Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Piezoelectric Biosensors and Nanomaterials-based Therapeutics for Coronavirus and Other Viruses: A Mini-review

Author(s): Madeshwaran Sekkarapatti Ramasamy, Rakesh Bhaskar* and Sung Soo Han*

Volume 23, Issue 2, 2023

Published on: 18 January, 2023

Page: [115 - 127] Pages: 13

DOI: 10.2174/1568026623666221226091907

Price: $65

conference banner
Abstract

Since late 2019, the novel coronavirus (COVID-19) pandemic has caused considerable mortality worldwide. This pandemic raised concerns and provoked research on the diagnosis and treatment of viruses-based diseases. The accurate diagnosis of a virus requires high specificity and sensitivity. Piezoelectric sensors are analytical devices that work on mass-sensitivity-based micromechanical transducers. The change in the mass by the interaction between biological elements and the frequency is recorded by measuring the alternate current and voltage. In addition to diagnosis, antiviral intervention strategies for mitigating various viral diseases are required. Nanomaterialsbased antiviral therapy is efficient, particularly with carbon/metal/metal oxide (organic/inorganic) nanoparticles. Metal/metal oxide nanoparticles, such as gold (Au), silver (Ag), copper (Cu), selenium (Se), zinc oxide (ZnO), magnesium oxide (MgO), carbon dots (CDs), and carbon quantum dots (CQDs), are promising candidates for antiviral therapy. This review discusses the piezoelectric sensors used to detect various viruses, including COVID-19, and the various organic and inorganic nanoparticles involved in the antiviral therapy.

Keywords: Piezoelectric materials, Nanomaterials, COVID-19, Antiviral, Coronavirus, Biosensor.

Graphical Abstract
[1]
Xiao, S.Y.; Wu, Y.; Liu, H. Evolving status of the 2019 novel coronavirus infection: Proposal of conventional serologic assays for disease diagnosis and infection monitoring. J. Med. Virol., 2020, 92(5), 464-467.
[http://dx.doi.org/10.1002/jmv.25702] [PMID: 32031264]
[2]
Kissler, S.M.; Tedijanto, C.; Goldstein, E.; Grad, Y.H.; Lipsitch, M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science, 2020, 368(6493), 860-868.
[http://dx.doi.org/10.1126/science.abb5793] [PMID: 32291278]
[3]
Narita, F.; Wang, Z.; Kurita, H.; Li, Z.; Shi, Y.; Jia, Y.; Soutis, C. A review of piezoelectric and magnetostrictive biosensor materials for detection of COVID‐19 and other viruses. Adv. Mater., 2021, 33(1), 2005448.
[http://dx.doi.org/10.1002/adma.202005448] [PMID: 33230875]
[4]
Watzinger, F.; Ebner, K.; Lion, T. Detection and monitoring of virus infections by real-time PCR. Mol. Aspects Med., 2006, 27(2-3), 254-298.
[http://dx.doi.org/10.1016/j.mam.2005.12.001] [PMID: 16481036]
[5]
Afzal, A.; Mujahid, A.; Schirhagl, R.; Bajwa, S.; Latif, U.; Feroz, S. Gravimetric viral diagnostics: QCM based biosensors for early detection of viruses. Chemosensors (Basel), 2017, 5(1), 7.
[http://dx.doi.org/10.3390/chemosensors5010007]
[6]
Chen, H.H.; Lin, C.J.; Anand, A.; Lin, H.J.; Lin, H.Y.; Mao, J.Y.; Wang, P.H.; Tseng, Y.J.; Tzou, W.S.; Huang, C.C.; Wang, R.Y.L. Development of antiviral carbon quantum dots that target the Japanese encephalitis virus envelope protein. J. Biol. Chem., 2022, 298(6), 101957.
[http://dx.doi.org/10.1016/j.jbc.2022.101957] [PMID: 35452675]
[7]
Serrano-Aroca, Á.; Takayama, K.; Tuñón-Molina, A.; Seyran, M.; Hassan, S.S.; Pal Choudhury, P.; Uversky, V.N.; Lundstrom, K.; Adadi, P.; Palù, G.; Aljabali, A.A.A.; Chauhan, G.; Kandimalla, R.; Tambuwala, M.M.; Lal, A.; Abd El-Aziz, T.M.; Sherchan, S.; Barh, D.; Redwan, E.M.; Bazan, N.G.; Mishra, Y.K.; Uhal, B.D.; Brufsky, A. Carbon-based nanomaterials: Promising antiviral agents to combat COVID-19 in the microbial-resistant era. ACS Nano, 2021, 15(5), 8069-8086.
[http://dx.doi.org/10.1021/acsnano.1c00629] [PMID: 33826850]
[8]
Liu, J.; Li, R.; Yang, B. Carbon dots: A new type of carbon-based nanomaterial with wide applications. ACS Cent. Sci., 2020, 6(12), 2179-2195.
[http://dx.doi.org/10.1021/acscentsci.0c01306] [PMID: 33376780]
[9]
Liu, Z.; Xiao, X.; Wei, X.; Li, J.; Yang, J.; Tan, H.; Zhu, J.; Zhang, Q.; Wu, J.; Liu, L. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS‐CoV‐2. J. Med. Virol., 2020, 92(6), 595-601.
[http://dx.doi.org/10.1002/jmv.25726] [PMID: 32100877]
[10]
de Haan, C.A.M.; Kuo, L.; Masters, P.S.; Vennema, H.; Rottier, P.J.M. Coronavirus particle assembly: Primary structure requirements of the membrane protein. J. Virol., 1998, 72(8), 6838-6850.
[http://dx.doi.org/10.1128/JVI.72.8.6838-6850.1998] [PMID: 9658133]
[11]
Li, F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol., 2016, 3(1), 237-261.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301] [PMID: 27578435]
[12]
Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol., 2021, 19(3), 141-154.
[http://dx.doi.org/10.1038/s41579-020-00459-7] [PMID: 33024307]
[13]
Yang, D.; Leibowitz, J.L. The structure and functions of coronavirus genomic 3′ and 5′ ends. Virus Res., 2015, 206, 120-133.
[http://dx.doi.org/10.1016/j.virusres.2015.02.025] [PMID: 25736566]
[14]
Hendaus, M.A. Remdesivir in the treatment of coronavirus disease 2019 (COVID-19): A simplified summary. J. Biomol. Struct. Dyn., 2021, 39(10), 3787-3792.
[http://dx.doi.org/10.1080/07391102.2020.1767691] [PMID: 32396771]
[15]
Pyrc, K.; Jebbink, M.F.; Berkhout, B.; van der Hoek, L. Genome structure and transcriptional regulation of human coronavirus NL63. Virol. J., 2004, 1(1), 7.
[http://dx.doi.org/10.1186/1743-422X-1-7] [PMID: 15548333]
[16]
Aabid, A.; Raheman, M.A.; Ibrahim, Y.E.; Anjum, A.; Hrairi, M.; Parveez, B.; Parveen, N.; Mohammed Zayan, J. A systematic review of piezoelectric materials and energy harvesters for industrial applications. Sensors (Basel), 2021, 21(12), 4145.
[http://dx.doi.org/10.3390/s21124145] [PMID: 34208745]
[17]
Meng, Y.; Chen, G.; Huang, M. Piezoelectric materials: Properties, advancements, and design strategies for high-temperature applications. Nanomaterials (Basel), 2022, 12(7), 1171.
[http://dx.doi.org/10.3390/nano12071171] [PMID: 35407289]
[18]
Mezheritsky, A.V. Elastic, dielectric, and piezoelectric losses in piezoceramics: How it works all together. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2004, 51(6), 695-707.
[PMID: 15244283]
[19]
Mu, G. SiN Drum Resonator Fabrication and Integrated Actuation Using Substrate Capacitors. PhD thesis, University of Ottawa: Ottawa, Canada, 2022.
[20]
Kapat, K.; Shubhra, Q.T.H.; Zhou, M.; Leeuwenburgh, S. Piezoelectric nano‐biomaterials for biomedicine and tissue regeneration. Adv. Funct. Mater., 2020, 30(44), 1909045.
[http://dx.doi.org/10.1002/adfm.201909045]
[21]
Lang, S.B.; Muensit, S. Review of some lesser-known applications of piezoelectric and pyroelectric polymers. Appl. Phys., A Mater. Sci. Process., 2006, 85(2), 125-134.
[http://dx.doi.org/10.1007/s00339-006-3688-8]
[22]
Shin, D.M.; Hong, S.W.; Hwang, Y.H. Recent advances in organic piezoelectric biomaterials for energy and biomedical applications. Nanomaterials (Basel), 2020, 10(1), 123.
[http://dx.doi.org/10.3390/nano10010123] [PMID: 31936527]
[23]
Cafarelli, A.; Marino, A.; Vannozzi, L.; Puigmartí-Luis, J.; Pané, S.; Ciofani, G.; Ricotti, L. Piezoelectric nanomaterials activated by ultrasound: The pathway from discovery to future clinical adoption. ACS Nano, 2021, 15(7), 11066-11086.
[http://dx.doi.org/10.1021/acsnano.1c03087] [PMID: 34251189]
[24]
Sharma, N.D.; Maranganti, R.; Sharma, P. On the possibility of piezoelectric nanocomposites without using piezoelectric materials. J. Mech. Phys. Solids, 2007, 55(11), 2328-2350.
[http://dx.doi.org/10.1016/j.jmps.2007.03.016]
[25]
Jaffe, H. Piezoelectric ceramics. J. Am. Ceram. Soc., 1958, 41(11), 494-498.
[http://dx.doi.org/10.1111/j.1151-2916.1958.tb12903.x]
[26]
Qian, W.; Yang, W.; Zhang, Y.; Bowen, C.R.; Yang, Y. Piezoelectric materials for controlling electro-chemical processes. Nano-Micro Lett., 2020, 12(1), 149.
[http://dx.doi.org/10.1007/s40820-020-00489-z] [PMID: 34138166]
[27]
Li, J.; Long, Y.; Yang, F.; Wang, X. Degradable piezoelectric biomaterials for wearable and implantable bioelectronics. Curr. Opin. Solid State Mater. Sci., 2020, 24(1), 100806.
[http://dx.doi.org/10.1016/j.cossms.2020.100806] [PMID: 32313430]
[28]
Fukada, E. The piezoelectric effect in fibrous proteins. Rept. Prog. Polym. Phys. Jpn, 1959, 2, 168-170.
[29]
Butt, Z.; Rahman, S.U.; Pasha, R.A.; Mehmood, S.; Abbas, S.; Elahi, H. Characterizing barium titanate piezoelectric material using the finite element method. Trans. Electr. Electron. Mater., 2017, 18(3), 163-168.
[30]
Chernozem, R.V.; Surmeneva, M.A.; Shkarina, S.N.; Loza, K.; Epple, M.; Ulbricht, M.; Cecilia, A.; Krause, B.; Baumbach, T.; Abalymov, A.A.; Parakhonskiy, B.V.; Skirtach, A.G.; Surmenev, R.A. Piezoelectric 3-D fibrous poly (3-hydroxybutyrate)-based scaffolds ultrasound-mineralized with calcium carbonate for bone tissue engineering: Inorganic phase formation, osteoblast cell adhesion, and proliferation. ACS Appl. Mater. Interfaces, 2019, 11(21), 19522-19533.
[http://dx.doi.org/10.1021/acsami.9b04936] [PMID: 31058486]
[31]
Ares, P.; Cea, T.; Holwill, M.; Wang, Y.B.; Roldán, R.; Guinea, F.; Andreeva, D.V.; Fumagalli, L.; Novoselov, K.S.; Woods, C.R. Piezoelectricity in monolayer hexagonal boron nitride. Adv. Mater., 2020, 32(1), 1905504.
[http://dx.doi.org/10.1002/adma.201905504] [PMID: 31736228]
[32]
Zhao, M.H.; Wang, Z.L.; Mao, S.X. Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Lett., 2004, 4(4), 587-590.
[http://dx.doi.org/10.1021/nl035198a]
[33]
Feng, Y.; Ling, L.; Wang, Y.; Xu, Z.; Cao, F.; Li, H.; Bian, Z. Engineering spherical lead zirconate titanate to explore the essence of piezo-catalysis. Nano Energy, 2017, 40, 481-486.
[http://dx.doi.org/10.1016/j.nanoen.2017.08.058]
[34]
Hiboux, S.; Muralt, P.; Maeder, T. Domain and lattice contributions to dielectric and piezoelectric properties of Pb(Zr x, Ti 1- x)O3 thin films as a function of composition. J. Mater. Res., 1999, 14(11), 4307-4318.
[http://dx.doi.org/10.1557/JMR.1999.0584]
[35]
Rajabi, A.H.; Jaffe, M.; Arinzeh, T.L. Piezoelectric materials for tissue regeneration: A review. Acta Biomater., 2015, 24, 12-23.
[http://dx.doi.org/10.1016/j.actbio.2015.07.010] [PMID: 26162587]
[36]
Mokhtari, F.; Azimi, B.; Salehi, M.; Hashemikia, S.; Danti, S. Recent advances of polymer-based piezoelectric composites for biomedical applications. J. Mech. Behav. Biomed. Mater., 2021, 122, 104669.
[http://dx.doi.org/10.1016/j.jmbbm.2021.104669] [PMID: 34280866]
[37]
Panda, S.; Hajra, S.; Mistewicz, K.; Inna, P.; Sahu, M.; Rajaitha, P.M.; Kim, H.J. Piezoelectric energy harvesting systems for biomedical applications. Nano Energy, 2022, 100, 107514.
[http://dx.doi.org/10.1016/j.nanoen.2022.107514]
[38]
Zaszczyńska, A.; Gradys, A.; Sajkiewicz, P. Progress in the applications of smart piezoelectric materials for medical devices. Polymers (Basel), 2020, 12(11), 2754.
[http://dx.doi.org/10.3390/polym12112754] [PMID: 33266424]
[39]
Zhao, Z.; Dai, Y.; Dou, S.X.; Liang, J. Flexible nanogenerators for wearable electronic applications based on piezoelectric materials. Mater. Today Energy, 2021, 20, 100690.
[http://dx.doi.org/10.1016/j.mtener.2021.100690]
[40]
Khalifa, M.; Mahendran, A.; Anandhan, S. Durable, efficient, and flexible piezoelectric nanogenerator from electrospun PANi/HNT/PVDF blend nanocomposite. Polym. Compos., 2019, 40(4), 1663-1675.
[http://dx.doi.org/10.1002/pc.24916]
[41]
Riquelme, S.A.; Ramam, K. Dielectric and piezoelectric properties of lead free BZT-BCT/PVDF flexible composites for electronic applications. Mater. Res. Express, 2019, 6(11), 116331.
[http://dx.doi.org/10.1088/2053-1591/ab522c]
[42]
Holford, T.R.J.; Davis, F.; Higson, S.P.J. Recent trends in antibody based sensors. Biosens. Bioelectron., 2012, 34(1), 12-24.
[http://dx.doi.org/10.1016/j.bios.2011.10.023] [PMID: 22387037]
[43]
Zuo, B.; Li, S.; Guo, Z.; Zhang, J.; Chen, C. Piezoelectric immunosensor for SARS-associated coronavirus in sputum. Anal. Chem., 2004, 76(13), 3536-3540.
[http://dx.doi.org/10.1021/ac035367b] [PMID: 15228322]
[44]
Skládal, P. Piezoelectric biosensors. Trends Analyt. Chem., 2016, 79, 127-133.
[http://dx.doi.org/10.1016/j.trac.2015.12.009]
[45]
Pohanka, M. The piezoelectric biosensors: Principles and applications. Int. J. Electrochem. Sci., 2017, 12, 496-506.
[http://dx.doi.org/10.20964/2017.01.44]
[46]
Lec, R.M. Proceedings of the 2001 IEEE International Frequncy Control Symposium and PDA Exhibition (Cat. No. 01CH37218), 2001, pp. 419-429.
[47]
Parihar, A.; Ranjan, P.; Sanghi, S.K.; Srivastava, A.K.; Khan, R. Point-of-care biosensor-based diagnosis of COVID-19 holds promise to combat current and future pandemics. ACS Appl. Bio Mater., 2020, 3(11), 7326-7343.
[http://dx.doi.org/10.1021/acsabm.0c01083] [PMID: 35019474]
[48]
Chorsi, M.T.; Curry, E.J.; Chorsi, H.T.; Das, R.; Baroody, J.; Purohit, P.K.; Ilies, H.; Nguyen, T.D. Piezoelectric biomaterials for sensors and actuators. Adv. Mater., 2019, 31(1), 1802084.
[http://dx.doi.org/10.1002/adma.201802084] [PMID: 30294947]
[49]
Pohanka, M. Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials (Basel), 2018, 11(3), 448.
[http://dx.doi.org/10.3390/ma11030448] [PMID: 29562700]
[50]
Encarnação, J.M.; Baltazar, R.; Stallinga, P.; Ferreira, G.N.M. Piezoelectric biosensors assisted with electroacoustic impedance spectroscopy: A tool for accurate quantitative molecular recognition analysis. J. Mol. Recognit., 2009, 22(2), 129-137.
[http://dx.doi.org/10.1002/jmr.907] [PMID: 18680206]
[51]
Ortiz Monsalve, C.; Guerra González, J.M.; Jaramillo Grajales, M. Immobilization of DNA probes on a high frequency piezoelectric biosensor. Dyna (Medellin), 2020, 87(212), 163-168.
[http://dx.doi.org/10.15446/dyna.v87n212.82309]
[52]
Bizet, K.; Gabrielli, C.; Perrot, H. Biosensors based on piezolectric transducers. Analusis, 1999, 27(7), 609-616.
[http://dx.doi.org/10.1051/analusis:1999270609]
[53]
Skládal, P.; Riccardi, C.S.; Yamanaka, H.; da Costa, P.I. Piezoelectric biosensors for real-time monitoring of hybridization and detection of hepatitis C virus. J. Virol. Methods, 2004, 117(2), 145-151.
[http://dx.doi.org/10.1016/j.jviromet.2004.01.005] [PMID: 15041211]
[54]
Dell’Atti, D.; Zavaglia, M.; Tombelli, S.; Bertacca, G.; Cavazzana, A.O.; Bevilacqua, G.; Minunni, M.; Mascini, M. Development of combined DNA-based piezoelectric biosensors for the simultaneous detection and genotyping of high risk Human Papilloma Virus strains. Clin. Chim. Acta, 2007, 383(1-2), 140-146.
[http://dx.doi.org/10.1016/j.cca.2007.05.009] [PMID: 17573061]
[55]
Zhou, X.; Liu, L.; Hu, M.; Wang, L.; Hu, J. Detection of hepatitis B virus by piezoelectric biosensor. J. Pharm. Biomed. Anal., 2002, 27(1-2), 341-345.
[http://dx.doi.org/10.1016/S0731-7085(01)00538-6] [PMID: 11682242]
[56]
Giamblanco, N.; Conoci, S.; Russo, D.; Marletta, G. Single-step label-free hepatitis B virus detection by a piezoelectric biosensor. RSC Advances, 2015, 5(48), 38152-38158.
[http://dx.doi.org/10.1039/C5RA03467A]
[57]
Erofeev, A.S.; Gorelkin, P.V.; Kolesov, D.V.; Kiselev, G.A.; Dubrovin, E.V.; Yaminsky, I.V. Label-free sensitive detection of influenza virus using PZT discs with a synthetic sialylglycopolymer receptor layer. R. Soc. Open Sci., 2019, 6(9), 190255.
[http://dx.doi.org/10.1098/rsos.190255] [PMID: 31598281]
[58]
Aberl, F.; Wolf, H.; Kößlinger, C.; Drost, S.; Woias, P.; Koch, S. HIV serology using piezoelectric immunosensors. Sens. Actuat. B Chem., 1994, 18(1-3), 271-275.
[http://dx.doi.org/10.1016/0925-4005(94)87093-4]
[59]
Xu, T.; Miao, J.; Wang, Z.; Yu, L.; Li, C.M. Micro-piezoelectric immunoassay chip for simultaneous detection of Hepatitis B virus and α-fetoprotein. Sens. Actuators B Chem., 2011, 151(2), 370-376.
[http://dx.doi.org/10.1016/j.snb.2010.08.013]
[60]
Pirich, C.L.; de Freitas, R.A.; Torresi, R.M.; Picheth, G.F.; Sierakowski, M.R. Piezoelectric immunochip coated with thin films of bacterial cellulose nanocrystals for dengue detection. Biosens. Bioelectron., 2017, 92, 47-53.
[http://dx.doi.org/10.1016/j.bios.2017.01.068] [PMID: 28187298]
[61]
Kabir, H.; Merati, M.; Abdekhodaie, M.J. Design of an effective piezoelectric microcantilever biosensor for rapid detection of COVID-19. J. Med. Eng. Technol., 2021, 45(6), 423-433.
[http://dx.doi.org/10.1080/03091902.2021.1921067] [PMID: 33998955]
[62]
Mandal, D.; Indaleeb, M.M.; Younan, A.; Banerjee, S. Piezoelectric point-of-care biosensor for the detection of SARS-COV-2 (COVID-19) antibodies. Sens. Biosens. Res., 2022, 37, 100510.
[http://dx.doi.org/10.1016/j.sbsr.2022.100510] [PMID: 35855937]
[63]
Baca, J.; Severns, V.; Lovato, D.; Branch, D.; Larson, R. Rapid detection of Ebola virus with a reagent-free, point-of-care biosensor. Sensors (Basel), 2015, 15(4), 8605-8614.
[http://dx.doi.org/10.3390/s150408605] [PMID: 25875186]
[64]
Capobianco, J.A.; Shih, W.H.; Leu, J.H.; Lo, G.C.F.; Shih, W.Y. Label free detection of white spot syndrome virus using lead magnesium niobate–lead titanate piezoelectric microcantilever sensors. Biosens. Bioelectron., 2010, 26(3), 964-969.
[http://dx.doi.org/10.1016/j.bios.2010.08.004] [PMID: 20863681]
[65]
Su, X.; Li, S.F.Y.; Liu, W.; Kwang, J. Piezoelectric quartz crystal based screening test for porcine reproductive and respiratory syndrome virus infection in pigs. Analyst (Lond.), 2000, 125(4), 725-730.
[http://dx.doi.org/10.1039/a909415f]
[66]
Wang, Y.; Shi, Y.; Narita, F. Design and finite element simulation of metal-core piezoelectric fiber/epoxy matrix composites for virus detection. Sens. Actuat. A Phys., 2021, 327, 112742.
[http://dx.doi.org/10.1016/j.sna.2021.112742] [PMID: 33840899]
[67]
Lu, C.H.; Zhang, Y.; Tang, S.F.; Fang, Z.B.; Yang, H.H.; Chen, X.; Chen, G.N. Sensing HIV related protein using epitope imprinted hydrophilic polymer coated quartz crystal microbalance. Biosens. Bioelectron., 2012, 31(1), 439-444.
[http://dx.doi.org/10.1016/j.bios.2011.11.008] [PMID: 22143073]
[68]
Yadav, R.; Chaudhary, J.K.; Jain, N.; Chaudhary, P.K.; Khanra, S.; Dhamija, P.; Sharma, A.; Kumar, A.; Handu, S. Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19. Cells, 2021, 10(4), 821.
[http://dx.doi.org/10.3390/cells10040821] [PMID: 33917481]
[69]
Hou, Y.H.; Wang, J.J.; Jiang, Y.Z.; Lv, C.; Xia, L.; Hong, S.L.; Lin, M.; Lin, Y.; Zhang, Z.L.; Pang, D.W. A colorimetric and electrochemical immunosensor for point-of-care detection of enterovirus 71. Biosens. Bioelectron., 2018, 99, 186-192.
[http://dx.doi.org/10.1016/j.bios.2017.07.035] [PMID: 28756324]
[70]
Tang, L.; Li, J. Plasmon-based colorimetric nanosensors for ultrasensitive molecular diagnostics. ACS Sens., 2017, 2(7), 857-875.
[http://dx.doi.org/10.1021/acssensors.7b00282] [PMID: 28750528]
[71]
Yang, X.; Xie, J.; Hu, S.; Zhan, W.; Duan, L.; Chen, K.; Zhang, C.; Yin, A.; Luo, M. Rapid and visual detection of enterovirus using recombinase polymerase amplification combined with lateral flow strips. Sens. Actuators B Chem., 2020, 311, 127903.
[http://dx.doi.org/10.1016/j.snb.2020.127903]
[72]
Xu, Q.; Gao, X.; Zhao, S.; Liu, Y.N.; Zhang, D.; Zhou, K.; Khanbareh, H.; Chen, W.; Zhang, Y.; Bowen, C. Construction of biopiezoelectric platforms: From structures and synthesis to applications. Adv. Mater., 2021, 33(27), 2008452.
[http://dx.doi.org/10.1002/adma.202008452] [PMID: 34033180]
[73]
Jat, S.K.; Gandhi, H.A.; Bhattacharya, J.; Sharma, M.K. Magnetic nanoparticles: An emerging nano-based tool to fight against viral infections. Mater. Adv., 2021, 2(14), 4479-4496.
[http://dx.doi.org/10.1039/D1MA00240F]
[74]
Wu, K.; Saha, R.; Su, D.; Krishna, V.D.; Liu, J.; Cheeran, M.C.J.; Wang, J.P. Magnetic-nanosensor-based virus and pathogen detection strategies before and during COVID-19. ACS Appl. Nano Mater., 2020, 3(10), 9560-9580.
[http://dx.doi.org/10.1021/acsanm.0c02048]
[75]
Nair, M.P.; Teo, A.J.T.; Li, K.H.H. Acoustic biosensors and microfluidic devices in the decennium: Principles and applications. Micromachines (Basel), 2021, 13(1), 24.
[http://dx.doi.org/10.3390/mi13010024] [PMID: 35056189]
[76]
Yüce, M.; Filiztekin, E.; Özkaya, K.G. COVID-19 diagnosis -A review of current methods. Biosens. Bioelectron., 2021, 172, 112752.
[http://dx.doi.org/10.1016/j.bios.2020.112752] [PMID: 33126180]
[77]
Dhar, B.C. Diagnostic assay and technology advancement for detecting SARS-CoV-2 infections causing the COVID-19 pandemic. Anal. Bioanal. Chem., 2022, 414(9), 2903-2934.
[http://dx.doi.org/10.1007/s00216-022-03918-7] [PMID: 35211785]
[78]
Nag, P.; Sadani, K.; Mukherji, S. Optical fiber sensors for rapid screening of COVID-19. Trans. Indian Nat. Acad. Eng., 2020, 5(2), 233-236.
[http://dx.doi.org/10.1007/s41403-020-00128-4]
[79]
Antiochia, R. Developments in biosensors for CoV detection and future trends. Biosens. Bioelectron., 2021, 173, 112777.
[http://dx.doi.org/10.1016/j.bios.2020.112777] [PMID: 33189015]
[80]
Cui, F.; Zhou, H.S. Diagnostic methods and potential portable biosensors for coronavirus disease 2019. Biosens. Bioelectron., 2020, 165, 112349.
[http://dx.doi.org/10.1016/j.bios.2020.112349] [PMID: 32510340]
[81]
Park, T.J.; Hyun, M.S.; Lee, H.J.; Lee, S.Y.; Ko, S. A self-assembled fusion protein-based surface plasmon resonance biosensor for rapid diagnosis of severe acute respiratory syndrome. Talanta, 2009, 79(2), 295-301.
[http://dx.doi.org/10.1016/j.talanta.2009.03.051] [PMID: 19559881]
[82]
Lino, A.; Cardoso, M.A.; Gonçalves, H.M.R.; Martins-Lopes, P. SARS-CoV-2 detection methods. Chemosensors (Basel), 2022, 10(6), 221.
[http://dx.doi.org/10.3390/chemosensors10060221]
[83]
Seo, G.; Lee, G.; Kim, M.J.; Baek, S.H.; Choi, M.; Ku, K.B.; Lee, C.S.; Jun, S.; Park, D.; Kim, H.G.; Kim, S.J.; Lee, J.O.; Kim, B.T.; Park, E.C.; Kim, S.I. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano, 2020, 14(4), 5135-5142.
[http://dx.doi.org/10.1021/acsnano.0c02823] [PMID: 32293168]
[84]
Wei, J.; Zhao, Z.; Luo, F.; Lan, K.; Chen, R.; Qin, G. Sensitive and quantitative detection of SARS-CoV-2 antibodies from vaccinated serum by MoS2-field effect transistor. 2D Materials, 2021, 9(1), 015030.
[85]
Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol., 2018, 9(1), 1050-1074.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[86]
Djurišić, A.B.; Leung, Y.H.; Ng, A.M.C.; Xu, X.Y.; Lee, P.K.H.; Degger, N.; Wu, R.S.S. Toxicity of metal oxide nanoparticles: Mechanisms, characterization, and avoiding experimental artefacts. Small, 2015, 11(1), 26-44.
[http://dx.doi.org/10.1002/smll.201303947] [PMID: 25303765]
[87]
Antonelli, G.; Turriziani, O. Antiviral therapy: Old and current issues. Int. J. Antimicrob. Agents, 2012, 40(2), 95-102.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.04.005] [PMID: 22727532]
[88]
Şı̇mşek Yavuz, S.; Ünal, S. Antiviral treatment of COVID-19. Turk. J. Med. Sci., 2020, 50(SI-1), 611-619.
[http://dx.doi.org/10.3906/sag-2004-145] [PMID: 32293834]
[89]
Zhang, Y.; Shi, F.; Zhang, C.; Sheng, X.; Zhong, Y.; Chong, H.; Yang, Z.; Wang, C. Detection of avian influenza virus H9N2 based on self-driving and self-sensing microcantilever piezoelectric sensor. Chin. Chem. Lett., 2022.
[http://dx.doi.org/10.1016/j.cclet.2022.07.043]
[90]
Imani, S.M.; Ladouceur, L.; Marshall, T.; Maclachlan, R.; Soleymani, L.; Didar, T.F. Antimicrobial nanomaterials and coatings: Current mechanisms and future perspectives to control the spread of viruses including SARS-CoV-2. ACS Nano, 2020, 14(10), 12341-12369.
[http://dx.doi.org/10.1021/acsnano.0c05937] [PMID: 33034443]
[91]
Li, Y.; Sun, L.; Webster, T.J. The investigation of ZnO/poly (vinylidene fluoride) nanocomposites with improved mechanical, piezoelectric, and antimicrobial properties for orthopedic applications. J. Biomed. Nanotechnol., 2018, 14(3), 536-545.
[http://dx.doi.org/10.1166/jbn.2018.2519] [PMID: 29663925]
[92]
Mishra, Y.K.; Adelung, R.; Röhl, C.; Shukla, D.; Spors, F.; Tiwari, V. Virostatic potential of micro–nano filopodia-like ZnO structures against herpes simplex virus-1. Antiviral Res., 2011, 92(2), 305-312.
[http://dx.doi.org/10.1016/j.antiviral.2011.08.017] [PMID: 21893101]
[93]
Ghaffari, H.; Tavakoli, A.; Moradi, A.; Tabarraei, A.; Bokharaei-Salim, F.; Zahmatkeshan, M.; Farahmand, M.; Javanmard, D.; Kiani, S.J.; Esghaei, M.; Pirhajati-Mahabadi, V.; Monavari, S.H.; Ataei-Pirkooh, A. Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: Another emerging application of nanomedicine. J. Biomed. Sci., 2019, 26(1), 70.
[http://dx.doi.org/10.1186/s12929-019-0563-4] [PMID: 31500628]
[94]
Emam, H.E.; Ahmed, H.B. Antitumor/antiviral carbon quantum dots based on carrageenan and pullulan. Int. J. Biol. Macromol., 2021, 170, 688-700.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.151] [PMID: 33385452]
[95]
Łoczechin, A.; Séron, K.; Barras, A.; Giovanelli, E.; Belouzard, S.; Chen, Y.T.; Metzler-Nolte, N.; Boukherroub, R.; Dubuisson, J.; Szunerits, S. Functional carbon quantum dots as medical countermeasures to human coronavirus. ACS Appl. Mater. Interfaces, 2019, 11(46), 42964-42974.
[http://dx.doi.org/10.1021/acsami.9b15032] [PMID: 31633330]
[96]
Manivannan, S.; Ponnuchamy, K. Quantum dots as a promising agent to combat COVID‐19. Appl. Organomet. Chem., 2020, 34(10), e5887.
[http://dx.doi.org/10.1002/aoc.5887] [PMID: 32836625]
[97]
Channappanavar, R.; Fehr, A.R.; Zheng, J.; Wohlford-Lenane, C.; Abrahante, J.E.; Mack, M.; Sompallae, R.; McCray, P.B., Jr; Meyerholz, D.K.; Perlman, S. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J. Clin. Invest., 2019, 129(9), 3625-3639.
[http://dx.doi.org/10.1172/JCI126363] [PMID: 31355779]
[98]
Yang, E.; Li, M.M.H. All about the RNA: Interferon-stimulated genes that interfere with viral RNA processes. Front. Immunol., 2020, 11, 605024.
[http://dx.doi.org/10.3389/fimmu.2020.605024] [PMID: 33362792]
[99]
Dong, X.; Moyer, M.M.; Yang, F.; Sun, Y.P.; Yang, L. Carbon dots’ antiviral functions against noroviruses. Sci. Rep., 2017, 7(1), 519.
[http://dx.doi.org/10.1038/s41598-017-00675-x] [PMID: 28364126]
[100]
Barras, A.; Pagneux, Q.; Sane, F.; Wang, Q.; Boukherroub, R.; Hober, D.; Szunerits, S. High efficiency of functional carbon nanodots as entry inhibitors of herpes simplex virus type 1. ACS Appl. Mater. Interfaces, 2016, 8(14), 9004-9013.
[http://dx.doi.org/10.1021/acsami.6b01681] [PMID: 27015417]
[101]
Kalkal, A.; Allawadhi, P.; Pradhan, R.; Khurana, A.; Bharani, K.K.; Packirisamy, G. Allium sativum derived carbon dots as a potential theranostic agent to combat the COVID-19 crisis. Sens. Int., 2021, 2, 100102.
[http://dx.doi.org/10.1016/j.sintl.2021.100102] [PMID: 34766058]
[102]
Ting, D.; Dong, N.; Fang, L.; Lu, J.; Bi, J.; Xiao, S.; Han, H. Multisite inhibitors for enteric coronavirus: Antiviral cationic carbon dots based on curcumin. ACS Appl. Nano Mater., 2018, 1(10), 5451-5459.
[http://dx.doi.org/10.1021/acsanm.8b00779] [PMID: 35286056]
[103]
Hu, Z.; Song, B.; Xu, L.; Zhong, Y.; Peng, F.; Ji, X.; Zhu, F.; Yang, C.; Zhou, J.; Su, Y.; Chen, S.; He, Y.; He, S. Aqueous synthesized quantum dots interfere with the NF-κB pathway and confer anti-tumor, anti-viral and anti-inflammatory effects. Biomaterials, 2016, 108, 187-196.
[http://dx.doi.org/10.1016/j.biomaterials.2016.08.047] [PMID: 27639114]
[104]
Innocenzi, P.; Stagi, L. Carbon-based antiviral nanomaterials: Graphene, C-dots, and fullerenes. A perspective. Chem. Sci. (Camb.), 2020, 11(26), 6606-6622.
[http://dx.doi.org/10.1039/D0SC02658A] [PMID: 33033592]
[105]
Gurunathan, S.; Qasim, M.; Choi, Y.; Do, J.T.; Park, C.; Hong, K.; Kim, J.H.; Song, H. Antiviral potential of nanoparticles-can nanoparticles fight against coronaviruses? Nanomaterials (Basel), 2020, 10(9), 1645.
[http://dx.doi.org/10.3390/nano10091645] [PMID: 32825737]
[106]
Sharmin, S.; Rahaman, M.M.; Sarkar, C.; Atolani, O.; Islam, M.T.; Adeyemi, O.S. Nanoparticles as antimicrobial and antiviral agents: A literature-based perspective study. Heliyon, 2021, 7(3), e06456.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06456] [PMID: 33763612]
[107]
Farouq, M.A.H.; Al Qaraghuli, M.M.; Kubiak-Ossowska, K.; Ferro, V.A.; Mulheran, P.A. Biomolecular interactions with nanoparticles: Applications for coronavirus disease 2019. Curr. Opin. Colloid Interface Sci., 2021, 54, 101461.
[http://dx.doi.org/10.1016/j.cocis.2021.101461] [PMID: 33907504]
[108]
Hashemi, B.; Akram, F.A.; Amirazad, H.; Dadashpour, M.; Sheervalilou, M.; Nasrabadi, D.; Ahmadi, M.; Sheervalilou, R.; Ameri Shah Reza, M.; Ghazi, F.; Roshangar, L. Emerging importance of nanotechnology-based approaches to control the COVID-19 pandemic; focus on nanomedicine iterance in diagnosis and treatment of COVID-19 patients. J. Drug Deliv. Sci. Technol., 2022, 67, 102967.
[http://dx.doi.org/10.1016/j.jddst.2021.102967] [PMID: 34777586]
[109]
Kusumoputro, S.; Tseng, S.; Tse, J.; Au, C.; Lau, C.; Wang, X.; Xia, T. Potential nanoparticle applications for prevention, diagnosis, and treatment of COVID‐19. VIEW, 2020, 1(4), 20200105.
[http://dx.doi.org/10.1002/VIW.20200105]
[110]
Pati, R.; Shevtsov, M.; Sonawane, A. Nanoparticle vaccines against infectious diseases. Front. Immunol., 2018, 9, 2224.
[http://dx.doi.org/10.3389/fimmu.2018.02224] [PMID: 30337923]
[111]
Zhou, J.; Krishnan, N.; Jiang, Y.; Fang, R.H.; Zhang, L. Nanotechnology for virus treatment. Nano Today, 2021, 36, 101031.
[http://dx.doi.org/10.1016/j.nantod.2020.101031] [PMID: 33519948]
[112]
Cagno, V.; Andreozzi, P.; D’Alicarnasso, M.; Jacob Silva, P.; Mueller, M.; Galloux, M.; Le Goffic, R.; Jones, S.T.; Vallino, M.; Hodek, J.; Weber, J.; Sen, S.; Janeček, E.R.; Bekdemir, A.; Sanavio, B.; Martinelli, C.; Donalisio, M.; Rameix Welti, M.A.; Eleouet, J.F.; Han, Y.; Kaiser, L.; Vukovic, L.; Tapparel, C.; Král, P.; Krol, S.; Lembo, D.; Stellacci, F. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nat. Mater., 2018, 17(2), 195-203.
[http://dx.doi.org/10.1038/nmat5053] [PMID: 29251725]
[113]
Cagno, V.; Tseligka, E.D.; Jones, S.T.; Tapparel, C. Heparan sulfate proteoglycans and viral attachment: True receptors or adaptation bias? Viruses, 2019, 11(7), 596.
[http://dx.doi.org/10.3390/v11070596] [PMID: 31266258]
[114]
Cagno, V.; Gasbarri, M.; Medaglia, C.; Gomes, D.; Clement, S.; Stellacci, F.; Tapparel, C. Sulfonated nanomaterials with broad-spectrum antiviral activity extending beyond heparan sulfate-dependent viruses. Antimicrob. Agents Chemother., 2020, 64(12), e02001-20.
[http://dx.doi.org/10.1128/AAC.02001-20] [PMID: 32988820]
[115]
Chen, L.; Liang, J. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Mater. Sci. Eng. C, 2020, 112, 110924.
[http://dx.doi.org/10.1016/j.msec.2020.110924] [PMID: 32409074]
[116]
Chaturvedi, U.C.; Shrivastava, R. Interaction of viral proteins with metal ions: Role in maintaining the structure and functions of viruses. FEMS Immunol. Med. Microbiol., 2005, 43(2), 105-114.
[http://dx.doi.org/10.1016/j.femsim.2004.11.004] [PMID: 15681139]
[117]
Gupta, S.S.; Kuzelka, J.; Singh, P.; Lewis, W.G.; Manchester, M.; Finn, M.G. Accelerated bioorthogonal conjugation: A practical method for the ligation of diverse functional molecules to a polyvalent virus scaffold. Bioconjug. Chem., 2005, 16(6), 1572-1579.
[http://dx.doi.org/10.1021/bc050147l] [PMID: 16287257]
[118]
Venter, P.A.; Dirksen, A.; Thomas, D.; Manchester, M.; Dawson, P.E.; Schneemann, A. Multivalent display of proteins on viral nanoparticles using molecular recognition and chemical ligation strategies. Biomacromolecules, 2011, 12(6), 2293-2301.
[http://dx.doi.org/10.1021/bm200369e] [PMID: 21545187]
[119]
Arnáiz, B.; Martínez-Ávila, O.; Falcon-Perez, J.M.; Penadés, S. Cellular uptake of gold nanoparticles bearing HIV gp120 oligomannosides. Bioconjug. Chem., 2012, 23(4), 814-825.
[http://dx.doi.org/10.1021/bc200663r] [PMID: 22433013]
[120]
Cheng, K.; El-Boubbou, K.; Landry, C.C. Binding of HIV-1 gp120 glycoprotein to silica nanoparticles modified with CD4 glycoprotein and CD4 peptide fragments. ACS Appl. Mater. Interfaces, 2012, 4(1), 235-243.
[http://dx.doi.org/10.1021/am2013008] [PMID: 22117536]
[121]
Zhou, J.; Shu, Y.; Guo, P.; Smith, D.D.; Rossi, J.J. Dual functional RNA nanoparticles containing phi29 motor pRNA and anti-gp120 aptamer for cell-type specific delivery and HIV-1 inhibition. Methods, 2011, 54(2), 284-294.
[PMID: 21256218]
[122]
Scordi-Bello, I.A.; Mosoian, A.; He, C.; Chen, Y.; Cheng, Y.; Jarvis, G.A.; Keller, M.J.; Hogarty, K.; Waller, D.P.; Profy, A.T.; Herold, B.C.; Klotman, M.E. Candidate sulfonated and sulfated topical microbicides: Comparison of anti-human immunodeficiency virus activities and mechanisms of action. Antimicrob. Agents Chemother., 2005, 49(9), 3607-3615.
[http://dx.doi.org/10.1128/AAC.49.9.3607-3615.2005] [PMID: 16127029]
[123]
Klimyte, E.M.; Smith, S.E.; Oreste, P.; Lembo, D.; Dutch, R.E. Inhibition of human metapneumovirus binding to heparan sulfate blocks infection in human lung cells and airway tissues. J. Virol., 2016, 90(20), 9237-9250.
[http://dx.doi.org/10.1128/JVI.01362-16] [PMID: 27489270]
[124]
Riblett, A.M.; Blomen, V.A.; Jae, L.T.; Altamura, L.A.; Doms, R.W.; Brummelkamp, T.R.; Wojcechowskyj, J.A. A haploid genetic screen identifies heparan sulfate proteoglycans supporting Rift Valley fever virus infection. J. Virol., 2016, 90(3), 1414-1423.
[http://dx.doi.org/10.1128/JVI.02055-15] [PMID: 26581979]
[125]
Rusnati, M.; Vicenzi, E.; Donalisio, M.; Oreste, P.; Landolfo, S.; Lembo, D. Sulfated K5 Escherichia coli polysaccharide derivatives: A novel class of candidate antiviral microbicides. Pharmacol. Ther., 2009, 123(3), 310-322.
[http://dx.doi.org/10.1016/j.pharmthera.2009.05.001] [PMID: 19447134]
[126]
Pramanik, A.; Gao, Y.; Patibandla, S.; Mitra, D.; McCandless, M.G.; Fassero, L.A.; Gates, K.; Tandon, R.; Chandra Ray, P. The rapid diagnosis and effective inhibition of coronavirus using spike antibody attached gold nanoparticles. Nanoscale Adv., 2021, 3(6), 1588-1596.
[http://dx.doi.org/10.1039/D0NA01007C] [PMID: 34381960]
[127]
Rao, L.; Xia, S.; Xu, W.; Tian, R.; Yu, G.; Gu, C.; Pan, P.; Meng, Q.F.; Cai, X.; Qu, D.; Lu, L.; Xie, Y.; Jiang, S.; Chen, X. Decoy nanoparticles protect against COVID-19 by concurrently adsorbing viruses and inflammatory cytokines. Proc. Natl. Acad. Sci. USA, 2020, 117(44), 27141-27147.
[http://dx.doi.org/10.1073/pnas.2014352117] [PMID: 33024017]
[128]
Glasgow, A.; Glasgow, J.; Limonta, D.; Solomon, P.; Lui, I.; Zhang, Y.; Nix, M.A.; Rettko, N.J.; Zha, S.; Yamin, R.; Kao, K.; Rosenberg, O.S.; Ravetch, J.V.; Wiita, A.P.; Leung, K.K.; Lim, S.A.; Zhou, X.X.; Hobman, T.C.; Kortemme, T.; Wells, J.A. Engineered ACE2 receptor traps potently neutralize SARS-CoV-2. Proc. Natl. Acad. Sci. USA, 2020, 117(45), 28046-28055.
[http://dx.doi.org/10.1073/pnas.2016093117] [PMID: 33093202]
[129]
Devaux, C.A.; Rolain, J.M.; Raoult, D. ACE2 receptor polymorphism: Susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. J. Microbiol. Immunol. Infect., 2020, 53(3), 425-435.
[http://dx.doi.org/10.1016/j.jmii.2020.04.015] [PMID: 32414646]
[130]
Khorsandi, K.; Fekrazad, S.; Vahdatinia, F.; Farmany, A.; Fekrazad, R. Nano antiviral photodynamic therapy: A probable biophysicochemical management modality in SARS-CoV-2. Expert Opin. Drug Deliv., 2021, 18(2), 265-272.
[http://dx.doi.org/10.1080/17425247.2021.1829591] [PMID: 33019838]
[131]
Basak, S.; Packirisamy, G. Nano-based antiviral coatings to combat viral infections. Nano-Struct. Nano-Objects, 2020, 24, 100620.
[http://dx.doi.org/10.1016/j.nanoso.2020.100620]
[132]
Bhavana, V.; Thakor, P.; Singh, S.B.; Mehra, N.K. COVID-19: Pathophysiology, treatment options, nanotechnology approaches, and research agenda to combating the SARS-CoV2 pandemic. Life Sci., 2020, 261, 118336.
[http://dx.doi.org/10.1016/j.lfs.2020.118336] [PMID: 32846164]
[133]
Tenzer, S.; Docter, D.; Kuharev, J.; Musyanovych, A.; Fetz, V.; Hecht, R.; Schlenk, F.; Fischer, D.; Kiouptsi, K.; Reinhardt, C. Nano-Enabled Medical Applications; Jenny Stanford Publishing: Routledge Taylor and Francis group, 2020, pp. 251-278.
[134]
Bachmann, M.F.; Jennings, G.T. Vaccine delivery: A matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol., 2010, 10(11), 787-796.
[http://dx.doi.org/10.1038/nri2868] [PMID: 20948547]
[135]
Grgacic, E.V.L.; Anderson, D.A. Virus-like particles: Passport to immune recognition. Methods, 2006, 40(1), 60-65.
[http://dx.doi.org/10.1016/j.ymeth.2006.07.018] [PMID: 16997714]
[136]
Zeltins, A. Construction and characterization of virus-like particles: A review. Mol. Biotechnol., 2013, 53(1), 92-107.
[http://dx.doi.org/10.1007/s12033-012-9598-4] [PMID: 23001867]
[137]
Strable, E.; Finn, M. Chemical modification of viruses and virus-like particles. In: Viruses and Nanotechnology; Elsevier, 2009; pp. 1-21.
[http://dx.doi.org/10.1007/978-3-540-69379-6_1]
[138]
Tissot, A.C.; Renhofa, R.; Schmitz, N.; Cielens, I.; Meijerink, E.; Ose, V.; Jennings, G.T.; Saudan, P.; Pumpens, P.; Bachmann, M.F. Versatile virus-like particle carrier for epitope based vaccines. PLoS One, 2010, 5(3), e9809.
[http://dx.doi.org/10.1371/journal.pone.0009809] [PMID: 20352110]
[139]
Gao, Y.; Wijewardhana, C.; Mann, J.F.S. Virus-like particle, liposome, and polymeric particle-based vaccines against HIV-1. Front. Immunol., 2018, 9, 345.
[http://dx.doi.org/10.3389/fimmu.2018.00345] [PMID: 29541072]
[140]
Chen, H.W.; Huang, C.Y.; Lin, S.Y.; Fang, Z.S.; Hsu, C.H.; Lin, J.C.; Chen, Y.I.; Yao, B.Y.; Hu, C.M.J. Synthetic virus-like particles prepared via protein corona formation enable effective vaccination in an avian model of coronavirus infection. Biomaterials, 2016, 106, 111-118.
[http://dx.doi.org/10.1016/j.biomaterials.2016.08.018] [PMID: 27552321]
[141]
Coleman, C.M.; Venkataraman, T.; Liu, Y.V.; Glenn, G.M.; Smith, G.E.; Flyer, D.C.; Frieman, M.B. MERS-CoV spike nanoparticles protect mice from MERS-CoV infection. Vaccine, 2017, 35(12), 1586-1589.
[http://dx.doi.org/10.1016/j.vaccine.2017.02.012] [PMID: 28237499]
[142]
Qiao, X.; Wang, C.; Niu, Y. N-Benzyl HMTA induced self-assembly of organic-inorganic hybrid materials for efficient photocatalytic degradation of tetracycline. J. Hazard. Mater., 2020, 391, 122121.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122121] [PMID: 32062343]
[143]
Sarkar, J.; Das, S.; Aich, S.; Bhattacharyya, P.; Acharya, K. Antiviral potential of nanoparticles for the treatment of Coronavirus infections. J. Trace Elem. Med. Biol., 2022, 72, 126977.
[http://dx.doi.org/10.1016/j.jtemb.2022.126977] [PMID: 35397331]
[144]
Medhi, B.; Prajapat, M.; Sarma, P.; Shekhar, N.; Avti, P.; Sinha, S.; Kaur, H.; Kumar, S.; Bhattacharyya, A.; Kumar, H.; Bansal, S. Drug for corona virus: A systematic review. Indian J. Pharmacol., 2020, 52(1), 56-65.
[http://dx.doi.org/10.4103/ijp.IJP_115_20] [PMID: 32201449]
[145]
Galdiero, S.; Falanga, A.; Vitiello, M.; Cantisani, M.; Marra, V.; Galdiero, M. Silver nanoparticles as potential antiviral agents. Molecules, 2011, 16(10), 8894-8918.
[http://dx.doi.org/10.3390/molecules16108894] [PMID: 22024958]
[146]
Kang, S.; Ahn, S.; Lee, J.; Kim, J.Y.; Choi, M.; Gujrati, V.; Kim, H.; Kim, J.; Shin, E.C.; Jon, S. Effects of gold nanoparticle-based vaccine size on lymph node delivery and cytotoxic T-lymphocyte responses. J. Control. Release, 2017, 256, 56-67.
[http://dx.doi.org/10.1016/j.jconrel.2017.04.024] [PMID: 28428066]
[147]
Dykman, L.A. Gold nanoparticles for preparation of antibodies and vaccines against infectious diseases. Expert Rev. Vaccines, 2020, 19(5), 465-477.
[http://dx.doi.org/10.1080/14760584.2020.1758070] [PMID: 32306785]
[148]
Rashidzadeh, H.; Danafar, H.; Rahimi, H.; Mozafari, F.; Salehiabar, M.; Rahmati, M.A.; Rahamooz-Haghighi, S.; Mousazadeh, N.; Mohammadi, A.; Ertas, Y.N.; Ramazani, A.; Huseynova, I.; Khalilov, R.; Davaran, S.; Webster, T.J.; Kavetskyy, T.; Eftekhari, A.; Nosrati, H.; Mirsaeidi, M. Nanotechnology against the novel coronavirus (severe acute respiratory syndrome coronavirus 2): Diagnosis, treatment, therapy and future perspectives. Nanomedicine (Lond.), 2021, 16(6), 497-516.
[http://dx.doi.org/10.2217/nnm-2020-0441] [PMID: 33683164]
[149]
Marques Neto, L.M.; Kipnis, A.; Junqueira-Kipnis, A.P. Role of metallic nanoparticles in vaccinology: Implications for infectious disease vaccine development. Front. Immunol., 2017, 8, 239.
[http://dx.doi.org/10.3389/fimmu.2017.00239] [PMID: 28337198]
[150]
Sekimukai, H.; Iwata-Yoshikawa, N.; Fukushi, S.; Tani, H.; Kataoka, M.; Suzuki, T.; Hasegawa, H.; Niikura, K.; Arai, K.; Nagata, N. Gold nanoparticle‐adjuvanted S protein induces a strong antigen‐specific IgG response against severe acute respiratory syndrome‐related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs. Microbiol. Immunol., 2020, 64(1), 33-51.
[http://dx.doi.org/10.1111/1348-0421.12754] [PMID: 31692019]
[151]
Huang, X.; Li, M.; Xu, Y.; Zhang, J.; Meng, X.; An, X.; Sun, L.; Guo, L.; Shan, X.; Ge, J.; Chen, J.; Luo, Y.; Wu, H.; Zhang, Y.; Jiang, Q.; Ning, X. Novel gold nanorod-based HR1 peptide inhibitor for Middle East respiratory syndrome coronavirus. ACS Appl. Mater. Interfaces, 2019, 11(22), 19799-19807.
[http://dx.doi.org/10.1021/acsami.9b04240] [PMID: 31099550]
[152]
Song, Z.; Wang, X.; Zhu, G.; Nian, Q.; Zhou, H.; Yang, D.; Qin, C.; Tang, R. Virus capture and destruction by label-free graphene oxide for detection and disinfection applications. Small, 2015, 11(9-10), 1171-1176.
[http://dx.doi.org/10.1002/smll.201401706] [PMID: 25285820]
[153]
Ye, S.; Shao, K.; Li, Z.; Guo, N.; Zuo, Y.; Li, Q.; Lu, Z.; Chen, L.; He, Q.; Han, H. Antiviral activity of graphene oxide: How sharp edged structure and charge matter. ACS Appl. Mater. Interfaces, 2015, 7(38), 21571-21579.
[http://dx.doi.org/10.1021/acsami.5b06876] [PMID: 26370151]
[154]
te Velthuis, A.J.W.; van den Worm, S.H.E.; Sims, A.C.; Baric, R.S.; Snijder, E.J.; van Hemert, M.J. Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog., 2010, 6(11), e1001176.
[http://dx.doi.org/10.1371/journal.ppat.1001176] [PMID: 21079686]
[155]
Gordon, C.J.; Tchesnokov, E.P.; Woolner, E.; Perry, J.K.; Feng, J.Y.; Porter, D.P.; Götte, M. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J. Biol. Chem., 2020, 295(20), 6785-6797.
[http://dx.doi.org/10.1074/jbc.RA120.013679] [PMID: 32284326]
[156]
Khan, F.I.; Kang, T.; Ali, H.; Lai, D. Remdesivir strongly binds to RNA-dependent RNA polymerase, membrane protein, and main protease of SARS-CoV-2: Indication from molecular modeling and simulations. Front. Pharmacol., 2021, 12, 710778.
[http://dx.doi.org/10.3389/fphar.2021.710778] [PMID: 34305617]
[157]
Chandler, L.; Yusuf, I.; McClements, M.; Barnard, A.; MacLaren, R.; Xue, K. Immunomodulatory effects of hydroxychloroquine and chloroquine in viral infections and their potential application in retinal gene therapy. Int. J. Mol. Sci., 2020, 21(14), 4972.
[http://dx.doi.org/10.3390/ijms21144972] [PMID: 32674481]
[158]
Kamat, S.; Kumari, M. Repurposing chloroquine against multiple diseases with special attention to SARS-CoV-2 and associated toxicity. Front. Pharmacol., 2021, 12, 576093.
[http://dx.doi.org/10.3389/fphar.2021.576093] [PMID: 33912030]
[159]
Stebbing, J.; Krishnan, V.; Bono, S.; Ottaviani, S.; Casalini, G.; Richardson, P.J.; Monteil, V.; Lauschke, V.M.; Mirazimi, A.; Youhanna, S.; Tan, Y.J.; Baldanti, F.; Sarasini, A.; Terres, J.A.R.; Nickoloff, B.J.; Higgs, R.E.; Rocha, G.; Byers, N.L.; Schlichting, D.E.; Nirula, A.; Cardoso, A.; Corbellino, M. Mechanism of baricitinib supports artificial intelligence‐predicted testing in COVID‐19 patients. EMBO Mol. Med., 2020, 12(8), e12697.
[http://dx.doi.org/10.15252/emmm.202012697] [PMID: 32473600]
[160]
Oubahmane, Mehdi; Hdoufane, Ismail; Bjij, Imane; Lahcen, Ait Nouhaila; Villemin, Didier; Daoud, Rachid; Allali, El Achraf; and Cherqaoui, Driss Host Cell Proteases Mediating SARS-CoV-2 Entry: An Overview. Current Topics in Medicinal Chemistry, 2022, 22(21)
[http://dx.doi.org/10.2174/1568026622666220726122339]
[161]
Ghosh, Shampa; Durgvanshi, Shantanu; Han, Soo Sung; Bhaskar, Rakesh; and Sinha Kumar, Jitendra Therapeutics for the Management of Cytokine Release Syndrome in COVID-19. Current Topics in Medicinal Chemistry, 2022, 22.
[http://dx.doi.org/10.2174/1568026622666220707114121]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy