Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

Drug Discovery to Drug Development of BACE1 Inhibitor as Antialzheimer’s: A Review

Author(s): Sonali Mehendale Munj* and Pooja Bhagwan Patil

Volume 23, Issue 2, 2023

Published on: 20 January, 2023

Page: [77 - 97] Pages: 21

DOI: 10.2174/1568026623666221228140450

Price: $65

conference banner
Abstract

Alzheimer’s Disease (AD) is a complex and progressive neurodegenerative disease, and the most common cause of dementia usually occurs due to old age. Production and accumulation of amyloid-β peptide (Aβ) represent the major pathological event of the disease. The formation of amyloid- β results due to proteolytic cleavage of amyloid precursor protein (APP) by beta-site amyloid precursor protein cleaving enzyme (BACE1) shown as the amyloid hypothesis, a prevalent theory for AD pathogenesis. Thus, BACE1 represents a novel target to decrease cerebral Aβ concentration and slow down the disease’s progression. The structure-based drug design approach led to a wide variety of small molecules with the mechanism of action centered around inhibition of β-secretase protease (BACE1), which are shown to have drug-like properties and reduce brain Aβ levels. Based on transition state isosteres, BACE1 inhibitors can largely be classified as peptidomimetics and non-peptidomimetics. The subclasses of the two categories have been covered with different scaffolds like statin, norstatin, carbinamine, hydroxyethylene, hydroxyethylamine, acyl guanidine, 2- aminopyridine, aminoimidazole, aminohydantoin, aminothiazoline, aminooxazoline, aminoquinoline, piperazine-based. Among these small molecules, those who fulfilled general requirements for a drug aimed at the central nervous system (CNS) and selectivity over other aspartyl proteases reached the final pipeline of clinical trials. Here, in this review, we summarize the journey of BACE1 inhibitors through different practices of drug design development, Structural Activity Relationship (SAR), and other inhibitor candidates that are currently in clinical trials as BACE1 inhibitors.

Keywords: Alzheimer’s disease, BACE1, β-secretase, Anti-AD drugs, Aminoimidazole, Peptidomimetics.

« Previous
Graphical Abstract
[1]
Ballard, C.; Gauthier, S.; Corbett, A.; Brayne, C.; Aarsland, D.; Jones, E. Alzheimer’s disease. Lancet, 2011, 377(9770), 1019-1031.
[http://dx.doi.org/10.1016/S0140-6736(10)61349-9] [PMID: 21371747]
[3]
Winblad, B.; Amouyel, P.; Andrieu, S.; Ballard, C.; Brayne, C.; Brodaty, H.; Cedazo-Minguez, A.; Dubois, B.; Edvardsson, D.; Feldman, H.; Fratiglioni, L.; Frisoni, G.B.; Gauthier, S.; Georges, J.; Graff, C.; Iqbal, K.; Jessen, F.; Johansson, G.; Jönsson, L.; Kivipelto, M.; Knapp, M.; Mangialasche, F.; Melis, R.; Nordberg, A.; Rikkert, M.O.; Qiu, C.; Sakmar, T.P.; Scheltens, P.; Schneider, L.S.; Sperling, R.; Tjernberg, L.O.; Waldemar, G.; Wimo, A.; Zetterberg, H. Defeating Alzheimer’s disease and other dementias: A priority for European science and society. Lancet Neurol., 2016, 15(5), 455-532.
[http://dx.doi.org/10.1016/S1474-4422(16)00062-4] [PMID: 26987701]
[4]
Vassar, R.; Cole, S. The basic biology of BACE1: A key therapeutic target for Alzheimers disease. Curr. Genomics, 2007, 8(8), 509-530.
[http://dx.doi.org/10.2174/138920207783769512] [PMID: 19516957]
[5]
Zeng, H.; Wu, X. Alzheimer’s disease drug development based on computer-aided drug design. Eur. J. Med. Chem., 2016, 121, 851-863.
[6]
Gu, T.; Wu, W.Y.; Dong, Z.X.; Yu, S.P.; Sun, Y.; Zhong, Y.; Lu, Y.T.; Li, N.G. Development and structural modification of BACE1 inhibitors. Molecules, 2016, 22(1), 4.
[http://dx.doi.org/10.3390/molecules22010004] [PMID: 28025519]
[7]
Piton, M.; Hirtz, C.; Desmetz, C.; Milhau, J.; Lajoix, A.D.; Bennys, K.; Lehmann, S.; Gabelle, A. Alzheimer’s disease: Advances in drug development. J. Alzheimers Dis., 2018, 65(1), 3-13.
[http://dx.doi.org/10.3233/JAD-180145] [PMID: 30040716]
[8]
Nie, Q.; Du, X.; Geng, M. Small molecule inhibitors of amyloid β peptide aggregation as a potential therapeutic strategy for Alzheimer’s disease. Acta Pharmacol. Sin., 2011, 32(5), 545-551.
[http://dx.doi.org/10.1038/aps.2011.14] [PMID: 21499284]
[9]
de Almeida Franzoi, A.E.; de Souza Moreira, B.B.; dos Reis, F.I.; Magno Goncalves, M.V.; de Paula, W.K.; Ribas, F.D. Alzheimer’s disease and the main aspects - Literature review. EC Neurol., 2018, 10(5), 412-425.
[10]
Kumar, A.; Murleedharan, C. Current and novel therapeutic molecules and targets in Alzheimer ’ s disease. J. Formos. Med. Assoc., 2015, 1-8.
[http://dx.doi.org/10.1016/j.jfma.2015.04.001] [PMID: 26220908]
[11]
Nawrot, B. Targeting BACE with small inhibitory nucleic acids - a future for Alzheimer’s disease therapy? Acta Biochim. Pol., 2004, 51(2), 431-444.
[http://dx.doi.org/10.18388/abp.2004_3582] [PMID: 15218540]
[12]
Verdile, G; Fuller, S; Atwood, CS; Laws, SM; Gandy, SE; Martins, RN The role of beta amyloid in Alzheimer's disease: Still a cause of everything or the only one who got caught? Pharmacol. Res., 2004, 50(4), 397-409.
[13]
Mrsa, C. Looking toward basic science for potential drug discovery targets against. Med. Res. Rev., 2009, 30(1), 1-22.
[PMID: 19058131]
[14]
Querfurth, H.W.; LaFerla, F.M. Alzheimer’s disease. N. Engl. J. Med., 2010, 362(4), 329-344.
[http://dx.doi.org/10.1056/NEJMra0909142] [PMID: 20107219]
[15]
Larner, A.J. Secretases as therapeutic targets in Alzheimer’s disease: Patents 2000 - 2004. Expert. Opin. Ther. Pat., 2004, 14(10), 1403-20.
[16]
Dobrowolska Zakaria, J.A.; Vassar, R.J. A promising, novel, and unique BACE 1 inhibitor emerges in the quest to prevent Alzheimer’s disease. EMBO Mol. Med., 2018, 10(11), 1-3.
[http://dx.doi.org/10.15252/emmm.201809717] [PMID: 30322841]
[17]
O’Brien, R.J.; Wong, P.C. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci., 2011, 34(1), 185-204.
[http://dx.doi.org/10.1146/annurev-neuro-061010-113613] [PMID: 21456963]
[18]
Ashford, J.W. The dichotomy of Alzheimer’s disease pathology: Amyloid-β and Tau. J. Alzheimers Dis., 2019, 68(1), 77-83.
[http://dx.doi.org/10.3233/JAD-181198] [PMID: 30814359]
[19]
Abner, E.L.; Neltner, J.H.; Jicha, G.A.; Patel, E.; Anderson, S.L.; Wilcock, D.M.; Van Eldik, L.J.; Nelson, P.T. Diffuse Amyloid-β plaques, neurofibrillary tangles, and the impact of APOE in elderly persons’ brains lacking neuritic amyloid plaques. J. Alzheimers Dis., 2018, 64(4), 1307-1324.
[http://dx.doi.org/10.3233/JAD-180514] [PMID: 30040735]
[20]
Ohno, M. Alzheimer’s therapy targeting the β-secretase enzyme BACE1: Benefits and potential limitations from the perspective of animal model studies. Brain Res. Bull., 2016, 126(Pt 2), 183-198.
[http://dx.doi.org/10.1016/j.brainresbull.2016.04.007] [PMID: 27093940]
[21]
Lacor, P.N.; Buniel, M.C.; Furlow, P.W.; Sanz Clemente, A.; Velasco, P.T.; Wood, M.; Viola, K.L.; Klein, W.L. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J. Neurosci., 2007, 27(4), 796-807.
[http://dx.doi.org/10.1523/JNEUROSCI.3501-06.2007] [PMID: 17251419]
[22]
Paasila, P.J.; Davies, D.S.; Kril, J.J.; Goldsbury, C.; Sutherland, G.T. The relationship between the morphological subtypes of microglia and Alzheimer’s disease neuropathology. Brain Pathol., 2019, 29(6), 726-740.
[http://dx.doi.org/10.1111/bpa.12717] [PMID: 30803086]
[23]
Sperling, R.; Mormino, E.; Johnson, K. The evolution of preclinical Alzheimer’s disease: Implications for prevention trials. Neuron, 2014, 84(3), 608-622.
[http://dx.doi.org/10.1016/j.neuron.2014.10.038] [PMID: 25442939]
[24]
Ghosh, A.K.; Gemma, S.; Tang, J. β-Secretase as a therapeutic target for Alzheimer’s disease. Neurotherapeutics, 2008, 5(3), 399-408.
[http://dx.doi.org/10.1016/j.nurt.2008.05.007] [PMID: 18625451]
[25]
Korolev, I.O. Alzheimer's disease: A clinical and basic science review. Med. Student Res. J., 2014, 04, 24-33.
[26]
Beach, T.G.; Monsell, S.E.; Phillips, L.E.; Kukull, W. Accuracy of the clinical diagnosis of alzheimer disease at national institute on aging alzheimer disease centers, 2005-2010. J. Neuropathol. Exp. Neurol., 2012, 71(4), 266-273.
[http://dx.doi.org/10.1097/NEN.0b013e31824b211b] [PMID: 22437338]
[27]
Lorenzi, H.; Khan, A.; Behnke, M.S.; Namasivayam, S.; Swapna, L.S.; Hadjithomas, M.; Karamycheva, S.; Pinney, D.; Brunk, B.P.; Ajioka, J.W.; Ajzenberg, D.; Boothroyd, J.C.; Boyle, J.P.; Dardé, M.L.; Diaz-Miranda, M.A.; Dubey, J.P.; Fritz, H.M.; Gennari, S.M.; Gregory, B.D.; Kim, K.; Saeij, J.P.J.; Su, C.; White, M.W.; Zhu, X.Q.; Howe, D.K.; Rosenthal, B.M.; Grigg, M.E.; Parkinson, J.; Liu, L.; Kissinger, J.C.; Roos, D.S.; Sibley, L.D. Local admixture of amplified and diversified secreted pathogenesis determinants shapes mosaic Toxoplasma gondii genomes. Nat. Commun., 2016, 7(1), 10147.
[http://dx.doi.org/10.1038/ncomms10147] [PMID: 26738725]
[28]
Ahmed, R.R.; Holler, C.J.; Webb, R.L.; Li, F.; Beckett, T.L.; Murphy, M.P. BACE1 and BACE2 enzymatic activities in Alzheimer’s disease. J. Neurochem., 2010, 112(4), 1045-1053.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06528.x] [PMID: 19968762]
[29]
Panza, F.; Lozupone, M.; Solfrizzi, V.; Sardone, R.; Piccininni, C.; Dibello, V.; Stallone, R.; Giannelli, G.; Bellomo, A.; Greco, A.; Daniele, A.; Seripa, D.; Logroscino, G.; Imbimbo, B.P. BACE inhibitors in clinical development for the treatment of Alzheimer’s disease. Expert Rev. Neurother., 2018, 18(11), 847-857.
[http://dx.doi.org/10.1080/14737175.2018.1531706] [PMID: 30277096]
[30]
Satir, T.M.; Agholme, L.; Karlsson, A.; Karlsson, M.; Karila, P.; Illes, S.; Bergström, P.; Zetterberg, H. Partial reduction of amyloid β production by β-secretase inhibitors does not decrease synaptic transmission. Alzheimers Res. Ther., 2020, 12(1), 63.
[http://dx.doi.org/10.1186/s13195-020-00635-0] [PMID: 32456694]
[31]
Ermolieff, J.; Loy, J.A.; Koelsch, G.; Tang, J. Proteolytic activation of recombinant pro-memapsin 2 (pro-β-secretase) studied with new fluorogenic substrates. Biochemistry, 2000, 39(40), 12450-12456.
[http://dx.doi.org/10.1021/bi001494f] [PMID: 11015226]
[32]
Venugopal, C.; Demos, C.M.; Rao, K.S.J.; Pappolla, M.A. Beta-secretase: Structure, function, and evolution. CNS Neurol. Disord. Drug Targets, 2008, 7(3), 278-294.
[33]
Rombouts, F.J.R.; Alexander, R.; Cleiren, E.; De Groot, A.; Carpentier, M.; Dijkmans, J.; Fierens, K.; Masure, S.; Moechars, D.; Palomino-Schätzlein, M.; Pineda-Lucena, A.; Trabanco, A.A.; Van Glabbeek, D.; Vos, A.; Tresadern, G. Fragment binding to β-Secretase 1 without catalytic aspartate interactions identified via orthogonal screening approaches. ACS Omega, 2017, 2(2), 685-697.
[http://dx.doi.org/10.1021/acsomega.6b00482] [PMID: 28626832]
[34]
Yuan, J.; Venkatraman, S.; Zheng, Y.; McKeever, B.M.; Dillard, L.W.; Singh, S.B. Structure-based design of β-site APP cleaving enzyme 1 (BACE1) inhibitors for the treatment of Alzheimer’s disease. J. Med. Chem., 2013, 56(11), 4156-4180.
[http://dx.doi.org/10.1021/jm301659n] [PMID: 23509904]
[35]
Moussa-Pacha, N.M.; Abdin, S.M.; Omar, H.A.; Alniss, H.; Al-Tel, T.H. BACE1 inhibitors: Current status and future directions in treating Alzheimer’s disease. Med. Res. Rev., 2020, 40(1), 339-384.
[http://dx.doi.org/10.1002/med.21622] [PMID: 31347728]
[36]
Gutierrez, L.J.; Enriz, R.D.; Baldoni, H.A. Structural and thermodynamic characteristics of the exosite binding pocket on the human BACE1: A molecular modeling approach. J. Phys. Chem. A, 2010, 114(37), 10261-10269.
[http://dx.doi.org/10.1021/jp104983a] [PMID: 20806954]
[37]
Prati, F.; Bottegoni, G.; Bolognesi, M.L.; Cavalli, A. BACE-1 inhibitors: From recent single-target molecules to multitarget compounds for Alzheimer’s disease. J. Med. Chem., 2018, 61(3), 619-637.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00393] [PMID: 28749667]
[38]
Crouch, P.J.; Harding, S.M.E.; White, A.R.; Camakaris, J.; Bush, A.I.; Masters, C.L. Mechanisms of Aβ mediated neurodegeneration in Alzheimer’s disease. Int. J. Biochem. Cell Biol., 2008, 40(2), 181-198.
[http://dx.doi.org/10.1016/j.biocel.2007.07.013] [PMID: 17804276]
[39]
Das, B.; Yan, R. A close look at BACE1 inhibitors for alzheimer’s disease treatment. CNS Drugs, 2019, 33(3), 251-263.
[http://dx.doi.org/10.1007/s40263-019-00613-7] [PMID: 30830576]
[40]
Hong, L.; Tang, J. Flap position of free memapsin 2 (β-secretase), a model for flap opening in aspartic protease catalysis. Biochemistry, 2004, 43(16), 4689-4695.
[http://dx.doi.org/10.1021/bi0498252] [PMID: 15096037]
[41]
Gurjar, A.S. Molecular docking, synthesis, in silico and in vitro screening of substituted aryl ureido analogues as BACE1 inhibitors to target Alzheimer’s disease. Biomed. J. Sci. Tech. Res., 2018, 11(4), 8679-8684.
[http://dx.doi.org/10.26717/BJSTR.2018.11.002140]
[42]
Ghosh, A.K.; Osswald, H.L. BACE1 (β-secretase) inhibitors for the treatment of Alzheimer’s disease. Chem. Soc. Rev., 2014, 43(19), 6765-6813.
[http://dx.doi.org/10.1039/C3CS60460H] [PMID: 24691405]
[43]
Hernández-Rodríguez, M.; Correa-Basurto, J.; Gutiérrez, A.; Vitorica, J.; Rosales-Hernández, M.C. Asp32 and Asp228 determine the selective inhibition of BACE1 as shown by docking and molecular dynamics simulations. Eur. J. Med. Chem., 2016, 124, 1142-1154.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.028] [PMID: 27639619]
[44]
Congreve, M.; Aharony, D.; Albert, J.; Callaghan, O.; Campbell, J.; Carr, R.A.E.; Chessari, G.; Cowan, S.; Edwards, P.D.; Frederickson, M.; McMenamin, R.; Murray, C.W.; Patel, S.; Wallis, N. Application of fragment screening by X-ray crystallography to the discovery of aminopyridines as inhibitors of β-secretase. J. Med. Chem., 2007, 50(6), 1124-1132.
[http://dx.doi.org/10.1021/jm061197u] [PMID: 17315857]
[45]
Cheng, Y.; Judd, T.C.; Bartberger, M.D.; Brown, J.; Chen, K.; Fremeau, R.T., Jr; Hickman, D.; Hitchcock, S.A.; Jordan, B.; Li, V.; Lopez, P.; Louie, S.W.; Luo, Y.; Michelsen, K.; Nixey, T.; Powers, T.S.; Rattan, C.; Sickmier, E.A.; St Jean, D.J., Jr; Wahl, R.C.; Wen, P.H.; Wood, S. From fragment screening to in vivo efficacy: optimization of a series of 2-aminoquinolines as potent inhibitors of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1). J. Med. Chem., 2011, 54(16), 5836-5857.
[http://dx.doi.org/10.1021/jm200544q] [PMID: 21707077]
[46]
Cheng, J.; Deming, T.J. synthesis of polypeptides by ROP of NCAs. Pept. Mater., 2011, 2011(310), 1-26.
[47]
Whitehouse, P.J.; Price, D.L.; Clark, A.W.; Coyle, J.T.; DeLong, M.R. Alzheimer disease: Evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann. Neurol., 1981, 10(2), 122-126.
[http://dx.doi.org/10.1002/ana.410100203] [PMID: 7283399]
[48]
Goedert, M.; Spillantini, M.G.; Crowther, R.A. Tau proteins and neurofibrillary degeneration. Brain Pathol., 1991, 1(4), 279-286.
[http://dx.doi.org/10.1111/j.1750-3639.1991.tb00671.x] [PMID: 1669718]
[49]
Yang, J.; Yun, Y.; Miao, Y.; Sun, J.; Wang, X. Synthesis and biological evaluation of 3-arylbenzofuranone derivatives as potential anti-Alzheimer’s disease agents. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 805-814.
[http://dx.doi.org/10.1080/14756366.2020.1740694] [PMID: 32183602]
[50]
McInnes, C.; Mezna, M.; Fischer, P. Progress in the discovery of polo-like kinase inhibitors. Curr. Top. Med. Chem., 2005, 5(2), 181-197.
[http://dx.doi.org/10.2174/1568026053507660] [PMID: 15853646]
[51]
Chow, V.W.; Mattson, M.P.; Wong, P.C.; Gleichmann, M. An overview of APP processing enzymes and products. Neuromolecular Med., 2010, 12(1), 1-12.
[http://dx.doi.org/10.1007/s12017-009-8104-z] [PMID: 20232515]
[52]
Reiss, A.B.; Arain, H.A.; Stecker, M.M.; Siegart, N.M.; Kasselman, L.J. Amyloid toxicity in Alzheimer’s disease. Rev. Neurosci., 2018, 29(6), 613-627.
[http://dx.doi.org/10.1515/revneuro-2017-0063] [PMID: 29447116]
[53]
Braak, H.; Thal, D.R.; Ghebremedhin, E.; Del Tredici, K. Stages of the pathologic process in Alzheimer disease: Age categories from 1 to 100 years. J. Neuropathol. Exp. Neurol., 2011, 70(11), 960-969.
[http://dx.doi.org/10.1097/NEN.0b013e318232a379] [PMID: 22002422]
[54]
Holloway, M.K.; Hunt, P.; McGaughey, G.B. Structure and modeling in the design of β- and γ-secretase inhibitors. Drug Dev. Res., 2009, 70(2), 70-93.
[http://dx.doi.org/10.1002/ddr.20291]
[55]
Shimizu, H.; Tosaki, A.; Kaneko, K.; Hisano, T.; Sakurai, T.; Nukina, N. Crystal structure of an active form of BACE1, an enzyme responsible for amyloid beta protein production. Mol. Cell. Biol., 2008, 28(11), 3663-3671.
[http://dx.doi.org/10.1128/MCB.02185-07] [PMID: 18378702]
[56]
John, V.; Beck, J.P.; Bienkowski, M.J. Human β-Secretase (BACE) and BACE inhibitors. J. Med. Chem., 2003, 46(22), 4625-4630.
[57]
Al-tel, TH; Semreen, MH; Al-qawasmeh, RA; Schmidt, MF; El-awadi, R; Ardah, M Design, synthesis, and qualitative structure–activity evaluations of novel β-secretase inhibitors as potential alzheimer’s drug leads. J. Med. Chem., 2011, 54(24), 8373-8385.
[58]
Mancini, F.; De Simone, A.; Andrisano, V. Beta-secretase as a target for Alzheimer’s disease drug discovery: An overview of in vitro methods for characterization of inhibitors. Anal. Bioanal. Chem., 2011, 400(7), 1979-1996.
[http://dx.doi.org/10.1007/s00216-011-4963-x] [PMID: 21503735]
[59]
Huang, D.; Lüthi, U.; Kolb, P.; Cecchini, M.; Barberis, A.; Caflisch, A. In silico discovery of β-secretase inhibitors. J. Am. Chem. Soc., 2006, 128(16), 5436-5443.
[http://dx.doi.org/10.1021/ja0573108] [PMID: 16620115]
[60]
Guo, T.; Hobbs, D. Development of BACE1 inhibitors for Alzheimer’s disease. Curr. Med. Chem., 2006, 13(15), 1811-1829.
[http://dx.doi.org/10.2174/092986706777452489] [PMID: 16787223]
[61]
Tobergte, D.R.; Curtis, S. An introdution to medicinal chemistry. J. Chem. Inf. Model., 2013, 53(9), 1689-1699.
[62]
Use for budesonide and formoterol. US Patent US 8,461,211 B2, 2011.
[63]
Mandal, M.; Wu, Y.; Misiaszek, J.; Li, G.; Buevich, A.; Caldwell, J.P.; Liu, X.; Mazzola, R.D.; Orth, P.; Strickland, C.; Voigt, J.; Wang, H.; Zhu, Z.; Chen, X.; Grzelak, M.; Hyde, L.A.; Kuvelkar, R.; Leach, P.T.; Terracina, G.; Zhang, L.; Zhang, Q.; Michener, M.S.; Smith, B.; Cox, K.; Grotz, D.; Favreau, L.; Mitra, K.; Kazakevich, I.; McKittrick, B.A.; Greenlee, W.; Kennedy, M.E.; Parker, E.M.; Cumming, J.N.; Stamford, A.W. Structure-based design of an iminoheterocyclic β-site amyloid precursor protein cleaving enzyme (BACE) inhibitor that lowers central Aβ in nonhuman primates. J. Med. Chem., 2016, 59(7), 3231-3248.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01995] [PMID: 26937601]
[64]
Tarazi, H.; Odeh, R.A.; Al-Qawasmeh, R.; Yousef, I.A.; Voelter, W.; Al-Tel, T.H. Design, synthesis and SAR analysis of potent BACE1 inhibitors: Possible lead drug candidates for Alzheimer’s disease. Eur. J. Med. Chem., 2017, 125, 1213-1224.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.021] [PMID: 27871037]
[65]
Cavalli, A.; Bolognesi, M.L.; Minarini, A.; Rosini, M.; Tumiatti, V.; Recanatini, M. Multi-target-directed ligands to combat neurodegenerative diseases. J. Med. Chem., 2008, 51(7), 2326.
[http://dx.doi.org/10.1021/jm800210c]
[66]
Boy, K.M.; Guernon, J.M.; Wu, Y.J.; Zhang, Y.; Shi, J.; Zhai, W.; Zhu, S.; Gerritz, S.W.; Toyn, J.H.; Meredith, J.E.; Barten, D.M.; Burton, C.R.; Albright, C.F.; Good, A.C.; Grace, J.E.; Lentz, K.A.; Olson, R.E.; Macor, J.E.; Thompson, L.A., III Macrocyclic prolinyl acyl guanidines as inhibitors of β-secretase (BACE). Bioorg. Med. Chem. Lett., 2015, 25(22), 5040-5047.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.031] [PMID: 26497283]
[67]
Cummings, J.; Lee, G.; Ritter, A.; Zhong, K. Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement., 2018, 4(1), 195-214.
[http://dx.doi.org/10.1016/j.trci.2018.03.009] [PMID: 29955663]
[68]
Coimbra, J.R.M.; Marques, D.F.F.; Baptista, S.J.; Pereira, C.M.F.; Moreira, P.I.; Dinis, T.C.P.; Santos, A.E.; Salvador, J.A.R. Highlights in BACE1 inhibitors for Alzheimer’s disease treatment. Front Chem., 2018, 6(MAY), 178.
[http://dx.doi.org/10.3389/fchem.2018.00178] [PMID: 29881722]
[69]
Zhu, Z.; Sun, Z.Y.; Ye, Y.; Voigt, J.; Strickland, C.; Smith, E.M.; Cumming, J.; Wang, L.; Wong, J.; Wang, Y.S.; Wyss, D.F.; Chen, X.; Kuvelkar, R.; Kennedy, M.E.; Favreau, L.; Parker, E.; McKittrick, B.A.; Stamford, A.; Czarniecki, M.; Greenlee, W.; Hunter, J.C. Discovery of cyclic acylguanidines as highly potent and selective β-site amyloid cleaving enzyme (BACE) inhibitors: Part I--inhibitor design and validation. J. Med. Chem., 2010, 53(3), 951-965.
[http://dx.doi.org/10.1021/jm901408p] [PMID: 20043696]
[70]
Gurjar, A.S.; Darekar, M.N.; Yeong, K.Y.; Ooi, L. In silico studies, synthesis and pharmacological evaluation to explore multi-targeted approach for imidazole analogues as potential cholinesterase inhibitors with neuroprotective role for Alzheimer’s disease. Bioorg. Med. Chem., 2018, 26(8), 1511-1522.
[http://dx.doi.org/10.1016/j.bmc.2018.01.029] [PMID: 29429576]
[71]
Jain, P.; Wadhwa, P.K.; Gunapati, S.; Jadhav, H.R. Design, synthesis and in vitro evaluation studies of sulfonyl-amino-acetamides as small molecule BACE-1 inhibitors. Bioorg. Med. Chem., 2016, 24(11), 2567-2575.
[http://dx.doi.org/10.1016/j.bmc.2016.04.023] [PMID: 27102162]
[72]
Azimi, S.; Zonouzi, A.; Firuzi, O.; Iraji, A.; Saeedi, M.; Mahdavi, M.; Edraki, N. Discovery of imidazopyridines containing isoindoline-1,3-dione framework as a new class of BACE1 inhibitors: Design, synthesis and SAR analysis. Eur. J. Med. Chem., 2017, 138, 729-737.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.040] [PMID: 28728105]
[73]
Gravenfors, Y.; Viklund, J.; Blid, J.; Ginman, T.; Karlström, S.; Kihlström, J.; Kolmodin, K.; Lindström, J.; von Berg, S.; von Kieseritzky, F.; Slivo, C.; Swahn, B-M.; Olsson, L-L.; Johansson, P.; Eketjäll, S.; Fälting, J.; Jeppsson, F.; Strömberg, K.; Janson, J.; Rahm, F.; Rahm, F. New aminoimidazoles as β-secretase (BACE-1) inhibitors showing amyloid-β (Aβ) lowering in brain. J. Med. Chem., 2012, 55(21), 9297-9311.
[http://dx.doi.org/10.1021/jm300991n] [PMID: 23017051]
[74]
Malamas, M.S.; Robichaud, A.; Erdei, J.; Quagliato, D.; Solvibile, W.; Zhou, P.; Morris, K.; Turner, J.; Wagner, E.; Fan, K.; Olland, A.; Jacobsen, S.; Reinhart, P.; Riddell, D.; Pangalos, M. Design and synthesis of aminohydantoins as potent and selective human β-secretase (BACE1) inhibitors with enhanced brain permeability. Bioorg. Med. Chem. Lett., 2010, 20(22), 6597-6605.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.029] [PMID: 20880704]
[75]
Malamas, M.S.; Barnes, K.; Johnson, M.; Hui, Y.; Zhou, P.; Turner, J.; Hu, Y.; Wagner, E.; Fan, K.; Chopra, R.; Olland, A.; Bard, J.; Pangalos, M.; Reinhart, P.; Robichaud, A.J. Di-substituted pyridinyl aminohydantoins as potent and highly selective human β-secretase (BACE1) inhibitors. Bioorg. Med. Chem., 2010, 18(2), 630-639.
[http://dx.doi.org/10.1016/j.bmc.2009.12.007] [PMID: 20045648]
[76]
Malamas, M.S.; Erdei, J.; Gunawan, I.; Barnes, K.; Hui, Y.; Johnson, M.; Robichaud, A.; Zhou, P.; Yan, Y.; Solvibile, W.; Turner, J.; Fan, K.Y.; Chopra, R.; Bard, J.; Pangalos, M.N. New pyrazolyl and thienyl aminohydantoins as potent BACE1 inhibitors: Exploring the S2′ region. Bioorg. Med. Chem. Lett., 2011, 21(18), 5164-5170.
[http://dx.doi.org/10.1016/j.bmcl.2011.07.057] [PMID: 21835615]
[77]
Gurjar, A.S.; Andrisano, V.; Simone, A.D.; Velingkar, V.S. Design, synthesis, in silico and in vitro screening of 1,2,4-thiadiazole analogues as non-peptide inhibitors of beta-secretase. Bioorg. Chem., 2014, 57, 90-98.
[http://dx.doi.org/10.1016/j.bioorg.2014.09.002] [PMID: 25303313]
[78]
Mei, W.; Ji, S.; Xiao, W.; Jiang, X.W.C. Synthesis and biological evaluation of benzothiazol-based 1,3,4-oxadiazole derivatives as amyloid β-targeted compounds against Alzheimer’s disease. Monatsh. für Chem., 2017, 148, 1807-1815.
[79]
Scott, J.D.; Li, S.W.; Brunskill, A.P.J.; Chen, X.; Cox, K.; Cumming, J.N. Discovery of the 3-imino-1,2,4-thiadiazinane 1,1-dioxide derivative verubecestat (MK-8931)-A β-site amyloid precursor protein cleaving enzyme 1 inhibitor for the treatment of Alzheimer's disease. J. Med. Chem., 2016, 59(23), 10435-10450.
[80]
Huang, H.; La, D.S.; Cheng, A.C.; Whittington, D.A.; Patel, V.F.; Chen, K. Structure- and property-based design of aminooxazoline xanthenes as selective, orally efficacious, and CNS penetrable BACE inhibitors for the treatment of alzheimer’s disease. J. Med. Chem., 2012, 55(21), 9156-9169.
[81]
Jeffrey, J.; Liu, Q.; Yuan, C.; Gore, V.; Lopez, P.; Ma, V. Development of 2-aminooxazoline 3-azaxanthenes as orally efficacious b -secretase inhibitors for the potential treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2015, 25, 767-74.
[82]
Chaluvaraju, K.C.; Niranjan, M.S.; Kiran, S. 1, 3, 4 oxadiazole a potent drug candidate with various pharmacological activities. Int. J. Pharm. Pharm. Sci., 2011, 3(3), 9-16.
[83]
Haghighijoo, Z.; Firuzi, O.; Hemmateenejad, B.; Emami, S.; Edraki, N.; Miri, R. Synthesis and biological evaluation of quinazolinone-based hydrazones with potential use in Alzheimer’s disease. Bioorg. Chem., 2017, 74, 126-133.
[http://dx.doi.org/10.1016/j.bioorg.2017.07.014] [PMID: 28780149]
[84]
Jordan, J.B.; Whittington, D.A.; Bartberger, M.D.; Sickmier, E.A.; Chen, K.; Cheng, Y. Fragment-linking approach using (19)F NMR spectroscopy to obtain highly potent and selective inhibitors of β-secretase. J. Med. Chem., 2016, 59(8), 3732-49.
[85]
Garino, C.; Pietrancosta, N.; Laras, Y.; Moret, V.; Rolland, A.; Quéléver, G.; Kraus, J.L. BACE-1 inhibitory activities of new substituted phenyl-piperazine coupled to various heterocycles: Chromene, coumarin and quinoline. Bioorg. Med. Chem. Lett., 2006, 16(7), 1995-1999.
[http://dx.doi.org/10.1016/j.bmcl.2005.12.064] [PMID: 16412632]
[86]
De Tran, Q.; Bepary, S.; Hyeong, G.; Cho, H.; Kyu, W.; Lim, H. Bioorganic & medicinal chemistry letters synthesis of (3 S, 4 S) -4-aminopyrrolidine-3-ol derivatives and biological evaluation for their BACE1 inhibitory activities. Bioorg. Med. Chem. Lett., 2015, 3-6.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.033] [PMID: 26608551]
[87]
Mani, R.J.; Mittal, K.; Katare, D.P. Protective effects of quercetin in Zebrafish model of Alzheimer’s disease. Asian J. Pharm., 2018, 12(September), S660-S666.
[88]
El-baz, F.K.; Aly, H.F.; Abd-alla, H.I.; Ali, S.A. Neurorestorative mulberries potential of alzheimer’s disease in animal model. Asian J. Pharm. Clin. Res., 2018, 11(10), 318-324.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i10.27155]
[89]
Dai, J.; Shen, D.; Yoshida, W.; Parrish, S.; Williams, P. Isoflavonoids from Ficus benjamina and their inhibitory activity on BACE1. Planta Med., 2012, 78(12), 1357-1362.
[http://dx.doi.org/10.1055/s-0032-1315001] [PMID: 22763739]
[90]
Carbone, M.; Li, Y.; Irace, C.; Mollo, E.; Castelluccio, F.; Pascale, A. Structure and cytotoxicity of phidianidines A and B: First finding of 1,2,4-oxadiazole system in a marine natural product. Org. Lett., 2011, 13(10), 2516-2519.
[91]
Villa, F.A.; Gerwick, L.; Villa, F.A.; Gerwick, L. Marine natural product drug discovery: Leads for treatment of inflammation, cancer, infections, and neurological disorders. Immunopharmacol. Immunotoxicol., 2017, 32(2), 228-37.
[92]
Jiang, C.; Fu, Y.; Zhang, L.; Gong, J.; Wang, Z.; Xiao, W. Bioorganic & medicinal chemistry letters synthesis and biological evaluation of novel marine-derived neuroprotective agents. Bioorg. Med. Chem. Lett., 2015, 25(2), 216-220.
[http://dx.doi.org/10.1016/j.bmcl.2014.11.068] [PMID: 25499879]
[93]
Cho, J.K.; Ryu, Y.B.; Curtis-Long, M.J.; Kim, J.Y.; Kim, D.; Lee, S.; Lee, W.S.; Park, K.H. Inhibition and structural reliability of prenylated flavones from the stem bark of Morus lhou on β-secretase (BACE-1). Bioorg. Med. Chem. Lett., 2011, 21(10), 2945-2948.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.060] [PMID: 21511472]
[94]
Huang, L.K.; Chao, S.P.; Hu, C.J. Clinical trials of new drugs for Alzheimer disease. J. Biomed. Sci., 2020, 27(1), 18.
[http://dx.doi.org/10.1186/s12929-019-0609-7] [PMID: 31906949]
[95]
Zhang, J.; Li, J.C.; Song, J.L.; Cheng, Z.Q.; Sun, J.Z.; Jiang, C.S. Synthesis and evaluation of coumarin/1,2,4-oxadiazole hybrids as selective BChE inhibitors with neuroprotective activity. J. Asian Nat. Prod. Res., 2019, 21(11), 1090-1103.
[http://dx.doi.org/10.1080/10286020.2018.1492566] [PMID: 29991292]
[96]
Hu, Y.H.; Yang, J.; Zhang, Y.; Liu, K.C.; Liu, T.; Sun, J.; Wang, X.J. Synthesis and biological evaluation of 3–(4-aminophenyl)-coumarin derivatives as potential anti-Alzheimer’s disease agents. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1083-1092.
[http://dx.doi.org/10.1080/14756366.2019.1615484] [PMID: 31117844]
[97]
Mullard, A. BACE inhibitor bust in Alzheimer trial. Nat. Rev. Drug Discov., 2017, 16(3), 155.
[http://dx.doi.org/10.1038/nrd.2017.43] [PMID: 28248932]
[98]
Jeppsson, F.; Eketjäll, S.; Janson, J.; Karlström, S.; Gustavsson, S.; Olsson, L.L.; Radesäter, A.C.; Ploeger, B.; Cebers, G.; Kolmodin, K.; Swahn, B.M.; von Berg, S.; Bueters, T.; Fälting, J. Discovery of AZD3839, a potent and selective BACE1 inhibitor clinical candidate for the treatment of Alzheimer disease. J. Biol. Chem., 2012, 287(49), 41245-41257.
[http://dx.doi.org/10.1074/jbc.M112.409110] [PMID: 23048024]
[99]
Ashworth, I.W.; Campbell, A.D.; Cherryman, J.H.; Clark, J.; Crampton, A.; Eden-Rump, E.G.B.; Evans, M.; Jones, M.F.; McKeever-Abbas, S.; Meadows, R.E.; Skilling, K.; Whittaker, D.T.E.; Woodward, R.L.; Inglesby, P.A. Process development of a suzuki reaction used in the manufacture of lanabecestat. Org. Process Res. Dev., 2018, 22(12), 1801-1808.
[http://dx.doi.org/10.1021/acs.oprd.8b00312]
[100]
Blume, T.; Filser, S.; Jaworska, A.; Blain, J.F.; Koenig, G.; Moschke, K.; Lichtenthaler, S.F.; Herms, J. BACE1 inhibitor MK-8931 alters formation but not stability of dendritic spines. Front. Aging Neurosci., 2018, 10, 229.
[http://dx.doi.org/10.3389/fnagi.2018.00229] [PMID: 30093858]
[101]
Kennedy, ME; Stamford, AW; Chen, X; Cox, K; Cumming, JN; Dockendorf, MF The BACE1 inhibitor verubecestat (MK-8931) reduces CNS b-amyloid in animal models and in Alzheimer’s disease patients. 2016.
[102]
Vassar, R. BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease. Alzheimers Res. Ther., 2014, 6(9), 89.
[http://dx.doi.org/10.1186/s13195-014-0089-7] [PMID: 25621019]
[103]
Timmers, M.; Streffer, J.R.; Russu, A.; Tominaga, Y.; Shimizu, H.; Shiraishi, A.; Tatikola, K.; Smekens, P.; Börjesson-Hanson, A.; Andreasen, N.; Matias-Guiu, J.; Baquero, M.; Boada, M.; Tesseur, I.; Tritsmans, L.; Van Nueten, L.; Engelborghs, S. Pharmacodynamics of atabecestat (JNJ-54861911), an oral BACE1 inhibitor in patients with early Alzheimer’s disease: Randomized, double-blind, placebo-controlled study. Alzheimers Res. Ther., 2018, 10(1), 85.
[http://dx.doi.org/10.1186/s13195-018-0415-6] [PMID: 30134967]
[104]
Neumann, U.; Ufer, M.; Jacobson, L.H.; Rouzade-Dominguez, M.L.; Huledal, G.; Kolly, C.; Lüönd, R.M.; Machauer, R.; Veenstra, S.J.; Hurth, K.; Rueeger, H.; Tintelnot-Blomley, M.; Staufenbiel, M.; Shimshek, D.R.; Perrot, L.; Frieauff, W.; Dubost, V.; Schiller, H.; Vogg, B.; Beltz, K.; Avrameas, A.; Kretz, S.; Pezous, N.; Rondeau, J.M.; Beckmann, N.; Hartmann, A.; Vormfelde, S.; David, O.J.; Galli, B.; Ramos, R.; Graf, A.; Lopez Lopez, C. The BACE ‐1 inhibitor CNP 520 for prevention trials in Alzheimer’s disease. EMBO Mol. Med., 2018, 10(11), 1-18.
[http://dx.doi.org/10.15252/emmm.201809316] [PMID: 30224383]
[105]
Vellas, B.; Aisen, P.; Weiner, M.; Touchon, J. What we learn from the CTAD (Clinical Trials Alzheimer’s Disease) 2018. J. Prev. Alzheimers Dis., 2018, 5(4), 214-215.
[PMID: 30298178]
[106]
Sur, C.; Kost, J.; Scott, D.; Adamczuk, K.; Fox, N.C.; Cummings, J.L. BACE inhibition causes rapid, regional, and non-progressive volume reduction in Alzheimer's disease brain. Brain, 2020, 143(12), 3816-3826.
[107]
Sur, C.; Ph, D.; Mukai, Y.; Voss, T.; Furtek, C.; Mahoney, E. Randomized trial of verubecestat for mild-to-moderate alzheimer's disease. N Engl. J. Med., 2018, 378(18), 1691-1703.
[108]
Villarreal, S.; Zhao, F.; Hyde, L.A.; Holder, D.; Forest, T. Chronic verubecestat treatment suppresses amyloid accumulation in advanced aged Tg2576-AβPPswe mice without inducing microhemorrhage. J. Alzheimers Dis., 2017, 59(9), 1393-1413.
[109]
Yoshihara, T.; Uchida, N.; Azuma, F.; Russell, M.; Hughes, G.; Haeberlein, S.B. BACE1 inhibitor lanabecestat (AZD3293) in a phase 1 study of healthy japanese subjects: pharmacokinetics and effects on plasma and cerebrospinal fluid A β. Peptides, 2017, 1-12.
[110]
Wang, J.; Logovinsky, V.; Hendrix, S.B.; Stanworth, S.H.; Perdomo, C.; Xu, L. ADCOMS: A composite clinical outcome for prodromal Alzheimer's disease trials. J. Neurol. Neurosurg. Psychiatry, 2016, 87(9), 993-9.
[111]
Abbott, A.; Dolgin, E. Leading Alzheimer’s theory sur-vives drug failure. Nature, 2016, 540(7631), 15-16. Available from:
[http://dx.doi.org/10.1038/nature.2016.21045]
[112]
Sevigny, J.; Chiao, P.; Bussière, T.; Weinreb, P.H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; O’Gorman, J.; Qian, F.; Arastu, M.; Li, M.; Chollate, S.; Brennan, M.S.; Quintero-Monzon, O.; Scannevin, R.H.; Arnold, H.M.; Engber, T.; Rhodes, K.; Ferrero, J.; Hang, Y.; Mikulskis, A.; Grimm, J.; Hock, C.; Nitsch, R.M.; Sandrock, A. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature, 2016, 537(7618), 50-56.
[http://dx.doi.org/10.1038/nature19323] [PMID: 27582220]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy