Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Mini-Review Article

Mesenchymal Stem Cells-Conditioned Medium; An Effective Cell-Free Therapeutic Option for in vitro Maturation of Oocytes

Author(s): Fatemeh Khojasteh Pour, Mahrokh Abouali Gale Dari, Mohammad Ramazii, Mona Keivan and Maryam Farzaneh*

Volume 19, Issue 5, 2024

Published on: 20 January, 2023

Page: [636 - 643] Pages: 8

DOI: 10.2174/1574888X18666221219163753

Price: $65

conference banner
Abstract

Infertility is a major reproductive health issue worldwide. One of the main problems in infertile women is the failure to generate or release a mature egg. Therefore, the development of new technologies for in vitro generation or induction of mature oocytes can improve various ART procedures. Recently, stem cell-based therapy has opened a new window for several pathological complications. Mesenchymal stem cells (MSCs) are multipotent stem cells with the capacity to self-renew and differentiate into the mesodermal lineage. MSCs contain various bioactive molecules which are involved in the regulation of key biological processes. They can secret multiple paracrine factors, such as VEGF, IGF, HGF, EGF, and FGF to stimulate egg maturation. Although MSCs represent a promising source for cell therapy, the potential risk of tumor development reduces their clinical applications. Recent studies have suggested that the supernatant or conditioned medium of MSCs also contains similar components and regulates the oocyte behavior. The MSC-conditioned medium can eliminate the safety concerns associated with MSC transplantation and avoid rejection problems. Although MSC and MSC-CM could improve oocyte quality, ovarian function, and fertility, these improvements have not yet been demonstrated in clinical trials in humans. Hereby, we summarized recent research findings of MSCs-derived conditioned medium in in vitro development of immature oocytes.

Keywords: Mesenchymal stem cells, conditioned medium, differentiation, maturation, oocytes, infertility, polycystic ovary syndrome (PCOS).

[1]
Simionescu G, Doroftei B, Maftei R, et al. The complex relationship between infertility and psychological distress. Exp Ther Med 2021; 21(4): 306.
[http://dx.doi.org/10.3892/etm.2021.9737] [PMID: 33717249]
[2]
Zhao N, Sheng M, Wang X, Li Y, Farzaneh M. Differentiation of human induced pluripotent stem cells into male germ cells. Curr Stem Cell Res Ther 2021; 16(5): 622-9.
[http://dx.doi.org/10.2174/1574888X15666200705214223] [PMID: 32628592]
[3]
Wang G, Farzaneh M. Mini review; differentiation of human pluripotent stem cells into oocytes. Curr Stem Cell Res Ther 2020; 15(4): 301-7.
[http://dx.doi.org/10.2174/1574888X15666200116100121] [PMID: 31951188]
[4]
Akhondi MM, Ranjbar F, Shirzad M, Behjati Ardakani Z, Kamali K, Mohammad K. Practical difficulties in estimating the prevalence of primary infertility in Iran. Int J Fertil Steril 2019; 13(2): 113-7.
[PMID: 31037921]
[5]
Zhang Y, Song Y, Xia X, et al. A retrospective study on IVF/ICSI outcomes in patients with persisted positive of anticardiolipin antibody: Effects of low-dose aspirin plus low molecular weight heparin adjuvant treatment. J Reprod Immunol 2022; 153: 103674.
[http://dx.doi.org/10.1016/j.jri.2022.103674] [PMID: 35882076]
[6]
Liang S, Chen Y, Wang Q, et al. Prevalence and associated factors of infertility among 20–49 year old women in Henan Province, China. Reprod Health 2021; 18(1): 254.
[http://dx.doi.org/10.1186/s12978-021-01298-2] [PMID: 34930324]
[7]
Madziyire MG, Magwali TL, Chikwasha V, Mhlanga T. The causes of infertility in women presenting to gynaecology clinics in Harare, Zimbabwe; a cross sectional study. Fertil Res Pract 2021; 7(1): 1.
[http://dx.doi.org/10.1186/s40738-020-00093-0] [PMID: 33397485]
[8]
Kanellopoulos D, Karagianni D. PErgialiotis V, Nikiteas N, Lazaris AC, Iliopoulos D. Endometriosis and subfertility: A literature review. Maedica. J Clin Med 2022; 17(2): 458-63.
[9]
Biswas L, Tyc K, El Yakoubi W, Morgan K, Xing J, Schindler K. Meiosis interrupted: the genetics of female infertility via meiotic failure. Reproduction 2021; 161(2): R13-35.
[http://dx.doi.org/10.1530/REP-20-0422] [PMID: 33170803]
[10]
Bharti D, Jang SJ, Lee SY, Lee SL, Rho GJ. In vitro generation of oocyte like cells and their in vivo efficacy: how far we have been succeeded. Cells 2020; 9(3): 557.
[http://dx.doi.org/10.3390/cells9030557]
[11]
Galvão A, Segers I, Smitz J, Tournaye H, De Vos M. In vitro maturation (IVM) of oocytes in patients with resistant ovary syndrome and in patients with repeated deficient oocyte maturation. J Assist Reprod Genet 2018; 35(12): 2161-71.
[http://dx.doi.org/10.1007/s10815-018-1317-z] [PMID: 30238176]
[12]
Julania S, Walls ML, Hart R. The place of in vitro maturation in PCO/PCOS. Int J Endocrinol 2018; 2018: 5750298.
[http://dx.doi.org/10.1155/2018/5750298] [PMID: 30154841]
[13]
La X, Zhao J, Wang Z. Clinical application of in vitro maturation of oocytes. IntechOpen 2019; 2019: 87773.
[http://dx.doi.org/10.5772/intechopen.87773]
[14]
Karavani G, Wasserzug-Pash P, Mordechai-Daniel T, Bauman D, Klutstein M, Imbar T. Age-dependent in vitro maturation efficacy of human oocytes – is there an optimal age? Front Cell Dev Biol 2021; 9: 667682.
[http://dx.doi.org/10.3389/fcell.2021.667682] [PMID: 34222236]
[15]
Wang J, Liu C, Fujino M, et al. Stem cells as a resource for treatment of infertility-related diseases. Curr Mol Med 2019; 19(8): 539-46.
[http://dx.doi.org/10.2174/1566524019666190709172636] [PMID: 31288721]
[16]
Rajabzadeh N, Fathi E, Farahzadi R. Stem cell-based regenerative medicine. Stem Cell Investig 2019; 6: 19.
[http://dx.doi.org/10.21037/sci.2019.06.04] [PMID: 31463312]
[17]
Jung D, Xiong J, Ye M, et al. In vitro differentiation of human embryonic stem cells into ovarian follicle-like cells. Nat Commun 2017; 8(1): 15680.
[http://dx.doi.org/10.1038/ncomms15680] [PMID: 28604658]
[18]
Gulimiheranmu M, Wang X, Zhou J. Advances in female germ cell induction from pluripotent stem cells. Stem Cells Int 2021; 2021: 8849230.
[http://dx.doi.org/10.1155/2021/8849230]
[19]
Zolfaghar M, Fathi R, Naji T. Differentiation of human Wharton’s jelly mesenchymal stem cells into oocyte-like cells by follicular fluid. J Mazandaran Univ Med Sci 2017; 27: 1-11.
[20]
Sheikholeslami A, Kalhor N, Sheykhhasan M, Jannatifar R, Sahraei SS. Evaluating differentiation potential of the human menstrual blood-derived stem cells from infertile women into oocyte-like cells. Reprod Biol 2021; 21(1): 100477.
[http://dx.doi.org/10.1016/j.repbio.2020.100477] [PMID: 33401233]
[21]
Jozkowiak M, Hutchings G, Jankowski M, et al. The stemness of human ovarian granulosa cells and the role of resveratrol in the differentiation of MSCs—A review based on cellular and molecular knowledge. Cells 2020; 9(6): 1418.
[http://dx.doi.org/10.3390/cells9061418] [PMID: 32517362]
[22]
Moradi S, Mahdizadeh H, Šarić T, et al. Research and therapy with induced pluripotent stem cells (iPSCs): social, legal, and ethical considerations. Stem Cell Res Ther 2019; 10(1): 341.
[http://dx.doi.org/10.1186/s13287-019-1455-y] [PMID: 31753034]
[23]
Charitos IA, Ballini A, Cantore S, et al. Stem Cells: A historical review about biological, religious, and ethical issues. Stem Cells Int 2021; 2021: 9978837.
[http://dx.doi.org/10.1155/2021/9978837]
[24]
Shammaa R, El-Kadiry AEH, Abusarah J, Rafei M. Mesenchymal stem cells beyond regenerative medicine. Front Cell Dev Biol 2020; 8: 72.
[http://dx.doi.org/10.3389/fcell.2020.00072] [PMID: 32133358]
[25]
de Klerk E, Hebrok M. Stem cell-based clinical trials for diabetes mellitus. Front Endocrinol (Lausanne) 2021; 12: 631463.
[http://dx.doi.org/10.3389/fendo.2021.631463] [PMID: 33716982]
[26]
Rostami Z, Khorashadizadeh M, Naseri M. Immunoregulatory properties of mesenchymal stem cells: Micro-RNAs. Immunol Lett 2020; 219: 34-45.
[http://dx.doi.org/10.1016/j.imlet.2019.12.011] [PMID: 31917251]
[27]
Alishahi M, Anbiyaiee A, Farzaneh M, Khoshnam SE. Human mesenchymal stem cells for spinal cord injury. Curr Stem Cell Res Ther 2020; 15(4): 340-8.
[http://dx.doi.org/10.2174/1574888X15666200316164051] [PMID: 32178619]
[28]
Moghadam MT, Moghadam ARE, Saki G, Nikbakht R. Bone morphogenetic protein 15 induces differentiation of mesenchymal stem cell derived from human follicular fluid to oocyte like cell. Cell Biol Int 2021; 45(1): 127-39.
[29]
Dalman A, Totonchi M, Rezazadeh Valojerdi M. Human ovarian theca-derived multipotent stem cells have the potential to differentiate into oocyte-like cells in vitro. Cell J 2019; 20(4): 527-36.
[PMID: 30123999]
[30]
Ghaneialvar H, Soltani L, Rahmani HR, Lotfi AS, Soleimani M. Characterization and classification of mesenchymal stem cells in several species using surface markers for cell therapy purposes. Indian J Clin Biochem 2018; 33(1): 46-52.
[http://dx.doi.org/10.1007/s12291-017-0641-x] [PMID: 29371769]
[31]
Lukomska B, Stanaszek L, Zuba-Surma E, Legosz P, Sarzynska S, Drela K. Challenges and controversies in human mesenchymal stem cell therapy. Stem Cells Int 2019; 2019: 9628536.
[http://dx.doi.org/10.1155/2019/9628536] [PMID: 31093291]
[32]
Kim N, Cho SG. New strategies for overcoming limitations of mesenchymal stem cell-based immune modulation. Int J Stem Cells 2015; 8(1): 54-68.
[http://dx.doi.org/10.15283/ijsc.2015.8.1.54] [PMID: 26019755]
[33]
Ho CH, Lan CW, Liao CY, Hung SC, Li HY, Sung YJ. Mesenchymal stem cells and their conditioned medium can enhance the repair of uterine defects in a rat model. J Chin Med Assoc 2018; 81(3): 268-76.
[http://dx.doi.org/10.1016/j.jcma.2017.03.013] [PMID: 28882732]
[34]
Akbari H, Eftekhar Vaghefi S, Shahedi A, et al. Mesenchymal stem cell-conditioned medium modulates apoptotic and stress-related gene expression, ameliorates maturation and allows for the development of immature human oocytes after artificial activation. Genes (Basel) 2017; 8(12): 371.
[http://dx.doi.org/10.3390/genes8120371] [PMID: 29292728]
[35]
Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells - current trends and future prospective. Biosci Rep 2015; 35(2): e00191.
[http://dx.doi.org/10.1042/BSR20150025] [PMID: 25797907]
[36]
Berebichez-Fridman R, Montero-Olvera PR. Sources and clinical applications of mesenchymal stem cells: State-of-the-art review. Sultan Qaboos Univ Med J 2018; 18(3): 264.
[http://dx.doi.org/10.18295/squmj.2018.18.03.002] [PMID: 30607265]
[37]
Maqsood M, Kang M, Wu X, Chen J, Teng L, Qiu L. Adult mesenchymal stem cells and their exosomes: Sources, characteristics, and application in regenerative medicine. Life Sci 2020; 256: 118002.
[http://dx.doi.org/10.1016/j.lfs.2020.118002] [PMID: 32585248]
[38]
Wei ZJ, Wang QQ, Cui ZG, Inadera H, Jiang X, Wu CA. Which is the most effective one in knee osteoarthritis treatment from mesenchymal stem cells obtained from different sources? —A systematic review with conventional and network meta-analyses of randomized controlled trials. Ann Transl Med 2021; 9(6): 452-2.
[http://dx.doi.org/10.21037/atm-20-5116] [PMID: 33850849]
[39]
Via AG, Frizziero A, Oliva F. Biological properties of mesenchymal stem cells from different sources. Muscles Ligaments Tendons J 2012; 2(3): 154-62.
[PMID: 23738292]
[40]
Kozlowska U, Krawczenko A, Futoma K, et al. Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues. World J Stem Cells 2019; 11(6): 347-74.
[http://dx.doi.org/10.4252/wjsc.v11.i6.347] [PMID: 31293717]
[41]
Stüdle C, Occhetta P, Geier F, Mehrkens A, Barbero A, Martin I. Challenges toward the identification of predictive markers for human mesenchymal stromal cells chondrogenic potential. Stem Cells Transl Med 2019; 8(2): 194-204.
[http://dx.doi.org/10.1002/sctm.18-0147] [PMID: 30676001]
[42]
Poggi A, Zocchi MR. Immunomodulatory properties of mesenchymal stromal cells: still unresolved “Yin and Yang”. Curr Stem Cell Res Ther 2019; 14(4): 344-50.
[http://dx.doi.org/10.2174/1574888X14666181205115452] [PMID: 30516112]
[43]
Wang M, Yuan Q, Xie L. Mesenchymal stem cell-based immunomodulation: Properties and clinical application. Stem Cells Int 2018; 2018: 3057624.
[http://dx.doi.org/10.1155/2018/3057624] [PMID: 30013600]
[44]
Huang CC, Kang M, Narayanan R, et al. Evaluating the endocytosis and lineage-specification properties of mesenchymal stem cell derived extracellular vesicles for targeted therapeutic applications. Front Pharmacol 2020; 11: 163.
[http://dx.doi.org/10.3389/fphar.2020.00163] [PMID: 32194405]
[45]
Nogueira-Pedro A, Makiyama EN, Segreto HRC, Fock RA. The role of low-dose radiation in association with TNF-α on immunomodulatory properties of mesenchymal stem cells. Stem Cell Rev Rep 2021; 17(3): 968-80.
[http://dx.doi.org/10.1007/s12015-020-10084-9] [PMID: 33206285]
[46]
da Costa Gonçalves F, Grings M, Nunes NS, et al. Antioxidant properties of mesenchymal stem cells against oxidative stress in a murine model of colitis. Biotechnol Lett 2017; 39(4): 613-22.
[http://dx.doi.org/10.1007/s10529-016-2272-3] [PMID: 28032203]
[47]
Muralikumar M, Manoj Jain S, Ganesan H, Duttaroy AK, Pathak S, Banerjee A. Current understanding of the mesenchymal stem cell-derived exosomes in cancer and aging. Biotechnol Rep (Amst) 2021; 31: e00658.
[http://dx.doi.org/10.1016/j.btre.2021.e00658] [PMID: 34377681]
[48]
Badawy A, Sobh M, Ahdy M, Abdelhafez M. Bone marrow mesenchymal stem cell repair of cyclophosphamide-induced ovarian insufficiency in a mouse model. Int J Womens Health 2017; 9: 441-7.
[http://dx.doi.org/10.2147/IJWH.S134074] [PMID: 28670143]
[49]
Eleuteri S, Fierabracci A. Insights into the secretome of mesenchymal stem cells and its potential applications. Int J Mol Sci 2019; 20(18): 4597.
[http://dx.doi.org/10.3390/ijms20184597] [PMID: 31533317]
[50]
Ragni E, Perucca Orfei C, De Luca P, et al. Inflammatory priming enhances mesenchymal stromal cell secretome potential as a clinical product for regenerative medicine approaches through secreted factors and EV-miRNAs: the example of joint disease. Stem Cell Res Ther 2020; 11(1): 165.
[http://dx.doi.org/10.1186/s13287-020-01677-9] [PMID: 32345351]
[51]
Vizoso F, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal Stem Cell Secretome: Toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 2017; 18(9): 1852.
[http://dx.doi.org/10.3390/ijms18091852] [PMID: 28841158]
[52]
Haryadi D, Sadewa AH, Mubarika S, Dasuki D. The potential application of conditioned media-mesenchymal stem cells on human oocyte maturation in assisted reproductive technology: a quasi- experimental based-study at Dr Sardjito General Hospital, Yogyakarta, Indonesia. 2019.
[53]
Jiao W, Mi X, Qin Y, Zhao S. Stem cell transplantation improves ovarian function through paracrine mechanisms. Curr Gene Ther 2020; 20(5): 347-55.
[http://dx.doi.org/10.2174/1566523220666200928142333] [PMID: 32988352]
[54]
Mi X, Jiao W, Yang Y, Qin Y, Chen ZJ, Zhao S. HGF secreted by mesenchymal stromal cells promotes primordial follicle activation by increasing the activity of the pi3k-akt signaling pathway. Stem Cell Rev Rep 2022; 18(5): 1834-50.
[http://dx.doi.org/10.1007/s12015-022-10335-x] [PMID: 35089464]
[55]
Zhao Y, Chen S, Su P, et al. Using mesenchymal stem cells to treat female infertility: an update on female reproductive diseases. Stem Cells Int 2019; 2019: 9071720.
[http://dx.doi.org/10.1155/2019/9071720] [PMID: 31885630]
[56]
Rungsiwiwut R, Virutamasen P, Pruksananonda K. Mesenchymal stem cells for restoring endometrial function: An infertility perspective. Reprod Med Biol 2021; 20(1): 13-9.
[http://dx.doi.org/10.1002/rmb2.12339] [PMID: 33488279]
[57]
Nouri N, Aghebati-Maleki L, Yousefi M. Adipose-derived mesenchymal stem cells: A promising tool in the treatment of pre mature ovarian failure. J Reprod Immunol 2021; 147: 103363.
[http://dx.doi.org/10.1016/j.jri.2021.103363] [PMID: 34450435]
[58]
Jia Y, Shi X, Xie Y, Xie X, Wang Y, Li S. Human umbilical cord stem cell conditioned medium versus serum-free culture medium in the treatment of cryopreserved human ovarian tissues in in-vitro culture: a randomized controlled trial. Stem Cell Res Ther 2017; 8(1): 152.
[http://dx.doi.org/10.1186/s13287-017-0604-4] [PMID: 28646900]
[59]
Asgharzadeh S, Mirshokraei P, Hassanpour H, Ahmadi E, Nazari H. The effect of mesenchymal stem cells as co-culture in in vitro nuclear maturation of ovine oocytes. Anim Sci Pap Rep 2015; 33: 223-32.
[60]
Maldonado M, Huang T, Chen J, Zhong Y. Differentiation potential of human Wharton’s jelly-derived mesenchymal stem cells and paracrine signaling interaction contribute to improve the in vitro maturation of mouse cumulus oocyte complexes. Stem Cells Int 2018; 2018: 7609284.
[http://dx.doi.org/10.1155/2018/7609284] [PMID: 30405722]
[61]
Liao Z, Liu C, Wang L, Sui C, Zhang H. Therapeutic role of mesenchymal stem cell-derived extracellular vesicles in female reproductive diseases. Front Endocrinol (Lausanne) 2021; 12: 665645.
[http://dx.doi.org/10.3389/fendo.2021.665645] [PMID: 34248842]
[62]
Ling B, Feng DQ, Zhou Y, Gao T, Wei HM, Tian ZG. Effect of conditioned medium of mesenchymal stem cells on the in vitro maturation and subsequent development of mouse oocyte. Braz J Med Biol Res 2008; 41(11): 978-85.
[http://dx.doi.org/10.1590/S0100-879X2008005000053] [PMID: 19039379]
[63]
Ghiasi M, Fazaely H, Asaii E, Sheykhhasan M. In vitro maturation of human oocytes using conditioned medium of mesenchymal stem cells and formation of embryo by use of ICSI. Vitro 2014; 41: 978-85.
[64]
Jafarzadeh H, Nazarian H, Ghaffari Novin M, Shams Mofarahe Z, Eini F, Piryaei A. Improvement of oocyte in vitro maturation from mice with polycystic ovary syndrome by human mesenchymal stromal cell–conditioned media. J Cell Biochem 2018; 119(12): 10365-75.
[http://dx.doi.org/10.1002/jcb.27380] [PMID: 30171726]
[65]
Yang W, Zhang J, Xu B, et al. HucMSC-Derived exosomes mitigate the age-related retardation of fertility in female mice. Mol Ther 2020; 28(4): 1200-13.
[http://dx.doi.org/10.1016/j.ymthe.2020.02.003] [PMID: 32097602]
[66]
Lee SH. Human adipose-derived stem cells’ paracrine factors in conditioned medium can enhance porcine oocyte maturation and subsequent embryo development. Int J Mol Sci 2021; 22(2): 579.
[http://dx.doi.org/10.3390/ijms22020579] [PMID: 33430095]
[67]
Hatırnaz Ş, Ata B, Saynur Hatırnaz E, et al. Oocyte in vitro maturation: A sytematic review. J Turkish Soc Obs Gynecol 2018; 15(2): 112-25.
[http://dx.doi.org/10.4274/tjod.23911] [PMID: 29971189]
[68]
Sfakianoudis K, Rapani A, Grigoriadis S, et al. Novel approaches in addressing ovarian insufficiency in 2019: Are we there yet? Cell Transplant 2020; 29: 0963689720926154.
[http://dx.doi.org/10.1177/0963689720926154] [PMID: 32686983]
[69]
Rodríguez-Fuentes DE, Fernández-Garza LE, Samia-Meza JA, Barrera-Barrera SA, Caplan AI, Barrera-Saldaña HA. Mesenchymal stem cells current clinical applications: A systematic review. Arch Med Res 2021; 52(1): 93-101.
[http://dx.doi.org/10.1016/j.arcmed.2020.08.006] [PMID: 32977984]
[70]
Pan Q, Li Y, Li Y, et al. Local administration of allogeneic or autologous bone marrow-derived mesenchymal stromal cells enhances bone formation similarly in distraction osteogenesis. Cytotherapy 2021; 23(7): 590-8.
[http://dx.doi.org/10.1016/j.jcyt.2020.12.005] [PMID: 33546925]
[71]
Li C, Zhao H, Cheng L, Wang B. Allogeneic vs. autologous mesenchymal stem/stromal cells in their medication practice. Cell Biosci 2021; 11(1): 187.
[http://dx.doi.org/10.1186/s13578-021-00698-y] [PMID: 34727974]
[72]
Mezey É. Human mesenchymal stem/stromal cells in immune regulation and therapy. Stem Cells Transl Med 2022; 11(2): 114-34.
[http://dx.doi.org/10.1093/stcltm/szab020] [PMID: 35298659]
[73]
Coelho A, Alvites RD, Branquinho MV, Guerreiro SG, Maurício AC. Mesenchymal stem cells (MSCs) as a potential therapeutic strategy in COVID-19 patients: Literature research. Front Cell Dev Biol 2020; 8: 602647.
[http://dx.doi.org/10.3389/fcell.2020.602647] [PMID: 33330498]
[74]
Mohamed S, Issa H, Fahmy S, Khattab RAR. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, cord blood and matrix. Egyptian J Lab Med 2020; 32: 63.
[http://dx.doi.org/10.4103/ejolm.ejolm_8_21]
[75]
Mastrolia I, Foppiani EM, Murgia A, et al. Challenges in clinical development of mesenchymal stromal/stem cells: concise review. Stem Cells Transl Med 2019; 8(11): 1135-48.
[http://dx.doi.org/10.1002/sctm.19-0044] [PMID: 31313507]
[76]
Volarevic V, Markovic BS, Gazdic M, et al. Ethical and safety issues of stem cell-based therapy. Int J Med Sci 2018; 15(1): 36-45.
[http://dx.doi.org/10.7150/ijms.21666] [PMID: 29333086]
[77]
Poliwoda S, Noor N, Downs E, et al. Stem cells: a comprehensive review of origins and emerging clinical roles in medical practice. Orthop Rev (Pavia) 2022; 14(3): 37498.
[http://dx.doi.org/10.52965/001c.37498] [PMID: 36034728]
[78]
Wragg NM, Tampakis D, Stolzing A. Cryopreservation of mesenchymal stem cells using medical grade ice nucleation inducer. Int J Mol Sci 2020; 21(22): 8579.
[http://dx.doi.org/10.3390/ijms21228579] [PMID: 33203028]
[79]
Liu RR, Danesh H. Adult mesenchymal stem cell collection and banking. In: Regenerative Medicine. Cham: Springer 2023; pp. 81-8.
[http://dx.doi.org/10.1007/978-3-030-75517-1_8]
[80]
Jovic D, Yu Y, Wang D, et al. A Brief Overview of Global Trends in MSC-Based Cell Therapy. Stem Cell Rev Rep 2022; 18(5): 1525-45.
[http://dx.doi.org/10.1007/s12015-022-10369-1] [PMID: 35344199]
[81]
Hsieh JY, Wang HW, Chang SJ, et al. Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PLoS One 2013; 8(8): e72604.
[http://dx.doi.org/10.1371/journal.pone.0072604] [PMID: 23991127]
[82]
Markov A, Thangavelu L, Aravindhan S, et al. Mesenchymal stem/stromal cells as a valuable source for the treatment of immune-mediated disorders. Stem Cell Res Ther 2021; 12(1): 192.
[http://dx.doi.org/10.1186/s13287-021-02265-1] [PMID: 33736695]
[83]
Gorecka J, Kostiuk V, Fereydooni A, et al. The potential and limitations of induced pluripotent stem cells to achieve wound healing. Stem Cell Res Ther 2019; 10(1): 87.
[http://dx.doi.org/10.1186/s13287-019-1185-1] [PMID: 30867069]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy