Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

General Research Article

Clinical Value of Circ-PNPT1 on Adverse Pregnancy Outcomes of Patients with Gestational Diabetes Mellitus

Author(s): Song Wang, Yixiong Lin, Qing Li and Zhijian Wang*

Volume 24, Issue 15, 2024

Published on: 10 June, 2024

Page: [1835 - 1841] Pages: 7

DOI: 10.2174/1871530323666221229120303

Price: $65

conference banner
Abstract

Objective: Several circular RNAs are associated with important pathophysiological characteristics of gestational diabetes mellitus (GDM). This study intended to measure the expression of circ-PNPT1 in sera of GDM patients and to expound on its values on pregnancy outcomes.

Methods: Totally 104 GDM patients and 71 healthy controls were recruited. The expression pattern of serum circ-PNPT1 was measured by reverse transcription-quantitative polymerase chain reaction. The diagnostic efficacy of circ-PNPT1 and fasting blood glucose (FBG) on GDM was evaluated by receiver operating characteristic (ROC) analysis. Parameters of glycolipid metabolism were determined using automatic biochemical analyzers. The correlation between circ-PNPT1 and glycolipid metabolism parameters was analyzed using Pearson analysis. GDM patients were divided into a high expression group and a low expression group based on the median value of circ-PNPT1 expression. Curves of adverse neonatal outcomes were drawn by Log Rank analysis.

Results: GDM patients exhibited higher circ-PNPT1 expression than healthy controls. The area under the ROC curve of circ-PNPT1 diagnosing GDM was 0.9184 and the cut-off value was 1.435 (90.38% sensitivity, 85.92% specificity). Serum circ-PNPT1 expression was positively correlated with FBG, total cholesterol, and triglyceride in GDM patients. Neonates born to GDM patients with high circ- PNPT1 expression were prone to adverse outcomes.

Conclusion: Circ-PNPT1 was highly-expressed in the sera of GDM patients. Circ-PNPT1 affected glycolipid metabolism and its expression had certain reference values on adverse pregnancy outcomes.

Keywords: Gestational diabetes mellitus, circ-PNPT1, glycometabolism, lipometabolism, neonates, serum.

Graphical Abstract
[1]
Choudhury, A.A.; Devi Rajeswari, V. Gestational diabetes mellitus - A metabolic and reproductive disorder. Biomed. Pharmacother., 2021, 143, 112183.
[http://dx.doi.org/10.1016/j.biopha.2021.112183] [PMID: 34560536]
[2]
Juan, J.; Yang, H. Prevalence, prevention, and lifestyle intervention of gestational diabetes mellitus in China. Int. J. Environ. Res. Public Health, 2020, 17(24), 9517.
[http://dx.doi.org/10.3390/ijerph17249517] [PMID: 33353136]
[3]
Johns, E.C.; Denison, F.C.; Norman, J.E.; Reynolds, R.M. Gestational diabetes mellitus: Mechanisms, treatment, and complications. Trends Endocrinol. Metab., 2018, 29(11), 743-754.
[http://dx.doi.org/10.1016/j.tem.2018.09.004] [PMID: 30297319]
[4]
Szmuilowicz, E.D.; Josefson, J.L.; Metzger, B.E. Gestational diabetes mellitus. Endocrinol. Metab. Clin. North Am., 2019, 48(3), 479-493.
[http://dx.doi.org/10.1016/j.ecl.2019.05.001] [PMID: 31345518]
[5]
Dias, S.; Pheiffer, C.; Abrahams, Y.; Rheeder, P.; Adam, S. Molecular biomarkers for gestational diabetes mellitus. Int. J. Mol. Sci., 2018, 19(10), 2926.
[http://dx.doi.org/10.3390/ijms19102926] [PMID: 30261627]
[6]
Chiefari, E.; Arcidiacono, B.; Foti, D.; Brunetti, A. Gestational diabetes mellitus: An updated overview. J. Endocrinol. Invest., 2017, 40(9), 899-909.
[http://dx.doi.org/10.1007/s40618-016-0607-5] [PMID: 28283913]
[7]
Sert, U.Y.; Ozgu-Erdinc, A.S. Gestational diabetes mellitus screening and diagnosis. Adv. Exp. Med. Biol., 2020, 1307, 231-255.
[http://dx.doi.org/10.1007/5584_2020_512] [PMID: 32314318]
[8]
Garrison, A. Screening, diagnosis, and management of gestational diabetes mellitus. Am. Fam. Physician, 2015, 91(7), 460-467.
[PMID: 25884746]
[9]
Meng, X.; Zhu, B.; Liu, Y.; Fang, L.; Yin, B.; Sun, Y.; Ma, M.; Huang, Y.; Zhu, Y.; Zhang, Y. Unique biomarker characteristics in gestational diabetes mellitus identified by lc-ms-based metabolic profiling. J. Diabetes Res., 2021, 2021, 1-15.
[http://dx.doi.org/10.1155/2021/6689414] [PMID: 34212051]
[10]
Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet., 2019, 20(11), 675-691.
[http://dx.doi.org/10.1038/s41576-019-0158-7] [PMID: 31395983]
[11]
Chen, L.L. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat. Rev. Mol. Cell Biol., 2020, 21(8), 475-490.
[http://dx.doi.org/10.1038/s41580-020-0243-y] [PMID: 32366901]
[12]
Wang, H.; She, G.; Zhou, W.; Liu, K.; Miao, J.; Yu, B. Expression profile of circular RNAs in placentas of women with gestational diabetes mellitus. Endocr. J., 2019, 66(5), 431-441.
[http://dx.doi.org/10.1507/endocrj.EJ18-0291] [PMID: 30814439]
[13]
Zhang, Y.; Ye, S.; Li, Y.; Chen, J.; Zhang, Y. Research advances in the roles of circular rnas in pathophysiology and early diagnosis of gestational diabetes mellitus. Front. Cell Dev. Biol., 2022, 9, 739511.
[http://dx.doi.org/10.3389/fcell.2021.739511] [PMID: 35059395]
[14]
Yuan, Y.; Li, Y.; Hu, L.; Wen, J. Exosomal RNA expression profiles and their prediction performance in patients with gestational diabetes mellitus and macrosomia. Front. Endocrinol., 2022, 13, 864971.
[http://dx.doi.org/10.3389/fendo.2022.864971] [PMID: 35547007]
[15]
Wu, H.; Zheng, X.; Liu, Y.; Shen, J.; Ye, M.; Zhang, Y. Hsa_circRNA_102682 is closely related to lipid metabolism in gestational diabetes mellitus. Gynecol. Endocrinol., 2022, 38(1), 50-54.
[http://dx.doi.org/10.1080/09513590.2021.1991911] [PMID: 34665686]
[16]
Zhang, L.; Zeng, M.; Tang, F.; Chen, J.; Cao, D.; Tang, Z. Circ-PNPT1 contributes to gestational diabetes mellitus (GDM) by regulating the function of trophoblast cells through miR-889-3p/PAK1 axis. Diabetol. Metab. Syndr., 2021, 13(1), 58.
[http://dx.doi.org/10.1186/s13098-021-00678-9] [PMID: 34074335]
[17]
Metzger, B.E.; Gabbe, S.G.; Persson, B.; Buchanan, T.A.; Catalano, P.A.; Damm, P.; Dyer, A.R.; Leiva, A.; Hod, M.; Kitzmiler, J.L.; Lowe, L.P.; McIntyre, H.D.; Oats, J.J.; Omori, Y.; Schmidt, M.I. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care, 2010, 33(3), 676-682.
[http://dx.doi.org/10.2337/dc09-1848] [PMID: 20190296]
[18]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[19]
Moster, D.; Lie, R.T.; Irgens, L.M.; Bjerkedal, T.; Markestad, T. The association of Apgar score with subsequent death and cerebral palsy: A population-based study in term infants. J. Pediatr., 2001, 138(6), 798-803.
[http://dx.doi.org/10.1067/mpd.2001.114694] [PMID: 11391319]
[20]
Kautzky-Willer, A.; Harreiter, J.; Winhofer-Stöckl, Y.; Bancher-Todesca, D.; Berger, A.; Repa, A.; Lechleitner, M.; Weitgasser, R. Gestationsdiabetes (GDM) (Update 2019). Wien. Klin. Wochenschr., 2019, 131(S1), 91-102.
[http://dx.doi.org/10.1007/s00508-018-1419-8] [PMID: 30980150]
[21]
Xu, F.; Yang, S.; Liu, Y.; Zheng, X.; Yang, H.; Zhang, J.; Ren, Z.; Yang, J. Placental pathology and neonatal outcomes in pre-eclampsia with gestational diabetes mellitus. J. Matern. Fetal Neonatal Med., 2021, 34(7), 1149-1154.
[http://dx.doi.org/10.1080/14767058.2020.1786513] [PMID: 32627623]
[22]
Ducarme, G.; Desroys Du Roure, F.; Le Thuaut, A.; Grange, J.; Dimet, J.; Crepin-Delcourt, I. Efficacy of maternal and biological parameters at the time of diagnosis of gestational diabetes mellitus in predicting neonatal morbidity. Eur. J. Obstet. Gynecol. Reprod. Biol., 2018, 221, 113-118.
[http://dx.doi.org/10.1016/j.ejogrb.2017.12.036] [PMID: 29278829]
[23]
Alfadhli, E.M. Gestational diabetes mellitus. Saudi Med. J., 2015, 36(4), 399-406.
[http://dx.doi.org/10.15537/smj.2015.4.10307] [PMID: 25828275]
[24]
Filardi, T.; Catanzaro, G.; Mardente, S.; Zicari, A.; Santangelo, C.; Lenzi, A.; Morano, S.; Ferretti, E. Non-Coding RNA: Role in gestational diabetes pathophysiology and complications. Int. J. Mol. Sci., 2020, 21(11), 4020.
[http://dx.doi.org/10.3390/ijms21114020] [PMID: 32512799]
[25]
Wu, H.; Wu, S.; Zhu, Y.; Ye, M.; Shen, J.; Liu, Y.; Zhang, Y.; Bu, S. Hsa_circRNA_0054633 is highly expressed in gestational diabetes mellitus and closely related to glycosylation index. Clin. Epigenetics, 2019, 11(1), 22.
[http://dx.doi.org/10.1186/s13148-019-0610-8] [PMID: 30736847]
[26]
Jiang, B.; Zhang, J.; Sun, X.; Yang, C.; Cheng, G.; Xu, M.; Li, S.; Wang, L. Circulating exosomal hsa_circRNA_0039480 is highly expressed in gestational diabetes mellitus and may be served as a biomarker for early diagnosis of GDM. J. Transl. Med., 2022, 20(1), 5.
[http://dx.doi.org/10.1186/s12967-021-03195-5] [PMID: 34980149]
[27]
Yang, H.; Ye, W.; Chen, R.; Zeng, F.; Long, Y.; Zhang, X.; Ma, J.; Gan, Q.; Rehemutula, R.; Zhu, C. Circulating expression of Hsa_circRNA_102893 contributes to early gestational diabetes mellitus detection. Sci. Rep., 2020, 10(1), 19046.
[http://dx.doi.org/10.1038/s41598-020-76013-5] [PMID: 33149201]
[28]
Jiang, X.C.; Liang, Z.D.; Chen, D.L.; Jia, J.P.; Hu, J.R.; Hu, L. Correlation of homocysteine, AHSG, CRP with insulin resistance, 25-(OH)2-VitD, Blood lipids in gestational diabetes patients. Clin. Lab., 2021, 67(02/2021)
[http://dx.doi.org/10.7754/Clin.Lab.2020.200609] [PMID: 33616345]
[29]
Lund, A.; Ebbing, C.; Rasmussen, S.; Qvigstad, E.; Kiserud, T.; Kessler, J. Pre-gestational diabetes: Maternal body mass index and gestational weight gain are associated with augmented umbilical venous flow, fetal liver perfusion, and thus birthweight. PLoS One, 2021, 16(8), e0256171.
[http://dx.doi.org/10.1371/journal.pone.0256171] [PMID: 34398922]
[30]
Chen, H.Y.; Zhang, H.P.; Yang, J.; Huang, Z.Q.; Xu, H.X.; Jin, J.; Xu, K.; Tong, Y.; Dong, Q.Q.; Zheng, J.Q. The relationship between maternal vitamin D deficiency and glycolipid metabolism and adverse pregnancy outcome. Clin. Endocrinol., 2020, 93(6), 713-720.
[http://dx.doi.org/10.1111/cen.14298] [PMID: 32713029]
[31]
Falcone, V.; Kotzaeridi, G.; Breil, M.H.; Rosicky, I.; Stopp, T.; Yerlikaya-Schatten, G.; Feichtinger, M.; Eppel, W.; Husslein, P.; Tura, A.; Göbl, C.S. Early assessment of the risk for gestational diabetes mellitus: Can fasting parameters of glucose metabolism contribute to risk prediction? Diabetes Metab. J., 2019, 43(6), 785-793.
[http://dx.doi.org/10.4093/dmj.2018.0218] [PMID: 30877716]
[32]
Bao, W.; Dar, S.; Zhu, Y.; Wu, J.; Rawal, S.; Li, S.; Weir, N.L.; Tsai, M.Y.; Zhang, C. Plasma concentrations of lipids during pregnancy and the risk of gestational diabetes mellitus: A longitudinal study. J. Diabetes, 2018, 10(6), 487-495.
[http://dx.doi.org/10.1111/1753-0407.12563] [PMID: 28436169]
[33]
Olmos, P.R.; Borzone, G.R. Basal-bolus insulin therapy reduces maternal triglycerides in gestational diabetes without modifying cholesteryl ester transfer protein activity. J. Obstet. Gynaecol. Res., 2017, 43(9), 1397-1404.
[http://dx.doi.org/10.1111/jog.13403] [PMID: 28691362]
[34]
She, W.; Li, T.; Liu, Y.; Liu, X. CircRNA circVEGFC is highly expressed in Gestational Diabetes Mellitus (GDM) and it is correlated with multiple adverse events. Diabetes Metab. Syndr. Obes., 2021, 14, 4409-4414.
[http://dx.doi.org/10.2147/DMSO.S334728] [PMID: 34754206]
[35]
Lackovic, M.; Milicic, B.; Mihajlovic, S.; Filimonovic, D.; Jurisic, A.; Filipovic, I.; Rovcanin, M.; Prodanovic, M.; Nikolic, D. Gestational diabetes and risk assessment of adverse perinatal outcomes and newborns early motoric development. Medicina (Kaunas), 2021, 57(8), 741.
[http://dx.doi.org/10.3390/medicina57080741] [PMID: 34440947]
[36]
Ran, Y.; Yin, N.; Huang, D.; Zhao, Y.; Yang, J.; Zhang, H.; Qi, H. Identification and characterization of circular RNA as a novel regulator and biomarker in preterm birth. Front. Bioeng. Biotechnol., 2020, 8, 566984.
[http://dx.doi.org/10.3389/fbioe.2020.566984] [PMID: 33392159]
[37]
Zhou, H.; Chanda, B.; Chen, Y.; Wang, X.; You, M.; Zhang, Y.; Cheng, R.; Yang, Y.; Chen, X. Microarray and bioinformatics analysis of circular RNA differential expression in newborns with acute respiratory distress syndrome. Front Pediatr., 2021, 9, 728462.
[http://dx.doi.org/10.3389/fped.2021.728462] [PMID: 34796151]
[38]
Sun, W.; Wang, P.; Wang, S. Plasmatic circRNAs panel to predict the risk of macrosomia in women with gestational diabetes mellitus. Gynecol. Obstet. Invest., 2022, 87(2), 141-149.
[http://dx.doi.org/10.1159/000513670] [PMID: 35605584]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy