Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Mini-Review Article

Relation between Apolipoprotein E in Alzheimer’s Disease and SARS-CoV-2 and their Treatment Strategy: A Review

Author(s): Anu Kunnath Ramachandran, Subham Das, Gurupur Gautham Shenoy, Jayesh Mudgal and Alex Joseph*

Volume 23, Issue 1, 2024

Published on: 07 February, 2023

Page: [9 - 20] Pages: 12

DOI: 10.2174/1871527322666221226145141

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

COVID-19, which primarily affects the pulmonary system, turned out to be a global pandemic, whereas the effects on other systems are still unknown. SARS-CoV-2, binds to angiotensinconverting enzyme 2 (ACE2) receptors in the lungs, causing pneumonia-like symptoms. The same ACE receptors are also present in organs other than the lungs. Therefore, there is a need to study the impact of coronavirus on other human body organs. Recently, UK Biobank reports on the genetic risk factor of the virus attack. A double mutation in the apolipoprotein E (APOE4) allele has shown a significant role in COVID-19. The same APOE4 mutation has already been proven to hold a key role in developing early-onset Alzheimer’s disease (EOAD). Despite this data, Alzheimer’s disease is believed to be a comorbidity of COVID-19. Previous virus attacks on the same viral family, Coronaviridae, produced neurological effects like neurodegeneration, neuronal inflammation, and other central nervous system-related dysfunctions. Since the long-term implications of COVID-19 are unknown, more research into the impact of the virus on the central nervous system is needed. Both COVID-19 and AD share a common genetic factor, so that AD patients may have a greater risk of SARS-CoV-2. Here, in this review, we have briefly discussed the role of APOE4 in the pathogenesis of AD and SARS-CoV-2, along with their treatment strategy, current scenario, and possible future directions.

Keywords: COVID-19, SARS-CoV 2, apolipoprotein E, Alzheimer’s disease, APOE4, amyloid-beta, tau hyperphosphorylation, neurofibrillary tangles.

Graphical Abstract
[1]
Center for Disease Control and Prevention. World Map | CDC. 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/global-covid-19/index.html
[2]
De Felice FG, Tovar-moll F, Moll J, Munoz DP, Ferreira ST. Trends in neurosciences science Society Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and the central nervous system trends in neurosciences. Trends Neurosci 2019; 1-3.
[http://dx.doi.org/10.1016/j.tins.2020.04.004] [PMID: 32359765]
[3]
Das S, Ramachandran AK, Birangal SR, Akbar S, Ahmed B, Joseph A. The controversial therapeutic journey of chloroquine and hydroxychloroquine in the battle against SARS-CoV-2: A comprehensive review. Med Drug Discov 2021; 10: 100085.
[http://dx.doi.org/10.1016/j.medidd.2021.100085] [PMID: 33846702]
[4]
Santos IA, Grosche VR, Bergamini FRG, Sabino-Silva R, Jardim ACG. Antivirals against coronaviruses: Candidate drugs for SARS-CoV-2 treatment? Front Microbiol 2020; 11: 1818.
[http://dx.doi.org/10.3389/fmicb.2020.01818] [PMID: 32903349]
[5]
Oliveira TL, Melo IS, Cardoso-Sousa L, et al. Pathophysiology of SARS-CoV-2 in Lung of Diabetic Patients. Front Physiol 2020; 11(12): 587013.
[http://dx.doi.org/10.3389/fphys.2020.587013] [PMID: 33362575]
[6]
Ghotbizadeh F, Nazari F, Hantoushzadeh S, Panahi Z, Naeiji Z. Investigation of SARS-CoV-2 Ability to Pass Through the Placenta 2021.
[http://dx.doi.org/10.5812/semj.110047]
[7]
Anu KR, Das S, Joseph A, Shenoy GG, Alex AT, Mudgal J. Neurodegenerative pathways in alzheimer’s disease: A review. Curr Neuropharmacol 2021; 19(15): 679-92.
[http://dx.doi.org/10.2174/1570159X18666200807130637]
[8]
Das S, Akbar S, Ahmed B, et al. Recent advancement of pyrazole scaffold based neuroprotective agents: A review. CNS Neurol Disord Drug Targets 2022; 21(10): 940-51.
[http://dx.doi.org/10.2174/1871527320666210602152308] [PMID: 34080970]
[9]
Das S, Akbar S, Ahmed B, et al. Structural activity relationship-based medicinal perspectives of pyrimidine derivatives as anti-alzheimer’s agent: A comprehensive review. CNS Neurol Disord Drug Targets 2022; 21(10): 926-39.
[http://dx.doi.org/10.2174/1871527320666210804161400] [PMID: 34348636]
[10]
Ramachandran AK, Das S, Joseph A. Crosstalk between Covid-19 and associated neurological disorders: A review. Curr Neuropharmacol 2021; 19(10): 1688-700.
[http://dx.doi.org/10.2174/1570159X19666210113154342] [PMID: 33441073]
[11]
Colović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr Neuropharmacol 2013; 11(3): 315-35.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[12]
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2011; 1(1): a006189.
[http://dx.doi.org/10.1101/cshperspect.a006189] [PMID: 22229116]
[13]
Giau VV, Bagyinszky E, Youn YC, An SSA, Kim S. APP, PSEN1, and PSEN2 Mutations in Asian patients with early-onset Alzheimer disease. Int J Mol Sci 2019; 20(19): 4757.
[http://dx.doi.org/10.3390/ijms20194757] [PMID: 31557888]
[14]
Liu CC, Kanekiyo T, Xu H, Bu G, Bu G. Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy. Nat Rev Neurol 2013; 9(2): 106-18.
[http://dx.doi.org/10.1038/nrneurol.2012.263] [PMID: 23296339]
[15]
Montufar S, Calero C, Vinueza R, et al. Association between the APOE ε4 Allele and Late-Onset Alzheimer’s Disease in an Ecuadorian Mestizo Population. Int J Alzheimers Dis 2017; 2017: 1059678.
[http://dx.doi.org/10.1155/2017/1059678]
[16]
Gordon DE, Jang GM, Bouhaddou M, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 2020; 583(7816): 459-68.
[http://dx.doi.org/10.1038/s41586-020-2286-9] [PMID: 32353859]
[17]
Kuo C, Pilling L C, Atkins J L, et al. APOE E4 genotype predicts severe COVID-19 in the UK biobank community cohort 2020; XX(Xx): 1-2.
[http://dx.doi.org/10.1093/gerona/glaa131]
[18]
Das HK, McPherson J, Bruns GA, Karathanasis SK, Breslow JL. Isolation, characterization, and mapping to chromosome 19 of the human apolipoprotein E gene. J Biol Chem 1985; 260(10): 6240-7.
[http://dx.doi.org/10.1016/S0021-9258(18)88963-3] [PMID: 3922972]
[19]
Kim H, Yoo J, Shin J, et al. Modelling APOE ɛ3/4 allele-associated sporadic Alzheimer’s disease in an induced neuron. Brain 2017; 140(8): 2193-209.
[http://dx.doi.org/10.1093/brain/awx144] [PMID: 28899010]
[20]
Mahley RW, Rall SC Jr, Apolipoprotein E, Apolipoprotein E. Far more than a lipid transport protein. Annu Rev Genomics Hum Genet 2000; 1(1): 507-37.
[http://dx.doi.org/10.1146/annurev.genom.1.1.507] [PMID: 11701639]
[21]
Sando SB, Melquist S, Cannon A, et al. APOE ε4 lowers age at onset and is a high risk factor for Alzheimer’s disease; A case control study from central Norway. BMC Neurol 2008; 8(1): 9.
[http://dx.doi.org/10.1186/1471-2377-8-9] [PMID: 18416843]
[22]
Farrer LA, Cupples LA, Haines JL, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. JAMA 1997; 278(16): 1349-56.
[http://dx.doi.org/10.1001/jama.1997.03550160069041] [PMID: 9343467]
[23]
Xu Q, Brecht W J, Weisgraber K H, Mahley R W, Huang Y. Apolipoprotein E4 domain interaction occurs in living neuronal cells as determined by fluorescence resonance energy transfer 2004; 279(24): 25511-6.
[http://dx.doi.org/10.1074/jbc.M311256200]
[24]
Liao F, Yoon H, Kim J. Apolipoprotein E metabolism and functions in brain and its role in Alzheimer’s disease. Curr Opin Lipidol 2017; 28(1): 60-7.
[http://dx.doi.org/10.1097/MOL.0000000000000383] [PMID: 27922847]
[25]
Pitassjt RE, Boylessj JK, Lees SH, Huiso D, Weisgraberso KH. Lipoproteins and Their Receptors in the Central Nervous System 1987; (7): 14352-60.
[26]
Harris F M, Brecht W J, Xu Q, et al. Carboxyl-terminal-truncated apolipoprotein E4 causes Alzheimer’s disease-like neurodegeneration and behavioral deficits in transgenic mice 2003; 100(19): 1096-71.
[27]
Michaelson DM. APOE ε4: The most prevalent yet understudied risk factor for Alzheimer’s disease. Alzheimers Dement 2014; 10(6): 861-8.
[http://dx.doi.org/10.1016/j.jalz.2014.06.015] [PMID: 25217293]
[28]
Getz G, Reardon C. Apoprotein E and reverse cholesterol transport. Int J Mol Sci 2018; 19(11): 3479.
[http://dx.doi.org/10.3390/ijms19113479] [PMID: 30404132]
[29]
Safieh M, Korczyn AD, Michaelson DM. ApoE4: An emerging therapeutic target for Alzheimer’s disease. BMC Med 2019; 17(1): 64.
[http://dx.doi.org/10.1186/s12916-019-1299-4] [PMID: 30890171]
[30]
Harris FM, Brecht WJ, Xu Q, Mahley RW, Huang Y. Increased tau phosphorylation in apolipoprotein E4 transgenic mice is associated with activation of extracellular signal-regulated kinase: Modulation by zinc. J Biol Chem 2004; 279(43): 44795-801.
[http://dx.doi.org/10.1074/jbc.M408127200] [PMID: 15322121]
[31]
Caselli RJ, Dueck AC, Locke DEC, et al. Longitudinal modeling of frontal cognition in APOE 4 homozygotes, heterozygotes, and noncarriers. Neurology 2011; 76(16): 1383-8.
[http://dx.doi.org/10.1212/WNL.0b013e3182167147] [PMID: 21502596]
[32]
Ries M, Sastre M. Mechanisms of Aβ clearance and degradation by glial cells. Front Aging Neurosci 2016; 8: 160.
[http://dx.doi.org/10.3389/fnagi.2016.00160] [PMID: 27458370]
[33]
Ye S, Huang Y, Müllendorff K, et al. Apolipoprotein (apo) E4 enhances amyloid β peptide production in cultured neuronal cells: ApoE structure as a potential therapeutic target. Proc Natl Acad Sci USA 2005; 102(51): 18700-5.
[http://dx.doi.org/10.1073/pnas.0508693102] [PMID: 16344478]
[34]
Liu CC, Hu J, Zhao N, et al. Astrocytic LRP1 mediates brain Aβ clearance and impacts amyloid deposition. J Neurosci 2017; 37(15): 4023-31.
[http://dx.doi.org/10.1523/JNEUROSCI.3442-16.2017] [PMID: 28275161]
[35]
Prasad H, Rao R. Amyloid clearance defect in ApoE4 astrocytes is reversed by epigenetic correction of endosomal pH. Proc Natl Acad Sci USA 2018; 115(28): E6640-9.
[http://dx.doi.org/10.1073/pnas.1801612115] [PMID: 29946028]
[36]
Basak JM, Verghese PB, Yoon H, Kim J, Holtzman DM. Low-density lipoprotein receptor represents an apolipoprotein E-independent pathway of Aβ uptake and degradation by astrocytes. J Biol Chem 2012; 287(17): 13959-71.
[http://dx.doi.org/10.1074/jbc.M111.288746] [PMID: 22383525]
[37]
Ma J, Yee A, Brewer HB Jr, Das S, Potter H. Amyloid-associated proteins α1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer β-protein into filaments. Nature 1994; 372(6501): 92-4.
[http://dx.doi.org/10.1038/372092a0] [PMID: 7969426]
[38]
Sanan DA, Weisgraber KH, Russell SJ, et al. Apolipoprotein E associates with beta amyloid peptide of Alzheimer’s disease to form novel monofibrils. Isoform apoE4 associates more efficiently than apoE3. J Clin Invest 1994; 94(2): 860-9.
[http://dx.doi.org/10.1172/JCI117407] [PMID: 8040342]
[39]
Lynch JR, Morgan D, Mance J, Matthew WD, Laskowitz DT, Apolipoprotein E. Apolipoprotein E modulates glial activation and the endogenous central nervous system inflammatory response. J Neuroimmunol 2001; 114(1-2): 107-13.
[http://dx.doi.org/10.1016/S0165-5728(00)00459-8] [PMID: 11240021]
[40]
Guo L, LaDu MJ, Van Eldik LJ. A dual role for apolipoprotein e in neuroinflammation: Anti- and pro-inflammatory activity. J Mol Neurosci 2004; 23(3): 205-12.
[http://dx.doi.org/10.1385/JMN:23:3:205] [PMID: 15181248]
[41]
Parhizkar S, Holtzman DM. APOE Mediated Neuroinflammation and Neurodegeneration in Alzheimer’s Disease. Semin Immunol 2022; 101594.
[http://dx.doi.org/10.1016/j.smim.2022.101594]
[42]
Zhu Y, Nwabuisi-Heath E, Dumanis SB, et al. APOE genotype alters glial activation and loss of synaptic markers in mice. Glia 2012; 60(4): 559-69.
[http://dx.doi.org/10.1002/glia.22289] [PMID: 22228589]
[43]
Allan LL, Hoefl K, Zheng DJ, et al. Apolipoprotein-mediated lipid antigen presentation in B cells provides a pathway for innate help by NKT cells. Blood 2009; 114(12): 2411-6.
[http://dx.doi.org/10.1182/blood-2009-04-211417] [PMID: 19620401]
[44]
Hong C, Tontonoz P, Liver X. Liver X receptors in lipid metabolism: Opportunities for drug discovery. Nat Rev Drug Discov 2014; 13(6): 433-44.
[http://dx.doi.org/10.1038/nrd4280] [PMID: 24833295]
[45]
Kim J, Eltorai AEM, Jiang H, et al. Anti-apoE immunotherapy inhibits amyloid accumulation in a transgenic mouse model of Aβ amyloidosis. J Exp Med 2012; 209(12): 2149-56.
[http://dx.doi.org/10.1084/jem.20121274] [PMID: 23129750]
[46]
Mahley RW, Huang Y. Small-molecule structure correctors target abnormal protein structure and function: Structure corrector rescue of apolipoprotein E4-associated neuropathology. J Med Chem 2012; 55(21): 8997-9008.
[http://dx.doi.org/10.1021/jm3008618] [PMID: 23013167]
[47]
Perlman S, Netland J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat Rev Microbiol 2009; 7(6): 439-50.
[http://dx.doi.org/10.1038/nrmicro2147] [PMID: 19430490]
[48]
Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 2005; 69(4): 635-64.
[http://dx.doi.org/10.1128/MMBR.69.4.635-664.2005] [PMID: 16339739]
[49]
Pandey A, Nikam AN, Shreya AB, et al. Potential therapeutic targets for combating SARS-CoV-2: Drug repurposing, clinical trials and recent advancements. Life Sci 2020; 256: 117883.
[http://dx.doi.org/10.1016/j.lfs.2020.117883] [PMID: 32497632]
[50]
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579(7798): 265-9.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[51]
Li F. Structure. Function, and Evolution of Coronavirus Spike Proteins 2016; pp. 237-64.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301]
[52]
Das S. K R A, Birangal SR, et al. Role of comorbidities like diabetes on severe acute respiratory syndrome coronavirus-2: A review. Life Sci 2020; 258: 118202.
[http://dx.doi.org/10.1016/j.lfs.2020.118202] [PMID: 32758625]
[53]
Goldstein MR, Poland GA, Graeber CW. Does apolipoprotein E genotype predict COVID-19 severity? QJM 2020; 113(8): 529-30.
[http://dx.doi.org/10.1093/qjmed/hcaa142] [PMID: 32339247]
[54]
Mahley RW, Weisgraber KH, Huang Y, Apolipoprotein E. Apolipoprotein E: Structure determines function, from atherosclerosis to Alzheimer’s disease to AIDS. J Lipid Res 2009; 50(Suppl Suppl.):): S183-8.
[http://dx.doi.org/10.1194/jlr.R800069-JLR200] [PMID: 19106071]
[55]
Burt TD, Agan BK, Marconi VC, et al. Apolipoprotein (apo) E4 enhances HIV-1 cell entry in vitro, and the APOE ε4/ε4 genotype accelerates HIV disease progression. Proc Natl Acad Sci USA 2008; 105(25): 8718-23.
[http://dx.doi.org/10.1073/pnas.0803526105] [PMID: 18562290]
[56]
Gale SC, Gao L, Mikacenic C, et al. APOε4 is associated with enhanced in vivo innate immune responses in human subjects. J Allergy Clin Immunol 2014; 134(1): 127-134.e9.
[http://dx.doi.org/10.1016/j.jaci.2014.01.032] [PMID: 24655576]
[57]
Gordon EM, Yao X, Xu H, et al. Apolipoprotein E is a concentration-dependent pulmonary danger signal that activates the NLRP3 inflammasome and IL-1β secretion by bronchoalveolar fluid macrophages from asthmatic subjects. J Allergy Clin Immunol 2019; 144(2): 426-41.
[http://dx.doi.org/10.1016/j.jaci.2019.02.027] [PMID: 30872118]
[58]
Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 Pneumonia in Wuhan , China: A single-centered , retrospective , observational study. Lancet Respir 8(5): 475-81.
[http://dx.doi.org/10.1016/S2213-2600(20)30079-5]
[59]
Mao L, Jin H, Wang M, et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol 2020; 77(6): 683-90.
[http://dx.doi.org/10.1001/jamaneurol.2020.1127] [PMID: 32275288]
[60]
Arabi YM, Harthi A, Hussein J, et al. Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV). Infection 2015; 43(4): 495-501.
[http://dx.doi.org/10.1007/s15010-015-0720-y] [PMID: 25600929]
[61]
Reineke LC, Lloyd RE. The stress granule protein G3BP1 recruits protein kinase R to promote multiple innate immune antiviral responses. J Virol 2015; 89(5): 2575-89.
[http://dx.doi.org/10.1128/JVI.02791-14] [PMID: 25520508]
[62]
Papadopoli D, Boulay K, Kazak L, et al. mTOR as a central regulator of lifespan and aging. F1000 Res 2019; 8: 998.
[http://dx.doi.org/10.12688/f1000research.17196.1] [PMID: 31316753]
[63]
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153(6): 1194-217.
[http://dx.doi.org/10.1016/j.cell.2013.05.039] [PMID: 23746838]
[64]
Ye Z, Wong CK, Li P, Xie Y. A SARS-CoV protein, ORF-6, induces caspase-3 mediated, ER stress and JNK-dependent apoptosis. Biochim Biophys Acta, Gen Subj 2008; 1780(12): 1383-7.
[http://dx.doi.org/10.1016/j.bbagen.2008.07.009] [PMID: 18708124]
[65]
Solis-Moreira J. Alzheimer’s symptoms linked to COVID induced brain injury. Available from: https://www.news-medical.net/news/20210324/Alzheimere28099s-symptoms-linked-to-COVID-induced-brain-injury.aspx
[66]
Erausquin GA, Snyder H, Carrillo M, Hosseini AA, Brugha TS, Seshadri S. The chronic neuropsychiatric sequelae of COVID‐19: The need for a prospective study of viral impact on brain functioning. Alzheimers Dement 2021; 17(6): 1056-65.
[http://dx.doi.org/10.1002/alz.12255] [PMID: 33399270]
[67]
Li J, Long X, Huang H, et al. Resilience of Alzheimer’s disease to COVID-19. J Alzheimers Dis 2020; 77(1): 67-73.
[http://dx.doi.org/10.3233/JAD-200649] [PMID: 32804094]
[68]
Wang C, Zhang M, Garcia G Jr, et al. ApoE-Isoform-dependent SARS-CoV-2 neurotropism and cellular response. Cell Stem Cell 2021; 28(2): 331-42.
[http://dx.doi.org/10.1016/j.stem.2020.12.018] [PMID: 33450186]
[69]
Xiong N, Schiller MR, Li J, Chen X, Lin Z. Severe COVID-19 in Alzheimer’s disease: APOE4’s fault again? Alzheimers Res Ther 2021; 13(1): 111.
[http://dx.doi.org/10.1186/s13195-021-00858-9] [PMID: 34118974]
[70]
Ghannam M, Alshaer Q, Al-Chalabi M, Zakarna L, Robertson J, Manousakis G. Neurological involvement of coronavirus disease 2019: A systematic review. J Neurol 2020; 267: 3135-53.
[http://dx.doi.org/10.1007/s00415-020-09990-2]
[71]
Jasti M, Nalleballe K, Dandu V, Onteddu S. A review of pathophysiology and Neuropsychiatric Manifestations of COVID-19. J Neurol 2020; (0123456789):
[http://dx.doi.org/10.1007/s00415-020-09950-w] [PMID: 32494854]
[72]
Meinhardt J, Radke J, Dittmayer C, et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci 2021; 24(2): 168-75.
[http://dx.doi.org/10.1038/s41593-020-00758-5] [PMID: 33257876]
[73]
Leonardi M, Padovani A, McArthur JC. Neurological manifestations associated with COVID-19: A review and a call for action. J Neurol 2020; 267(6): 1573-6.
[http://dx.doi.org/10.1007/s00415-020-09896-z] [PMID: 32436101]
[74]
Wang L, Shen Y, Li M, et al. Clinical manifestations and evidence of neurological involvement in 2019 novel coronavirus SARS-CoV-2: A systematic review and meta-analysis. J Neurol 2020; 267(10): 2777-89.
[http://dx.doi.org/10.1007/s00415-020-09974-2] [PMID: 32529575]
[75]
Panther EJ, Lucke-Wold B. Subarachnoid hemorrhage: Management considerations for COVID-19. Exploration of Neuroprotective Therapy 2022; 2(2): 65-73.
[http://dx.doi.org/10.37349/ent.2022.00018] [PMID: 35340712]
[76]
Qureshi AI, Baskett WI, Huang W, et al. Subarachnoid Hemorrhage and COVID-19: An Analysis of 282,718 Patients. World Neurosurg 2021; 151(May): e615-20.
[http://dx.doi.org/10.1016/j.wneu.2021.04.089] [PMID: 33940263]
[77]
Small C, Mehkri Y, Panther E, Felisma P, Lucke-Wold B. Coronavirus Disease-2019 and Stroke: Pathophysiology and Management. Can J Neurol Sci 2022; 1-8.
[http://dx.doi.org/10.1017/cjn.2022.267] [PMID: 35762309]
[78]
Ezzati A, Wang C, Katz MJ, et al. The temporal relationship between pain intensity and pain interference and incident dementia. Curr Alzheimer Res 2019; 16(2): 109-15.
[http://dx.doi.org/10.2174/1567205016666181212162424] [PMID: 30543173]
[79]
Ikram M, Innes K, Sambamoorthi U. Association of osteoarthritis and pain with Alzheimer’s Diseases and Related Dementias among older adults in the United States Osteoarthritis Cartilage 2019; 27(10): 1470-80.
[http://dx.doi.org/10.1016/j.joca.2019.05.021] [PMID: 31200005]
[80]
Colton CA. Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 2009; 4(4): 399-418.
[http://dx.doi.org/10.1007/s11481-009-9164-4] [PMID: 19655259]
[81]
Inoue K, Tsuda M. Microglia in neuropathic pain: Cellular and molecular mechanisms and therapeutic potential. Nat Rev Neurosci 2018; 19(3): 138-52.
[http://dx.doi.org/10.1038/nrn.2018.2] [PMID: 29416128]
[82]
Drożdżal S, Rosik J, Lechowicz K, et al. COVID-19: Pain management in patients with SARS-CoV-2 infection—molecular mechanisms, challenges, and perspectives. Brain Sci 2020; 10(7): 465.
[http://dx.doi.org/10.3390/brainsci10070465] [PMID: 32698378]
[83]
El-Tallawy SN, Nalamasu R, Pergolizzi JV, Gharibo C. Pain management during the COVID-19 pandemic. Pain Ther 2020; 9(2): 453-66.
[http://dx.doi.org/10.1007/s40122-020-00190-4] [PMID: 32840756]
[84]
Mahase E. Covid-19: Low dose steroid cuts death in ventilated patients by one third, trial finds. BMJ 2020; 369: m2422.
[http://dx.doi.org/10.1136/bmj.m2422] [PMID: 32546467]
[85]
Cai Q, Yang M, Liu D, et al. Experimental treatment with favipiravir for COVID-19: An open-label control study. Engineering 2020; 6(10): 1192-8.
[http://dx.doi.org/10.1016/j.eng.2020.03.007] [PMID: 32346491]
[86]
Sahebnasagh A, Avan R, Saghafi F, et al. Pharmacological treatments of COVID-19. Pharmacol Rep 2020; 72(6): 1446-78.
[http://dx.doi.org/10.1007/s43440-020-00152-9] [PMID: 32816200]
[87]
Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19). JAMA 2020; 323(18): 1824-36.
[http://dx.doi.org/10.1001/jama.2020.6019] [PMID: 32282022]
[88]
National Institute of Health. Therapeutic Management of Patients with COVID-19 Coronavirus 2019 Treat. Guidel 2021; p. 130.
[89]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy