lechuga, L.M.; Ozcan, A. COVID-19 biosensing technologies. Biosens. Bioelectron., 2021, 178, 113046.
[http://dx.doi.org/10.1016/j.bios.2021.113046] [PMID: 33548654]
[67]
Xu, L.; Li, D.; Ramadan, S.; Li, Y.; Klein, N. Facile biosensors for rapid detection of COVID-19. Biosens. Bioelectron., 2020, 170, 112673.
[http://dx.doi.org/10.1016/j.bios.2020.112673] [PMID: 33038584]
[68]
Sharma, A.; Mishra, R.K.; Goud, K.Y.; Mohamed, M.A.; Kummari, S.; Tiwari, S.; Li, Z.; Narayan, R.; Stanciu, L.A.; Marty, J.L. Optical biosensors for diagnostics of infectious viral disease: A recent update. Diagnostics, 2021, 11(11), 2083.
[http://dx.doi.org/10.3390/diagnostics11112083]
[69]
Huang, W.E.; Lim, B.; Hsu, C.C.; Xiong, D.; Wu, W.; Yu, Y.; Jia, H.; Wang, Y.; Zeng, Y.; Ji, M.; Chang, H.; Zhang, X.; Wang, H.; Cui, Z. RT‐LAMP for rapid diagnosis of coronavirus SARS‐CoV‐2. Microb. Biotechnol., 2020, 13(4), 950-961.
[http://dx.doi.org/10.1111/1751-7915.13586] [PMID: 32333644]
[70]
de Lima, L.F.; Ferreira, A.L.; Torres, M.D.T.; de Araujo, W.R.; de la Fuente-Nunez, C. Minute-scale detection of SARS-CoV-2 using a low-cost biosensor composed of pencil graphite electrodes. Proc. Natl. Acad. Sci., 2021, 118(30), e2106724118.
[http://dx.doi.org/10.1073/pnas.2106724118] [PMID: 34244421]
[71]
Bezzon, V.D.N.; Montanheiro, T.L.A.; de Menezes, B.R.C.; Ribas, R.G.; Righetti, V.A.N.; Rodrigues, K.F.; Thim, G.P. Carbon nanostruc-ture-based sensors: A brief review on recent advances. Adv. Mater. Sci. Eng., 2019, 2019, 1-21.
[http://dx.doi.org/10.1155/2019/4293073]
[72]
Vermisoglou, E.; Panáček, D.; Jayaramulu, K.; Pykal, M.; Frébort, I.; Kolář, M.; Hajdúch, M.; Zbořil, R.; Otyepka, M. Human virus detec-tion with graphene-based materials. Biosens. Bioelectron., 2020, 166, 112436.
[http://dx.doi.org/10.1016/j.bios.2020.112436] [PMID: 32750677]
[73]
Naresh, V.; Lee, N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors (Basel), 2021, 21(4), 1109.
[http://dx.doi.org/10.3390/s21041109] [PMID: 33562639]
[74]
Rashmi, V. v, K.; Kumar, J.P.; Sanjay, K.R. Can machine learning and nanotechnology help the fight against the current COVID-19 crisis? Curr. Nanosci., 2021, 17(6), 844-852.
[http://dx.doi.org/10.2174/1573413717666210208182816]
[75]
Jampasa, S.; Lae-ngee, P.; Patarakul, K.; Ngamrojanavanich, N.; Chailapakul, O.; Rodthongkum, N. Electrochemical immunosensor based on gold-labeled monoclonal anti-LipL32 for leptospirosis diagnosis. Biosens. Bioelectron., 2019, 142, 111539.
[http://dx.doi.org/10.1016/j.bios.2019.111539] [PMID: 31376713]
[76]
Krejcova, L.; Nejdl, L.; Rodrigo, M.A.M.; Zurek, M.; Matousek, M.; Hynek, D.; Zitka, O.; Kopel, P.; Adam, V.; Kizek, R. 3D printed chip for electrochemical detection of influenza virus labeled with CdS quantum dots. Biosensors & bioelectronics, 2014, 54, 421-427.
[77]
Wędrowska, E.; Wandtke, T.; Piskorska, E.; Kopiński, P. The latest achievements in the construction of influenza virus detection aptasen-sors. Viruses, 2020, 12(12), 1365.
[http://dx.doi.org/10.3390/v12121365] [PMID: 33265901]
[78]
Carrilho, E.; Martinez, A.W.; Whitesides, G.M. Understanding wax printing: A simple micropatterning process for paper-based microflu-idics. Anal. Chem., 2009, 81(16), 7091-7095.
[http://dx.doi.org/10.1021/ac901071p] [PMID: 20337388]
[79]
Shi, L.; Sun, Q.; He, J.; Xu, H.; Liu, C.; Zhao, C.; Xu, Y.; Wu, C.; Xiang, J.; Gu, D.; Long, J.; Lan, H. Development of SPR biosensor for simultaneous detection of multiplex respiratory viruses. Biomed. Mater. Eng., 2015, 26(s1)(Suppl. 1), S2207-S2216.
[http://dx.doi.org/10.3233/BME-151526] [PMID: 26406000]
[80]
Laghrib, F.; Saqrane, S.; El Bouabi, Y.; Farahi, A.; Bakasse, M.; Lahrich, S.; El Mhammedi, M.A. Current progress on COVID-19 related to biosensing technologies: New opportunity for detection and monitoring of viruses. Microchemical J., 2021, 160, 105606.
[81]
Saylan, Y.; Yilmaz, F.; Özgür, E.; Derazshamshir, A.; Yavuz, H.; Denizli, A. Molecular imprinting of macromolecules for sensor applica-tions. Sensors, 2017, 17(4), 898.
[http://dx.doi.org/10.3390/s17040898] [PMID: 28422082]
[82]
Taleghani, N.; Taghipour, F. Diagnosis of COVID-19 for controlling the pandemic: A review of the state-of-the-art. Biosens. Bioelectron., 2021, 174, 112830.
[http://dx.doi.org/10.1016/j.bios.2020.112830] [PMID: 33339696]
[83]
Mayorga-Martinez, C.C.; Chamorro-García, A.; Serrano, L.; Rivas, L.; Quesada-Gonzalez, D.; Altet, L.; Francino, O.; Sánchez, A.; Merkoçi, A. An iridium oxide nanoparticle and polythionine thin film based platform for sensitive Leishmania DNA detection. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(26), 5166-5171.
[http://dx.doi.org/10.1039/C5TB00545K] [PMID: 32262591]
[84]
Erdem, Ö.; Saylan, Y.; Cihangir, N.; Denizli, A. Molecularly imprinted nanoparticles based plasmonic sensors for real-time Enterococcus faecalis detection. Biosens. Bioelectron., 2019, 126, 608-614.
[http://dx.doi.org/10.1016/j.bios.2018.11.030] [PMID: 30502683]
[85]
Singh, V.; Allawadhi, P.; Khurana, A.; Banothu, A.K.; Bharani, K.K. Critical neurological features of COVID-19: Role of imaging methods and biosensors for effective diagnosis. Sensors International, 2021, 2, 100098.
[http://dx.doi.org/10.1016/j.sintl.2021.100098] [PMID: 34766055]
[86]
Kowitdamrong, E.; Puthanakit, T.; Jantarabenjakul, W.; Prompetchara, E.; Suchartlikitwong, P.; Putcharoen, O.; Hirankarn, N. Antibody responses to SARS-CoV-2 in patients with differing severities of coronavirus disease 2019. PLoS One, 2020, 15(10), e0240502.
[http://dx.doi.org/10.1371/journal.pone.0240502] [PMID: 33035234]
[87]
Vladareanu, L. Advanced intelligent control through versatile intelligent portable platforms. Sensors, 2020, 20(13), 3644.
[http://dx.doi.org/10.3390/s20133644] [PMID: 32610597]
[88]
Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; Mulders, D.G.; Haagmans, B.L.; van der Veer, B.; van den Brink, S.; Wijsman, L.; Goderski, G.; Romette, J.L.; Ellis, J.; Zambon, M.; Peiris, M.; Goossens, H.; Reusken, C.; Koopmans, M.P.; Drosten, C. Detection of 2019 novel coronavirus (2019-nCoV) by realtime RT-PCR. Euro surveillance: Euro. communicable dis. bull., 2020, 25(3), 2000045.
[89]
Won, J.; Lee, S.; Park, M.; Kim, T.Y.; Park, M.G.; Choi, B.Y.; Kim, D.; Chang, H.; Kim, V.N.; Lee, C.J. 2019 (COVID-19). Exp. Neurobiol., 2020, 29(2), 107-119.
[http://dx.doi.org/10.5607/en20009] [PMID: 32156101]
[90]
Pan, Y.; Zhang, D.; Yang, P.; Poon, L.L.M.; Wang, Q. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect. Dis., 2020, 20(4), 411-412.
[http://dx.doi.org/10.1016/S1473-3099(20)30113-4] [PMID: 32105638]
[91]
Park, Y.J.; Choe, Y.J.; Park, O.; Park, S.Y.; Kim, Y.M.; Kim, J.; Kweon, S.; Woo, Y.; Gwack, J.; Kim, S.S.; Lee, J.; Hyun, J.; Ryu, B.; Jang, Y.S.; Kim, H.; Shin, S.H.; Yi, S.; Lee, S.; Kim, H.K.; Lee, H.; Jin, Y.; Park, E.; Choi, S.W.; Kim, M.; Song, J.; Choi, S.W.; Kim, D.; Jeon, B.H.; Yoo, H.; Jeong, E.K. Contact tracing during coronavirus disease outbreak, South Korea, 2020. Emerg. Infect. Dis., 2020, 26(10), 2465-2468.
[http://dx.doi.org/10.3201/eid2610.201315] [PMID: 32673193]
[92]
Cho, H.; Jung, Y.H.; Cho, H.B.; Kim, H.T.; Kim, K.S. Positive control synthesis method for COVID-19 diagnosis by one-step real-time RT-PCR. Int. J. Clinical Chem., 2020, 511, 149-153.
[93]
Yakoh, A.; Pimpitak, U.; Rengpipat, S.; Hirankarn, N.; Chailapakul, O.; Chaiyo, S. Paper-based electrochemical biosensor for diagnosing COVID-19: Detection of SARS-CoV-2 antibodies and antigen. Biosens. Bioelectron., 2021, 176, 112912.
[http://dx.doi.org/10.1016/j.bios.2020.112912] [PMID: 33358057]
[94]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; Yuan, M.L.; Zhang, Y.L.; Dai, F.H.; Liu, Y.; Wang, Q.M.; Zheng, J.J.; Xu, L.; Holmes, E.C.; Zhang, Y.Z. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798), 265-269.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[95]
Ramphul, K.; Mejias, S.G. Coronavirus disease: A review of a new threat to public health. Cureus, 2020, 12(3), e7276.
[http://dx.doi.org/10.7759/cureus.7276] [PMID: 32300496]
[96]
DeDiego, M.L.; Nieto-Torres, J.L.; Jimenez-Guardeño, J.M.; Regla-Nava, J.A.; Castaño-Rodriguez, C.; Fernandez-Delgado, R.; Usera, F.; Enjuanes, L. Coronavirus virulence genes with main focus on SARS-CoV envelope gene. Virus Res., 2014, 194, 124-137.
[http://dx.doi.org/10.1016/j.virusres.2014.07.024] [PMID: 25093995]
[97]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[98]
Kammila, S.; Das, D.; Bhatnagar, P.K.; Sunwoo, H.H.; Zayas-Zamora, G.; King, M.; Suresh, M.R. A rapid point of care immunoswab assay for SARS-CoV detection. J. Virol. Methods, 2008, 152(1-2), 77-84.
[http://dx.doi.org/10.1016/j.jviromet.2008.05.023] [PMID: 18620761]
[99]
Jiang, F.; Deng, L.; Zhang, L.; Cai, Y.; Cheung, C.W.; Xia, Z. Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). J. Gen. Intern. Med., 2020, 35(5), 1545-1549.
[http://dx.doi.org/10.1007/s11606-020-05762-w] [PMID: 32133578]
[100]
Ardeleanu, M.N.; Popescu, I.N.; Udroiu, I.N.; Diaconu, E.M.; Mihai, S.; Lungu, E.; Alhalaili, B.; Vidu, R. Novel PDMS-based sensor system for MPWM measurements of picoliter volumes in microfluidic devices. Sensors, 2019, 19(22), 4886.
[http://dx.doi.org/10.3390/s19224886] [PMID: 31717452]
[101]
Yu, J.; Chai, P.; Ge, S.; Fan, X. Recent understandings toward coronavirus disease 2019 (COVID-19): from bench to bedside. Front. Cell Dev. Biol., 2020, 8, 476.
[http://dx.doi.org/10.3389/fcell.2020.00476] [PMID: 32582719]
[102]
Zhang, Y.; Ma, Z.F. Impact of the COVID-19 pandemic on mental health and quality of life among local residents in liaoning province, china: A cross-sectional study. Int. J. Environ. Res. Public Health, 2020, 17(7), 2381.
[http://dx.doi.org/10.3390/ijerph17072381] [PMID: 32244498]
[103]
Pan, A.; Liu, L.; Wang, C.; Guo, H.; Hao, X.; Wang, Q.; Huang, J.; He, N.; Yu, H.; Lin, X.; Wei, S.; Wu, T. Association of public health interventions with the epidemiology of the COVID-19 outbreak in wuhan, China. JAMA, 2020, 323(19), 1915-1923.
[http://dx.doi.org/10.1001/jama.2020.6130] [PMID: 32275295]
[104]
Bloom, D.E.; Cadarette, D.; Ferranna, M. The societal value of vaccination in the age of COVID-19. Am. J. Public Health, 2021, 111(6), 1049-1054.
[http://dx.doi.org/10.2105/AJPH.2020.306114] [PMID: 33856880]
[105]
Adegoke, O.; Kato, T.; Park, E.Y. An ultrasensitive alloyed near-infrared quinternary quantum dot-molecular beacon nanodiagnostic bi-oprobe for influenza virus RNA. Biosens. Bioelectron., 2016, 80, 483-490.
[http://dx.doi.org/10.1016/j.bios.2016.02.020] [PMID: 26890823]
[106]
Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical biosensors - sensor principles and architectures. Sensors, 2008, 8(3), 1400-1458.
[http://dx.doi.org/10.3390/s80314000] [PMID: 27879772]
[107]
Zhang, Z.L.; Hou, Y.L.; Li, D.T.; Li, F.Z. Diagnostic efficacy of anti-SARS-CoV-2 IgG/IgM test for COVID-19: A meta-analysis. J. Med. Virol., 2021, 93(1), 366-374.
[http://dx.doi.org/10.1002/jmv.26211] [PMID: 32568413]
[108]
Pang, Y.; Jian, J.; Tu, T.; Yang, Z.; Ling, J.; Li, Y.; Wang, X.; Qiao, Y.; Tian, H.; Yang, Y.; Ren, T.L. Wearable humidity sensor based on porous graphene network for respiration monitoring. Biosens. Bioelectron., 2018, 116, 123-129.
[http://dx.doi.org/10.1016/j.bios.2018.05.038] [PMID: 29879538]
[109]
Peng, X.; Xu, X.; Li, Y.; Cheng, L.; Zhou, X.; Ren, B. Transmission routes of 2019-nCoV and controls in dental practice. Int. J. Oral Sci., 2020, 12(1), 9.
[http://dx.doi.org/10.1038/s41368-020-0075-9] [PMID: 32127517]
[110]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively in-hibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[111]
Dincer, C.; Bruch, R.; Costa-Rama, E.; Fernández-Abedul, M.T.; Merkoçi, A.; Manz, A.; Urban, G.A.; Güder, F. Disposable sensors in diagnostics, food, and environmental monitoring. Adv. Mater., 2019, 31(30), 1806739.
[http://dx.doi.org/10.1002/adma.201806739] [PMID: 31094032]
[112]
Szunerits, S.; Nait Saada, T.; Meziane, D.; Boukherroub, R. Magneto-optical nanostructures for viral sensing. Nanomaterials, 2020, 10(7), 1271.
[http://dx.doi.org/10.3390/nano10071271] [PMID: 32610549]
[113]
Zou, L.; Ruan, F.; Huang, M.; Liang, L.; Huang, H.; Hong, Z.; Yu, J.; Kang, M.; Song, Y.; Xia, J.; Guo, Q.; Song, T.; He, J.; Yen, H.L.; Peiris, M.; Wu, J. SARS-CoV-2 Viral load in upper respiratory specimens of infected patients. N. Engl. J. Med., 2020, 382(12), 1177-1179.
[http://dx.doi.org/10.1056/NEJMc2001737] [PMID: 32074444]
[114]
Lin, Y.; Hu, Z.; Alias, H.; Wong, L.P. Knowledge, attitudes, impact, and anxiety regarding COVID-19 infection among the public in China. Front. Public Health, 2020, 8, 236.
[http://dx.doi.org/10.3389/fpubh.2020.00236] [PMID: 32574305]
[115]
Han, L.; Chaturvedi, P.; Kishimoto, K.; Koike, H.; Nasr, T.; Iwasawa, K.; Giesbrecht, K.; Witcher, P.C.; Eicher, A.; Haines, L.; Lee, Y.; Shannon, J.M.; Morimoto, M.; Wells, J.M.; Takebe, T.; Zorn, A.M. Single cell transcriptomics identifies a signaling network coordinating endoderm and mesoderm diversification during foregut organogenesis. Nat. Commun., 2020, 11(1), 4158.
[http://dx.doi.org/10.1038/s41467-020-17968-x] [PMID: 32855417]
[116]
Zhang, X.; Tan, Y.; Ling, Y.; Lu, G.; Liu, F.; Yi, Z.; Jia, X.; Wu, M.; Shi, B.; Xu, S.; Chen, J.; Wang, W.; Chen, B.; Jiang, L.; Yu, S.; Lu, J.; Wang, J.; Xu, M.; Yuan, Z.; Zhang, Q.; Zhang, X.; Zhao, G.; Wang, S.; Chen, S.; Lu, H. Viral and host factors related to the clinical out-come of COVID-19. Nature, 2020, 583(7816), 437-440.
[http://dx.doi.org/10.1038/s41586-020-2355-0] [PMID: 32434211]
[117]
Kaya, S.I.; Karadurmus, L.; Ozcelikay, G.; Bakirhan, N.K.; Ozkan, S.A. Electrochemical virus detections with nanobiosensors; Nanosen-sors for Smart Cities, 2020, pp. 303-326.
[118]
Bin, L.; Leung, D.Y.M. Genetic and epigenetic studies of atopic dermatitis. Allergy Asthma Clin. Immunol., 2016, 12(1), 52.
[http://dx.doi.org/10.1186/s13223-016-0158-5] [PMID: 27777593]
[119]
van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; Lloyd-Smith, J.O.; de Wit, E.; Munster, V.J. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med., 2020, 382(16), 1564-1567.
[http://dx.doi.org/10.1056/NEJMc2004973] [PMID: 32182409]
[120]
Xu, K.; Chen, Y.; Okhai, T.A.; Snyman, L.W. Micro optical sensors based on avalanching silicon light-emitting devices monolithically integrated on chips. Opt. Mater. Express, 2019, 9(10), 3985-3997.
[http://dx.doi.org/10.1364/OME.9.003985]
[121]
La Spada, L.; Vegni, L. Electromagnetic nanoparticles for sensing and medical diagnostic applications. In: Materials; , 2018; 11, . (4)
[122]
Jayaweera, M.; Perera, H.; Gunawardana, B.; Manatunge, J. Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Environ. Res., 2020, 188, 109819.
[http://dx.doi.org/10.1016/j.envres.2020.109819] [PMID: 32569870]
[123]
Cheeveewattanagul, N.; Morales-Narváez, E.; Hassan, A.R.H.A.; Bergua, J.F.; Surareungchai, W.; Somasundrum, M.; Merkoçi, A. Straight-forward immunosensing platform based on graphene oxide-decorated nanopaper: A highly sensitive and fast biosensing approach. Adv. Funct. Mater., 2017, 27(38), 1702741.
[http://dx.doi.org/10.1002/adfm.201702741]
[124]
Kwee, T.C.; Kwee, R.M. Chest CT in COVID-19: What the radiologist needs to know. Radiographics, 2020, 40(7), 1848-1865.
[http://dx.doi.org/10.1148/rg.2020200159] [PMID: 33095680]
[125]
Dabanloo, N.J.; Safdarian, N. Detection and classification of COVID-19 by lungs computed tomography scan image processing using intelligence algorithm. J. Med. Signals Sens., 2021, 11(4), 274-284.
[http://dx.doi.org/10.4103/jmss.JMSS_55_20] [PMID: 34820300]
[126]
Volpicelli, G.; Gargani, L. Sonographic signs and patterns of COVID-19 pneumonia. Ultrasound J., 2020, 12(1), 22.
[http://dx.doi.org/10.1186/s13089-020-00171-w] [PMID: 32318891]
[127]
Pan, F.; Ye, T.; Sun, P.; Gui, S.; Liang, B.; Li, L.; Zheng, D.; Wang, J.; Hesketh, R.L.; Yang, L.; Zheng, C. Time course of lung changes at chest CT during recovery from coronavirus disease 2019 (COVID-19). Radiology, 2020, 295(3), 715-721.
[http://dx.doi.org/10.1148/radiol.2020200370] [PMID: 32053470]
[128]
George, P.M.; Barratt, S.L.; Condliffe, R.; Desai, S.R.; Devaraj, A.; Forrest, I.; Gibbons, M.A.; Hart, N.; Jenkins, R.G.; McAuley, D.F.; Patel, B.V.; Thwaite, E.; Spencer, L.G. Respiratory follow-up of patients with COVID-19 pneumonia. Thorax, 2020, 75(11), 1009-1016.
[http://dx.doi.org/10.1136/thoraxjnl-2020-215314] [PMID: 32839287]
[129]
Xiao, Y.; Yang, F.; Liu, F.; Yao, H.; Wu, N.; Wu, H. Antigen-capture ELISA and immunochromatographic test strip to detect the H9N2 subtype avian influenza virus rapidly based on monoclonal antibodies. Virol. J., 2021, 18(1), 198.
[http://dx.doi.org/10.1186/s12985-021-01671-4] [PMID: 34600550]
[130]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: im-plications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[131]
Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; Miao, X.; Li, Y.; Hu, B. Neurologic mani-festations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol., 2020, 77(6), 683-690.
[http://dx.doi.org/10.1001/jamaneurol.2020.1127] [PMID: 32275288]
[132]
Zhao, Z.; Cui, H.; Song, W.; Ru, X.; Zhou, W.; Yu, X. A simple magnetic nanoparticles-based viral RNA extraction method for efficient detection of SARS-CoV-2. bioRxiv, , 961268.2022
[133]
Liu, L.; Lei, X.; Xiao, X.; Yang, J.; Li, J.; Ji, M.; Du, W.; Tan, H.; Zhu, J.; Li, B.; Jin, Z.; Liu, W.; Wu, J.; Liu, Z. Epidemiological and clini-cal characteristics of patients with coronavirus disease-2019 in Shiyan City, China. Front. Cell. Infect. Microbiol., 2020, 10, 284.
[http://dx.doi.org/10.3389/fcimb.2020.00284] [PMID: 32574282]
[134]
Ge, Z.; Yang, L.; Xia, J.; Fu, X.; Zhang, Y. Possible aerosol transmission of COVID-19 and special precautions in dentistry. J. Zhejiang Univ. Sci. B, 2020, 21(5), 361-368.
[http://dx.doi.org/10.1631/jzus.B2010010] [PMID: 32425001]
[135]
Xia, S.; Liu, M.; Wang, C.; Xu, W.; Lan, Q.; Feng, S.; Qi, F.; Bao, L.; Du, L.; Liu, S.; Qin, C.; Sun, F.; Shi, Z.; Zhu, Y.; Jiang, S.; Lu, L. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike pro-tein that harbors a high capacity to mediate membrane fusion. Cell Res., 2020, 30(4), 343-355.
[http://dx.doi.org/10.1038/s41422-020-0305-x] [PMID: 32231345]
[136]
Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, 181(2), 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[137]
Yoshikawa, R.; Abe, H.; Igasaki, Y.; Negishi, S.; Goto, H.; Yasuda, J. Development and evaluation of a rapid and simple diagnostic assay for COVID-19 based on loop-mediated isothermal amplification. PLoS Negl. Trop. Dis., 2020, 14(11), e0008855.
[http://dx.doi.org/10.1371/journal.pntd.0008855] [PMID: 33147214]
[138]
Bai, Y.; Yao, L.; Wei, T.; Tian, F.; Jin, D.Y.; Chen, L.; Wang, M. Presumed asymptomatic carrier transmission of COVID-19. JAMA, 2020, 323(14), 1406-1407.
[http://dx.doi.org/10.1001/jama.2020.2565] [PMID: 32083643]
[139]
Azmi, I.; Faizan, M.I.; Kumar, R.; Raj Yadav, S.; Chaudhary, N.; Kumar Singh, D.; Butola, R.; Ganotra, A.; Datt Joshi, G.; Deep Jhingan, G.; Iqbal, J.; Joshi, M.C.; Ahmad, T. A saliva-based rna extraction-free workflow integrated with cas13a for SARS-CoV-2 detection. Front. Cell. Infect. Microbiol., 2021, 11, 632646.
[http://dx.doi.org/10.3389/fcimb.2021.632646] [PMID: 33796478]
[140]
Ding, X.; Yin, K.; Li, Z.; Liu, C. All-in-One Dual CRISPR-Cas12a (AIOD-CRISPR) assay: A case for rapid, ultrasensitive and visual de-tection of novel coronavirus SARS-CoV-2 and HIV virus. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.03.19.998724]
[141]
Ahmad, T.; Chaudhuri, R.; Joshi, M.C.; Almatroudi, A.; Rahmani, A.H.; Ali, S.M. COVID-19: The emerging immunopathological determi-nants for recovery or death. Front. Microbiol., 2020, 11, 588409.
[http://dx.doi.org/10.3389/fmicb.2020.588409] [PMID: 33335518]
[142]
Besednova, N.; Zaporozhets, T.; Kuznetsova, T.; Makarenkova, I.; Fedyanina, L.; Kryzhanovsky, S.; Malyarenko, O.; Ermakova, S. Me-tabolites of seaweeds as potential agents for the prevention and therapy of influenza infection. Mar. Drugs, 2019, 17(6), 373.
[http://dx.doi.org/10.3390/md17060373] [PMID: 31234532]
[143]
Woo, P.C.Y.; Lau, S.K.P.; Chu, C.; Chan, K.; Tsoi, H.; Huang, Y.; Wong, B.H.L.; Poon, R.W.S.; Cai, J.J.; Luk, W.; Poon, L.L.M.; Wong, S.S.Y.; Guan, Y.; Peiris, J.S.M.; Yuen, K. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J. Virol., 2005, 79(2), 884-895.
[http://dx.doi.org/10.1128/JVI.79.2.884-895.2005] [PMID: 15613317]
[144]
Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; Xing, X.; Xiang, N.; Wu, Y.; Li, C.; Chen, Q.; Li, D.; Liu, T.; Zhao, J.; Liu, M.; Tu, W.; Chen, C.; Jin, L.; Yang, R.; Wang, Q.; Zhou, S.; Wang, R.; Liu, H.; Luo, Y.; Liu, Y.; Shao, G.; Li, H.; Tao, Z.; Yang, Y.; Deng, Z.; Liu, B.; Ma, Z.; Zhang, Y.; Shi, G.; Lam, T.T.Y.; Wu, J.T.; Gao, G.F.; Cowling, B.J.; Yang, B.; Leung, G.M.; Feng, Z. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med., 2020, 382(13), 1199-1207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
[145]
Wang, Y.M.; Zeng, Q.; He, L.; Yin, P.; Sun, Y.; Hu, W.; Yang, R. Fabrication and application of biocompatible nanogenerators. iScience, 2021, 24(4), 102274.
[http://dx.doi.org/10.1016/j.isci.2021.102274] [PMID: 33817578]
[146]
Guo, Y.R.; Cao, Q.D.; Hong, Z.S.; Tan, Y.Y.; Chen, S.D.; Jin, H.J.; Tan, K.S.; Wang, D.Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil. Med. Res., 2020, 7(1), 11.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 32169119]
[147]
Dravid, A.; Raos, B.; Aqrawe, Z.; Parittotokkaporn, S.; O’Carroll, S.J.; Svirskis, D. A macroscopic diffusion-based gradient generator to establish concentration gradients of soluble molecules within hydrogel scaffolds for cell culture. Front Chem., 2019, 7, 638.
[http://dx.doi.org/10.3389/fchem.2019.00638]
[148]
Bartold, K.; Pietrzyk-Le, A.; Golebiewska, K.; Lisowski, W.; Cauteruccio, S.; Licandro, E.; D’Souza, F.; Kutner, W. Oligonucleotide de-termination via peptide nucleic acid macromolecular imprinting in an electropolymerized CG-rich artificial oligomer analogue. ACS Appl. Mater. Interfaces, 2018, 10(33), 27562-27569.
[http://dx.doi.org/10.1021/acsami.8b09296] [PMID: 30071156]
[149]
Weiss, C.; Carriere, M.; Fusco, L.; Capua, I.; Regla-Nava, J.A.; Pasquali, M.; Scott, J.A.; Vitale, F.; Unal, M.A.; Mattevi, C.; Bedognetti, D.; Merkoçi, A.; Tasciotti, E.; Yilmazer, A.; Gogotsi, Y.; Stellacci, F.; Delogu, L.G. Toward nanotechnology-enabled approaches against the COVID-19 pandemic. ACS Nano, 2020, 14(6), 6383-6406.
[http://dx.doi.org/10.1021/acsnano.0c03697] [PMID: 32519842]
[150]
Gil Rosa, B.; Akingbade, O.E.; Guo, X.; Gonzalez-Macia, L.; Crone, M.A.; Cameron, L.P.; Freemont, P.; Choy, K.L.; Güder, F.; Yeatman, E.; Sharp, D.J.; Li, B. Multiplexed immunosensors for point-of-care diagnostic applications. Biosens. Bioelectron., 2022, 203, 114050.
[http://dx.doi.org/10.1016/j.bios.2022.114050] [PMID: 35134685]
[151]
Takemura, K.; Adegoke, O.; Takahashi, N.; Kato, T.; Li, T.C.; Kitamoto, N.; Tanaka, T.; Suzuki, T.; Park, E.Y. Versatility of a localized surface plasmon resonance-based gold nanoparticle-alloyed quantum dot nanobiosensor for immunofluorescence detection of viruses. Biosens. Bioelectron., 2017, 89(Pt 2), 998-1005.
[http://dx.doi.org/10.1016/j.bios.2016.10.045] [PMID: 27825520]
[152]
Abad-Valle, P.; Fernández-Abedul, M.T.; Costa-García, A. DNA single-base mismatch study with an electrochemical enzymatic genosen-sor. Biosens. Bioelectron., 2007, 22(8), 1642-1650.
[http://dx.doi.org/10.1016/j.bios.2006.07.015] [PMID: 16950611]
[153]
Poghossian, A.; Jablonski, M.; Molinnus, D.; Wege, C.; Schöning, M.J. Field-effect sensors for virus detection: From Ebola to SARS-CoV-2 and plant viral enhancers. Front Plant Sci., 2020, •••, 11.
[154]
Wang, C.C.; Li, K.; Gaylord, S. Wang. Respond. Am. J. Public Health, 2019, 109(9), e5-e6.
[http://dx.doi.org/10.2105/AJPH.2019.305239] [PMID: 31390243]
[155]
Qiu, J.; Shen, B.; Zhao, M.; Wang, Z.; Xie, B.; Xu, Y. A nationwide survey of psychological distress among Chinese people in the COVID-19 epidemic: Implications and policy recommendations. Gen. Psychiatr., 2020, 33(2), e100213.
[http://dx.doi.org/10.1136/gpsych-2020-100213] [PMID: 32215365]
[156]
Yao, H.; Chen, J.H.; Zhao, M.; Qiu, J.Y.; Koenen, K.C.; Stewart, R.; Mellor, D.; Xu, Y.F. Mitigating mental health consequences during the COVID-19 outbreak: Lessons from China. Psychiatry Clin. Neurosci., 2020, 74(7), 407-408.
[http://dx.doi.org/10.1111/pcn.13018] [PMID: 32363746]
[157]
Liu, S.; Heinz, A. Cross-cultural validity of psychological distress measurement during the coronavirus pandemic. Pharmacopsychiatry, 2020, 53(5), 237-238.
[http://dx.doi.org/10.1055/a-1190-5029] [PMID: 32583390]
[158]
Zhao, S.; Chen, H. Modeling the epidemic dynamics and control of COVID-19 outbreak in China. Quantitative Biology, 2020, 1-9.
[159]
Yang, Y.; Peng, F.; Wang, R.; Guan, K.; Jiang, T.; Xu, G.; Sun, J.; Chang, C.; Chang, C. The deadly coronaviruses: The 2003 SARS pan-demic and the 2020 novel coronavirus epidemic in China. J. Autoimmun., 2020, 109, 102434.
[http://dx.doi.org/10.1016/j.jaut.2020.102434] [PMID: 32143990]
[160]
Ganesh, B.; Rajakumar, T.; Malathi, M.; Manikandan, N.; Nagaraj, J.; Santhakumar, A.; Elangovan, A.; Malik, Y.S. Epidemiology and pathobiology of SARS-CoV-2 (COVID-19) in comparison with SARS, MERS: An updated overview of current knowledge and future per-spectives. Clin. Epidemiol. Glob. Health, 2021, 10, 100694.
[http://dx.doi.org/10.1016/j.cegh.2020.100694] [PMID: 33462564]
[161]
Peña, M.; Ampuero, M.; Garcés, C.; Gaggero, A.; García, P.; Velasquez, M.S.; Luza, R.; Alvarez, P.; Paredes, F.; Acevedo, J.; Farfán, M.J.; Solari, S.; Soto-Rifo, R.; Valiente-Echeverría, F. Performance of SARS-CoV-2 rapid antigen test compared with real-time RT-PCR in asymptomatic individuals. Int. J. Infect. Dis., 2021, 107, 201-204.
[http://dx.doi.org/10.1016/j.ijid.2021.04.087] [PMID: 33945868]
[162]
Das Mukhopadhyay, C.; Sharma, P.; Sinha, K.; Rajarshi, K. Recent trends in analytical and digital techniques for the detection of the SARS-Cov-2. Biophys. Chem., 2021, 270, 106538.
[http://dx.doi.org/10.1016/j.bpc.2020.106538] [PMID: 33418105]
[163]
Ishikawa, F.N.; Chang, H.K.; Curreli, M.; Liao, H.I.; Olson, C.A.; Chen, P.C.; Zhang, R.; Roberts, R.W.; Sun, R.; Cote, R.J.; Thompson, M.E.; Zhou, C. Label-free, electrical detection of the SARS virus N-protein with nanowire biosensors utilizing antibody mimics as capture probes. ACS Nano, 2009, 3(5), 1219-1224.
[http://dx.doi.org/10.1021/nn900086c] [PMID: 19422193]
[164]
Junejo, Y.; Ozaslan, M.; Safdar, M.; Khailany, R.A.; Rehman, S.; Yousaf, W.; Khan, M.A. Novel SARS-CoV-2/COVID-19: Origin, patho-genesis, genes and genetic variations, immune responses and phylogenetic analysis. Gene Rep., 2020, 20, 100752.
[http://dx.doi.org/10.1016/j.genrep.2020.100752] [PMID: 32566803]
[165]
Cesewski, E.; Johnson, B.N. Electrochemical biosensors for pathogen detection. Biosens. Bioelectron., 2020, 159, 112214.
[http://dx.doi.org/10.1016/j.bios.2020.112214] [PMID: 32364936]
[166]
Cuchiaro, H.; Thai, J.; Schaffner, N.; Tuttle, R.R.; Reynolds, M. Exploring the parameter space of p-Cresyl sulfate adsorption in metal–organic frameworks. ACS Appl. Mater. Interfaces, 2020, 12(20), 22572-22580.
[http://dx.doi.org/10.1021/acsami.0c04203] [PMID: 32338859]
[167]
Dziąbowska, K.; Czaczyk, E.; Nidzworski, D. Detection methods of human and animal influenza virus-current trends. Biosensors, 2018, 8(4), 94.
[http://dx.doi.org/10.3390/bios8040094] [PMID: 30340339]
[168]
Yuan, X.; Yang, C.; He, Q.; Chen, J.; Yu, D.; Li, J.; Zhai, S.; Qin, Z.; Du, K.; Chu, Z.; Qin, P. Current and perspective diagnostic tech-niques for COVID-19. ACS Infect. Dis., 2020, 6(8), 1998-2016.
[http://dx.doi.org/10.1021/acsinfecdis.0c00365] [PMID: 32677821]
[169]
Castillo-Henríquez, L.; Brenes-Acuña, M.; Castro-Rojas, A.; Cordero-Salmerón, R.; Lopretti-Correa, M.; Vega-Baudrit, J.R. Biosensors for the detection of bacterial and viral clinical pathogens. Sensors, 2020, 20(23), 6926.
[http://dx.doi.org/10.3390/s20236926] [PMID: 33291722]
[170]
Lee, D.; Bhardwaj, J.; Jang, J. Paper-based electrochemical immunosensor for label-free detection of multiple avian influenza virus anti-gens using flexible screen-printed carbon nanotube-polydimethylsiloxane electrodes. Sci. Rep., 2022, 12(1), 2311.
[http://dx.doi.org/10.1038/s41598-022-06101-1] [PMID: 35145121]
[171]
Anik, Ü.; Tepeli, Y.; Diouani, M.F. Fabrication of electrochemical model influenza A virus biosensor based on the measurements of neu-roaminidase enzyme activity. Anal. Chem., 2016, 88(12), 6151-6153.
[http://dx.doi.org/10.1021/acs.analchem.6b01720] [PMID: 27281347]
[172]
Pandele, A.M.; Constantinescu, A.; Radu, I.C.; Miculescu, F.; Ioan Voicu, S.; Ciocan, L.T. Synthesis and characterization of PLA-micro-structured hydroxyapatite composite films., 2020, 13(2), 274.
[173]
Shabani, E.; Dowlatshahi, S.; Abdekhodaie, M.J. Laboratory detection methods for the human coronaviruses. Eur. J. Clin. Microbiol. Infect. Dis., 2021, 40(2), 225-246.
[http://dx.doi.org/10.1007/s10096-020-04001-8] [PMID: 32984911]
[174]
Koo, B.; Hong, K.H.; Jin, C.E.; Kim, J.Y.; Kim, S.H.; Shin, Y. Arch-shaped multiple-target sensing for rapid diagnosis and identification of emerging infectious pathogens. Biosens. Bioelectron., 2018, 119, 79-85.
[http://dx.doi.org/10.1016/j.bios.2018.08.007] [PMID: 30103157]
[175]
Ali, Z.; Aman, R.; Mahas, A.; Rao, G.S.; Tehseen, M.; Marsic, T.; Salunke, R.; Subudhi, A.K.; Hala, S.M.; Hamdan, S.M.; Pain, A.; Alofi, F.S.; Alsomali, A.; Hashem, A.M.; Khogeer, A.; Almontashiri, N.A.M.; Abedalthagafi, M.; Hassan, N.; Mahfouz, M.M. iSCAN: An RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive detection of SARS-CoV-2. Virus Res., 2020, 288, 198129.
[http://dx.doi.org/10.1016/j.virusres.2020.198129] [PMID: 32822689]
[176]
Goran, J.M.; Phan, E.N.H.; Favela, C.A.; Stevenson, K.J. H2O2 detection at carbon nanotubes and nitrogen-doped carbon nanotubes: Oxi-dation, reduction, or disproportionation? Anal. Chem., 2015, 87(12), 5989-5996.
[http://dx.doi.org/10.1021/acs.analchem.5b00059] [PMID: 26009497]
[177]
Miripour, Z.S.; Sarrami-Forooshani, R.; Sanati, H.; Makarem, J.; Taheri, M.S.; Shojaeian, F.; Eskafi, A.H.; Abbasvandi, F.; Namdar, N.; Ghafari, H.; Aghaee, P.; Zandi, A.; Faramarzpour, M.; Hoseinyazdi, M.; Tayebi, M.; Abdolahad, M. Real-time diagnosis of reactive oxy-gen species (ROS) in fresh sputum by electrochemical tracing; correlation between COVID-19 and viral-induced ROS in lung/respiratory epithelium during this pandemic. Biosens. Bioelectron., 2020, 165, 112435.
[http://dx.doi.org/10.1016/j.bios.2020.112435] [PMID: 32729548]
[178]
Giovannini, G.; Haick, H.; Garoli, D. Detecting COVID-19 from breath: A game changer for a big challenge. ACS Sens., 2021, 6(4), 1408-1417.
[http://dx.doi.org/10.1021/acssensors.1c00312] [PMID: 33825440]
[179]
Samprathi, M.; Jayashree, M. Biomarkers in COVID-19: An up-to-date review. Front Pediatr., 2021, 8, 607647.
[http://dx.doi.org/10.3389/fped.2020.607647] [PMID: 33859967]
[180]
Bhalla, N.; Pan, Y.; Yang, Z.; Payam, A.F. Opportunities and challenges for biosensors and nanoscale analytical tools for pandemics: COVID-19. ACS Nano, 2020, 14(7), 7783-7807.
[http://dx.doi.org/10.1021/acsnano.0c04421] [PMID: 32551559]
[181]
Bajaj, V.; Gadi, N.; Spihlman, A.P.; Wu, S.C.; Choi, C.H.; Moulton, V.R. Aging, Immunity, and COVID-19: How age influences the host immune response to coronavirus infections? Front. Physiol., 2021, 11, 571416.
[http://dx.doi.org/10.3389/fphys.2020.571416] [PMID: 33510644]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy