Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

Metabolic Reprogramming of Microglia in Sepsis-Associated Encephalopathy: Insights from Neuroinflammation

Author(s): Shenjia Gao, Yi Jiang, Zhaoyuan Chen, Xiaoqiang Zhao, Jiahui Gu, Han Wu, Yun Liao, Hao Sun, Jun Wang* and Wankun Chen*

Volume 21, Issue 9, 2023

Published on: 09 March, 2023

Page: [1992 - 2005] Pages: 14

DOI: 10.2174/1570159X21666221216162606

Price: $65

conference banner
Abstract

Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction caused by sepsis that manifests as a range of brain dysfunctions from delirium to coma. It is a relatively common complication of sepsis associated with poor patient prognosis and mortality. The pathogenesis of SAE involves neuroinflammatory responses, neurotransmitter dysfunction, blood-brain barrier (BBB) disruption, abnormal blood flow regulation, etc. Neuroinflammation caused by hyperactivation of microglia is considered to be a key factor in disease development, which can cause a series of chain reactions, including BBB disruption and oxidative stress. Metabolic reprogramming has been found to play a central role in microglial activation and executive functions. In this review, we describe the pivotal role of energy metabolism in microglial activation and functional execution and demonstrate that the regulation of microglial metabolic reprogramming might be crucial in the development of clinical therapeutics for neuroinflammatory diseases like SAE.

Keywords: Sepsis-associated encephalopathy, neuroinflammation, microglia, metabolic reprogramming, sepsis, microglia.

Graphical Abstract
[1]
Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; Hotchkiss, R.S.; Levy, M.M.; Marshall, J.C.; Martin, G.S.; Opal, S.M.; Rubenfeld, G.D.; van der Poll, T.; Vincent, J.L.; Angus, D.C. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA, 2016, 315(8), 801-810.
[http://dx.doi.org/10.1001/jama.2016.0287] [PMID: 26903338]
[2]
Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; Fleischmann-Struzek, C.; Machado, F.R.; Reinhart, K.K.; Rowan, K.; Seymour, C.W.; Watson, R.S.; West, T.E.; Marinho, F.; Hay, S.I.; Lozano, R.; Lopez, A.D.; Angus, D.C.; Murray, C.J.L.; Naghavi, M. Global, regional, and national sepsis incidence and mortality, 1990-2017: Analysis for the global burden of disease study. Lancet, 2020, 395(10219), 200-211.
[http://dx.doi.org/10.1016/S0140-6736(19)32989-7] [PMID: 31954465]
[3]
Gofton, T.E.; Young, G.B. Sepsis-associated encephalopathy. Nat. Rev. Neurol., 2012, 8(10), 557-566.
[http://dx.doi.org/10.1038/nrneurol.2012.183] [PMID: 22986430]
[4]
Andonegui, G.; Zelinski, E.L.; Schubert, C.L.; Knight, D.; Craig, L.A.; Winston, B.W.; Spanswick, S.C.; Petri, B.; Jenne, C.N.; Sutherland, J.C.; Nguyen, R.; Jayawardena, N.; Kelly, M.M.; Doig, C.J.; Sutherland, R.J.; Kubes, P. Targeting inflammatory monocytes in sepsis-associated encephalopathy and long-term cognitive impairment. JCI Insight, 2018, 3(9), e99364.
[http://dx.doi.org/10.1172/jci.insight.99364] [PMID: 29720578]
[5]
Sonneville, R.; de Montmollin, E.; Poujade, J.; Garrouste-Orgeas, M.; Souweine, B.; Darmon, M.; Mariotte, E.; Argaud, L.; Barbier, F.; Goldgran-Toledano, D.; Marcotte, G.; Dumenil, A.S.; Jamali, S.; Lacave, G.; Ruckly, S.; Mourvillier, B.; Timsit, J.F. Potentially modifiable factors contributing to sepsis-associated encephalopathy. Intensive Care Med., 2017, 43(8), 1075-1084.
[http://dx.doi.org/10.1007/s00134-017-4807-z] [PMID: 28466149]
[6]
Mazeraud, A.; Righy, C.; Bouchereau, E.; Benghanem, S.; Bozza, F.A.; Sharshar, T. Septic-associated encephalopathy: A comprehensive review. Neurotherapeutics, 2020, 17(2), 392-403.
[http://dx.doi.org/10.1007/s13311-020-00862-1] [PMID: 32378026]
[7]
Manabe, T.; Heneka, M.T. Cerebral dysfunctions caused by sepsis during ageing. Nat. Rev. Immunol., 2021, 1-15.
[PMID: 34764472]
[8]
Ren, C.; Yao, R.; Zhang, H.; Feng, Y.; Yao, Y. Sepsis-associated encephalopathy: A vicious cycle of immunosuppression. J. Neuroinflammation, 2020, 17(1), 14.
[http://dx.doi.org/10.1186/s12974-020-1701-3] [PMID: 31924221]
[9]
Sharshar, T.; Polito, A.; Checinski, A.; Stevens, R.D. Septic-associated encephalopathy - everything starts at a microlevel. Crit. Care, 2010, 14(5), 199.
[http://dx.doi.org/10.1186/cc9254] [PMID: 21067627]
[10]
Ebersoldt, M.; Sharshar, T.; Annane, D. Sepsis-associated delirium. Intensive Care Med., 2007, 33(6), 941-950.
[http://dx.doi.org/10.1007/s00134-007-0622-2] [PMID: 17410344]
[11]
Michels, M.; Vieira, A.S.; Vuolo, F.; Zapelini, H.G.; Mendonça, B.; Mina, F.; Dominguini, D.; Steckert, A.; Schuck, P.F.; Quevedo, J.; Petronilho, F.; Dal-Pizzol, F. The role of microglia activation in the development of sepsis-induced long-term cognitive impairment. Brain Behav. Immun., 2015, 43, 54-59.
[http://dx.doi.org/10.1016/j.bbi.2014.07.002] [PMID: 25019583]
[12]
Li, Q.; Barres, B.A. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol., 2018, 18(4), 225-242.
[http://dx.doi.org/10.1038/nri.2017.125] [PMID: 29151590]
[13]
Westhoff, D.; Engelen-Lee, J.Y.; Hoogland, I.C.M.; Aronica, E.M.A.; van Westerloo, D.J.; van de Beek, D.; van Gool, W.A. Systemic infection and microglia activation: A prospective postmortem study in sepsis patients. Immun. Ageing, 2019, 16(1), 18.
[http://dx.doi.org/10.1186/s12979-019-0158-7] [PMID: 31384283]
[14]
Lemstra, A.W. Groen in’t Woud, J.C.M.; Hoozemans, J.J.M.; van Haastert, E.S.; Rozemuller, A.J.M.; Eikelenboom, P.; van Gool, W.A. Microglia activation in sepsis: A case-control study. J. Neuroinflammation, 2007, 4(1), 4.
[http://dx.doi.org/10.1186/1742-2094-4-4] [PMID: 17224051]
[15]
Yang, S.; Qin, C.; Hu, Z.W.; Zhou, L.Q.; Yu, H.H.; Chen, M.; Bosco, D.B.; Wang, W.; Wu, L.J.; Tian, D.S. Microglia reprogram metabolic profiles for phenotype and function changes in central nervous system. Neurobiol. Dis., 2021, 152, 105290.
[http://dx.doi.org/10.1016/j.nbd.2021.105290] [PMID: 33556540]
[16]
Savi, F.F.; de Oliveira, A.; de Medeiros, G.F.; Bozza, F.A.; Michels, M.; Sharshar, T.; Dal-Pizzol, F.; Ritter, C. What animal models can tell us about long-term cognitive dysfunction following sepsis: A systematic review. Neurosci. Biobehav. Rev., 2021, 124, 386-404.
[http://dx.doi.org/10.1016/j.neubiorev.2020.12.005] [PMID: 33309906]
[17]
Orihuela, R.; McPherson, C.A.; Harry, G.J. Microglial M1/M2 polarization and metabolic states. Br. J. Pharmacol., 2016, 173(4), 649-665.
[http://dx.doi.org/10.1111/bph.13139] [PMID: 25800044]
[18]
Durafourt, B.A.; Moore, C.S.; Zammit, D.A.; Johnson, T.A.; Zaguia, F.; Guiot, M.C.; Bar-Or, A.; Antel, J.P. Comparison of polarization properties of human adult microglia and blood-derived macrophages. Glia, 2012, 60(5), 717-727.
[http://dx.doi.org/10.1002/glia.22298] [PMID: 22290798]
[19]
Lan, X.; Han, X.; Li, Q.; Yang, Q.W.; Wang, J. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat. Rev. Neurol., 2017, 13(7), 420-433.
[http://dx.doi.org/10.1038/nrneurol.2017.69] [PMID: 28524175]
[20]
Wachholz, S.; Eßlinger, M.; Plümper, J.; Manitz, M.P.; Juckel, G.; Friebe, A. Microglia activation is associated with IFN-α induced depressive-like behavior. Brain Behav. Immun., 2016, 55, 105-113.
[http://dx.doi.org/10.1016/j.bbi.2015.09.016] [PMID: 26408795]
[21]
Nakagawa, Y.; Chiba, K. Diversity and plasticity of microglial cells in psychiatric and neurological disorders. Pharmacol. Ther., 2015, 154, 21-35.
[http://dx.doi.org/10.1016/j.pharmthera.2015.06.010] [PMID: 26129625]
[22]
Ransohoff, R.M. A polarizing question: Do M1 and M2 microglia exist? Nat. Neurosci., 2016, 19(8), 987-991.
[http://dx.doi.org/10.1038/nn.4338] [PMID: 27459405]
[23]
Li, Q.; Cheng, Z.; Zhou, L.; Darmanis, S.; Neff, N.F.; Okamoto, J.; Gulati, G.; Bennett, M.L.; Sun, L.O.; Clarke, L.E.; Marschallinger, J.; Yu, G.; Quake, S.R.; Wyss-Coray, T.; Barres, B.A. Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing. Neuron, 2019, 101(2), 207-223.e10.
[http://dx.doi.org/10.1016/j.neuron.2018.12.006] [PMID: 30606613]
[24]
Keren-Shaul, H.; Spinrad, A.; Weiner, A.; Matcovitch-Natan, O.; Dvir-Szternfeld, R.; Ulland, T.K.; David, E.; Baruch, K.; Lara-Astaiso, D.; Toth, B.; Itzkovitz, S.; Colonna, M.; Schwartz, M.; Amit, I. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell, 2017, 169(7), 1276-1290.e17.
[http://dx.doi.org/10.1016/j.cell.2017.05.018] [PMID: 28602351]
[25]
Wahane, S.; Zhou, X.; Zhou, X.; Guo, L.; Friedl, M.S.; Kluge, M.; Ramakrishnan, A.; Shen, L.; Friedel, C.C.; Zhang, B.; Friedel, R.H.; Zou, H. Diversified transcriptional responses of myeloid and glial cells in spinal cord injury shaped by HDAC3 activity. Sci. Adv., 2021, 7(9), eabd8811.
[http://dx.doi.org/10.1126/sciadv.abd8811] [PMID: 33637528]
[26]
Krasemann, S.; Madore, C.; Cialic, R.; Baufeld, C.; Calcagno, N.; El Fatimy, R.; Beckers, L.; O’Loughlin, E.; Xu, Y.; Fanek, Z.; Greco, D.J.; Smith, S.T.; Tweet, G.; Humulock, Z.; Zrzavy, T.; Conde-Sanroman, P.; Gacias, M.; Weng, Z.; Chen, H.; Tjon, E.; Mazaheri, F.; Hartmann, K.; Madi, A.; Ulrich, J.D.; Glatzel, M.; Worthmann, A.; Heeren, J.; Budnik, B.; Lemere, C.; Ikezu, T.; Heppner, F.L.; Litvak, V.; Holtzman, D.M.; Lassmann, H.; Weiner, H.L.; Ochando, J.; Haass, C.; Butovsky, O. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity, 2017, 47(3), 566-581.e9.
[http://dx.doi.org/10.1016/j.immuni.2017.08.008] [PMID: 28930663]
[27]
Jin, C.; Shao, Y.; Zhang, X.; Xiang, J.; Zhang, R.; Sun, Z.; Mei, S.; Zhou, J.; Zhang, J.; Shi, L. A unique type of highly-activated microglia evoking brain inflammation via Mif/Cd74 signaling axis in aged mice. Aging Dis., 2021, 12(8), 2125-2139.
[http://dx.doi.org/10.14336/AD.2021.0520] [PMID: 34881090]
[28]
Loving, B.A.; Tang, M.; Neal, M.C.; Gorkhali, S.; Murphy, R.; Eckel, R.H.; Bruce, K.D. Lipoprotein lipase regulates microglial lipid droplet accumulation. Cells, 2021, 10(2), 198.
[http://dx.doi.org/10.3390/cells10020198] [PMID: 33498265]
[29]
Hammond, T.R.; Dufort, C.; Dissing-Olesen, L.; Giera, S.; Young, A.; Wysoker, A.; Walker, A.J.; Gergits, F.; Segel, M.; Nemesh, J.; Marsh, S.E.; Saunders, A.; Macosko, E.; Ginhoux, F.; Chen, J.; Franklin, R.J.M.; Piao, X.; McCarroll, S.A.; Stevens, B. Single-Cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity, 2019, 50(1), 253-271.e6.
[http://dx.doi.org/10.1016/j.immuni.2018.11.004] [PMID: 30471926]
[30]
Wolf, S.A.; Boddeke, H.W.G.M.; Kettenmann, H. Microglia in physiology and disease. Annu. Rev. Physiol., 2017, 79(1), 619-643.
[http://dx.doi.org/10.1146/annurev-physiol-022516-034406] [PMID: 27959620]
[31]
Li, Y.; Du, X.; Liu, C.; Wen, Z.; Du, J. Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev. Cell, 2012, 23(6), 1189-1202.
[http://dx.doi.org/10.1016/j.devcel.2012.10.027] [PMID: 23201120]
[32]
Colonna, M.; Butovsky, O. Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol., 2017, 35(1), 441-468.
[http://dx.doi.org/10.1146/annurev-immunol-051116-052358] [PMID: 28226226]
[33]
Kodali, M.C.; Chen, H.; Liao, F.F. Temporal unsnarling of brain’s acute neuroinflammatory transcriptional profiles reveals panendothelitis as the earliest event preceding microgliosis. Mol. Psychiatry, 2021, 26(8), 3905-3919.
[http://dx.doi.org/10.1038/s41380-020-00955-5] [PMID: 33293688]
[34]
Ghosh, A.; Birngruber, T.; Sattler, W.; Kroath, T.; Ratzer, M.; Sinner, F.; Pieber, T.R. Assessment of blood-brain barrier function and the neuroinflammatory response in the rat brain by using cerebral open flow microperfusion (cOFM). PLoS One, 2014, 9(5), e98143.
[http://dx.doi.org/10.1371/journal.pone.0098143] [PMID: 24852285]
[35]
Chen, Y.; Sun, J.; Chen, W.; Wu, G.; Wang, Y.; Zhu, K.; Wang, J. miR-124/VAMP3 is a novel therapeutic target for mitigation of surgical trauma-induced microglial activation. Signal Transduct. Target. Ther., 2019, 4(1), 27.
[http://dx.doi.org/10.1038/s41392-019-0061-x] [PMID: 31637007]
[36]
Shimada, A.; Hasegawa-Ishii, S. Histological architecture underlying brain–immune cell–cell interactions and the cerebral response to systemic inflammation. Front. Immunol., 2017, 8, 17.
[http://dx.doi.org/10.3389/fimmu.2017.00017] [PMID: 28154566]
[37]
Dantzer, R.; Bluthé, R.M.; Layé, S.; Bret-Dibat, J.L.; Parnet, P.; Kelley, K.W. Cytokines and sickness behavior. Ann. N. Y. Acad. Sci., 1998, 840(1), 586-590.
[http://dx.doi.org/10.1111/j.1749-6632.1998.tb09597.x] [PMID: 9629285]
[38]
Zielinski, M.R.; Dunbrasky, D.L.; Taishi, P.; Souza, G.; Krueger, J.M. Vagotomy attenuates brain cytokines and sleep induced by peripherally administered tumor necrosis factor-α and lipopolysaccharide in mice. Sleep, 2013, 36(8), 1227-1238.
[http://dx.doi.org/10.5665/sleep.2892]
[39]
Morganti, J.M.; Jopson, T.D.; Liu, S.; Riparip, L.K.; Guandique, C.K.; Gupta, N.; Ferguson, A.R.; Rosi, S. CCR2 antagonism alters brain macrophage polarization and ameliorates cognitive dysfunction induced by traumatic brain injury. J. Neurosci., 2015, 35(2), 748-760.
[http://dx.doi.org/10.1523/JNEUROSCI.2405-14.2015] [PMID: 25589768]
[40]
Hammond, M.D.; Taylor, R.A.; Mullen, M.T.; Ai, Y.; Aguila, H.L.; Mack, M.; Kasner, S.E.; McCullough, L.D.; Sansing, L.H. CCR2+ Ly6C(hi) inflammatory monocyte recruitment exacerbates acute disability following intracerebral hemorrhage. J. Neurosci., 2014, 34(11), 3901-3909.
[http://dx.doi.org/10.1523/JNEUROSCI.4070-13.2014] [PMID: 24623768]
[41]
Yamasaki, R.; Lu, H.; Butovsky, O.; Ohno, N.; Rietsch, A.M.; Cialic, R.; Wu, P.M.; Doykan, C.E.; Lin, J.; Cotleur, A.C.; Kidd, G.; Zorlu, M.M.; Sun, N.; Hu, W.; Liu, L.; Lee, J.C.; Taylor, S.E.; Uehlein, L.; Dixon, D.; Gu, J.; Floruta, C.M.; Zhu, M.; Charo, I.F.; Weiner, H.L.; Ransohoff, R.M. Differential roles of microglia and monocytes in the inflamed central nervous system. J. Exp. Med., 2014, 211(8), 1533-1549.
[http://dx.doi.org/10.1084/jem.20132477] [PMID: 25002752]
[42]
Varvel, N.H.; Neher, J.J.; Bosch, A.; Wang, W.; Ransohoff, R.M.; Miller, R.J.; Dingledine, R. Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus. Proc. Natl. Acad. Sci. USA, 2016, 113(38), E5665-E5674.
[http://dx.doi.org/10.1073/pnas.1604263113] [PMID: 27601660]
[43]
Raschi, E.; Testoni, C.; Bosisio, D.; Borghi, M.O.; Koike, T.; Mantovani, A.; Meroni, P.L. Role of the MyD88 transduction signaling pathway in endothelial activation by antiphospholipid antibodies. Blood, 2003, 101(9), 3495-3500.
[http://dx.doi.org/10.1182/blood-2002-08-2349] [PMID: 12531807]
[44]
Yousef, H.; Czupalla, C.J.; Lee, D.; Chen, M.B.; Burke, A.N.; Zera, K.A.; Zandstra, J.; Berber, E.; Lehallier, B.; Mathur, V.; Nair, R.V.; Bonanno, L.N.; Yang, A.C.; Peterson, T.; Hadeiba, H.; Merkel, T.; Körbelin, J.; Schwaninger, M.; Buckwalter, M.S.; Quake, S.R.; Butcher, E.C.; Wyss-Coray, T. Aged blood impairs hippocampal neural precursor activity and activates microglia via brain endothelial cell VCAM1. Nat. Med., 2019, 25(6), 988-1000.
[http://dx.doi.org/10.1038/s41591-019-0440-4] [PMID: 31086348]
[45]
Hasegawa-Ishii, S.; Inaba, M.; Umegaki, H.; Unno, K.; Wakabayashi, K.; Shimada, A. Endotoxemia-induced cytokine-mediated responses of hippocampal astrocytes transmitted by cells of the brain–immune interface. Sci. Rep., 2016, 6(1), 25457.
[http://dx.doi.org/10.1038/srep25457] [PMID: 27149601]
[46]
Farina, C.; Aloisi, F.; Meinl, E. Astrocytes are active players in cerebral innate immunity. Trends Immunol., 2007, 28(3), 138-145.
[http://dx.doi.org/10.1016/j.it.2007.01.005] [PMID: 17276138]
[47]
Parajuli, B.; Horiuchi, H.; Mizuno, T.; Takeuchi, H.; Suzumura, A. CCL11 enhances excitotoxic neuronal death by producing reactive oxygen species in microglia. Glia, 2015, 63(12), 2274-2284.
[http://dx.doi.org/10.1002/glia.22892] [PMID: 26184677]
[48]
Liu, Y.; Li, M.; Zhang, Z.; Ye, Y.; Zhou, J. Role of microglia-neuron interactions in diabetic encephalopathy. Ageing Res. Rev., 2018, 42, 28-39.
[http://dx.doi.org/10.1016/j.arr.2017.12.005] [PMID: 29247713]
[49]
Marinelli, S.; Basilico, B.; Marrone, M.C.; Ragozzino, D. Microglia-neuron crosstalk: Signaling mechanism and control of synaptic transmission. Semin. Cell Dev. Biol., 2019, 94, 138-151.
[http://dx.doi.org/10.1016/j.semcdb.2019.05.017] [PMID: 31112798]
[50]
Liang, J.; Takeuchi, H.; Jin, S.; Noda, M.; Li, H.; Doi, Y.; Kawanokuchi, J.; Sonobe, Y.; Mizuno, T.; Suzumura, A. Glutamate induces neurotrophic factor production from microglia via protein kinase C pathway. Brain Res., 2010, 1322, 8-23.
[http://dx.doi.org/10.1016/j.brainres.2010.01.083] [PMID: 20138844]
[51]
Kaushal, V.; Schlichter, L.C. Mechanisms of microglia-mediated neurotoxicity in a new model of the stroke penumbra. J. Neurosci., 2008, 28(9), 2221-2230.
[http://dx.doi.org/10.1523/JNEUROSCI.5643-07.2008] [PMID: 18305255]
[52]
Wang, J. Li, J.; Sheng, X.; Zhao, H.; Cao, X.D.; Wang, Y.Q.; Wu, G.C. β-adrenoceptor mediated surgery-induced production of pro-inflammatory cytokines in rat microglia cells. J. Neuroimmunol., 2010, 223(1-2), 77-83.
[http://dx.doi.org/10.1016/j.jneuroim.2010.04.006] [PMID: 20452680]
[53]
Hoover, D.B. Cholinergic modulation of the immune system presents new approaches for treating inflammation. Pharmacol. Ther., 2017, 179, 1-16.
[http://dx.doi.org/10.1016/j.pharmthera.2017.05.002] [PMID: 28529069]
[54]
Ghosh, S.; Castillo, E.; Frias, E.S.; Swanson, R.A. Bioenergetic regulation of microglia. Glia, 2018, 66(6), 1200-1212.
[http://dx.doi.org/10.1002/glia.23271] [PMID: 29219210]
[55]
Wang, L.; Pavlou, S.; Du, X.; Bhuckory, M.; Xu, H.; Chen, M. Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol. Neurodegener., 2019, 14(1), 2.
[http://dx.doi.org/10.1186/s13024-019-0305-9] [PMID: 30634998]
[56]
Cheng, J.; Zhang, R.; Xu, Z.; Ke, Y.; Sun, R.; Yang, H.; Zhang, X.; Zhen, X.; Zheng, L.T. Early glycolytic reprogramming controls microglial inflammatory activation. J. Neuroinflammation, 2021, 18(1), 129.
[http://dx.doi.org/10.1186/s12974-021-02187-y] [PMID: 34107997]
[57]
Li, D.; Wang, C.; Yao, Y.; Chen, L.; Liu, G.; Zhang, R.; Liu, Q.; Shi, F.D.; Hao, J. mTORC1 pathway disruption ameliorates brain inflammation following stroke via a shift in microglia phenotype from M1 type to M2 type. FASEB J., 2016, 30(10), 3388-3399.
[http://dx.doi.org/10.1096/fj.201600495R] [PMID: 27342766]
[58]
Hu, Y.; Mai, W.; Chen, L.; Cao, K.; Zhang, B.; Zhang, Z.; Liu, Y.; Lou, H.; Duan, S.; Gao, Z. mTOR-mediated metabolic reprogramming shapes distinct microglia functions in response to lipopolysaccharide and ATP. Glia, 2020, 68(5), 1031-1045.
[http://dx.doi.org/10.1002/glia.23760] [PMID: 31793691]
[59]
Wang, J.; Yang, C.; Hou, X.; Xu, J.; Yun, Y.; Qin, L.; Yang, P. Rapamycin modulates the proinflammatory memory-like response of microglia induced by BAFF. Front. Immunol., 2021, 12, 639049.
[http://dx.doi.org/10.3389/fimmu.2021.639049] [PMID: 34054807]
[60]
Cheng, S.C.; Quintin, J.; Cramer, R.A.; Shepardson, K.M.; Saeed, S.; Kumar, V.; Giamarellos-Bourboulis, E.J.; Martens, J.H.A.; Rao, N.A.; Aghajanirefah, A.; Manjeri, G.R.; Li, Y.; Ifrim, D.C.; Arts, R.J.W.; van der Veer, B.M.J.W.; Deen, P.M.T.; Logie, C.; O’Neill, L.A.; Willems, P.; van de Veerdonk, F.L.; van der Meer, J.W.M.; Ng, A.; Joosten, L.A.B.; Wijmenga, C.; Stunnenberg, H.G.; Xavier, R.J.; Netea, M.G. mTOR- and HIF-1α–mediated aerobic glycolysis as metabolic basis for trained immunity. Science, 2014, 345(6204), 1250684.
[http://dx.doi.org/10.1126/science.1250684] [PMID: 25258083]
[61]
Liu, J.; Feng, R.; Wang, D.; Huo, T.; Jiang, H. Triclosan-induced glycolysis drives inflammatory activation in microglia via the Akt/mTOR/HIF 1α signaling pathway. Ecotoxicol. Environ. Saf., 2021, 224, 112664.
[http://dx.doi.org/10.1016/j.ecoenv.2021.112664] [PMID: 34416638]
[62]
Monsorno, K.; Buckinx, A.; Paolicelli, R.C. Microglial metabolic flexibility: Emerging roles for lactate. Trends Endocrinol. Metab., 2022, 33(3), 186-195.
[http://dx.doi.org/10.1016/j.tem.2021.12.001] [PMID: 34996673]
[63]
Kong, L.; Wang, Z.; Liang, X.; Wang, Y.; Gao, L.; Ma, C. Monocarboxylate transporter 1 promotes classical microglial activation and pro-inflammatory effect via 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3. J. Neuroinflammation, 2019, 16(1), 240.
[http://dx.doi.org/10.1186/s12974-019-1648-4] [PMID: 31779643]
[64]
Luo, W.; Hu, H.; Chang, R.; Zhong, J.; Knabel, M.; O’Meally, R.; Cole, R.N.; Pandey, A.; Semenza, G.L. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell, 2011, 145(5), 732-744.
[http://dx.doi.org/10.1016/j.cell.2011.03.054] [PMID: 21620138]
[65]
Peruzzotti-Jametti, L.; Pluchino, S. Targeting mitochondrial metabolism in neuroinflammation: Towards a therapy for progressive multiple sclerosis. Trends Mol. Med., 2018, 24(10), 838-855.
[http://dx.doi.org/10.1016/j.molmed.2018.07.007] [PMID: 30100517]
[66]
Bonfill-Teixidor, E.; Otxoa-de-Amezaga, A.; Font-Nieves, M.; Sans-Fons, M.G.; Planas, A.M. Differential expression of E-type prostanoid receptors 2 and 4 in microglia stimulated with lipopolysaccharide. J. Neuroinflammation, 2017, 14(1), 3.
[http://dx.doi.org/10.1186/s12974-016-0780-7] [PMID: 28086956]
[67]
Choi, S.H.; Aid, S.; Kim, H.W.; Jackson, S.H.; Bosetti, F. Inhibition of NADPH oxidase promotes alternative and anti-inflammatory microglial activation during neuroinflammation. J. Neurochem., 2012, 120(2), 292-301.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07572.x] [PMID: 22050439]
[68]
Tu, D.; Gao, Y.; Yang, R.; Guan, T.; Hong, J.S.; Gao, H.M. The pentose phosphate pathway regulates chronic neuroinflammation and dopaminergic neurodegeneration. J. Neuroinflammation, 2019, 16(1), 255.
[http://dx.doi.org/10.1186/s12974-019-1659-1] [PMID: 31805953]
[69]
Chausse, B.; Lewen, A.; Poschet, G.; Kann, O. Selective inhibition of mitochondrial respiratory complexes controls the transition of microglia into a neurotoxic phenotype in situ. Brain Behav. Immun., 2020, 88, 802-814.
[http://dx.doi.org/10.1016/j.bbi.2020.05.052] [PMID: 32446944]
[70]
Mancini, A.; Tantucci, M.; Mazzocchetti, P.; de Iure, A.; Durante, V.; Macchioni, L.; Giampà, C.; Alvino, A.; Gaetani, L.; Costa, C.; Tozzi, A.; Calabresi, P.; Di Filippo, M. Microglial activation and the nitric oxide/cGMP/PKG pathway underlie enhanced neuronal vulnerability to mitochondrial dysfunction in experimental multiple sclerosis. Neurobiol. Dis., 2018, 113, 97-108.
[http://dx.doi.org/10.1016/j.nbd.2018.01.002] [PMID: 29325869]
[71]
Qiu, H.; Zhao, R.; Fei, G.; Pan, X.; Sang, S.; Xu, Y.; Jin, B.; Jin, L.; Cheng, X.; Zhong, C. Dynamic change of intracellular metabolism of microglia evaluated by transcriptomics in an Alzheimer’s mouse model. J. Alzheimers Dis., 2021, 81(2), 517-531.
[http://dx.doi.org/10.3233/JAD-210213] [PMID: 33814454]
[72]
Grajchen, E.; Wouters, E.; van de Haterd, B.; Haidar, M.; Hardonnière, K.; Dierckx, T.; Van Broeckhoven, J.; Erens, C.; Hendrix, S.; Kerdine-Römer, S.; Hendriks, J.J.A.; Bogie, J.F.J. CD36-mediated uptake of myelin debris by macrophages and microglia reduces neuroinflammation. J. Neuroinflammation, 2020, 17(1), 224.
[http://dx.doi.org/10.1186/s12974-020-01899-x] [PMID: 32718316]
[73]
Kim, E.; Tolhurst, A.T.; Qin, L.Y.; Chen, X.Y.; Febbraio, M.; Cho, S. CD36/fatty acid translocase, an inflammatory mediator, is involved in hyperlipidemia-induced exacerbation in ischemic brain injury. J. Neurosci., 2008, 28(18), 4661-4670.
[http://dx.doi.org/10.1523/JNEUROSCI.0982-08.2008] [PMID: 18448643]
[74]
Stewart, C.R.; Stuart, L.M.; Wilkinson, K.; van Gils, J.M.; Deng, J.; Halle, A.; Rayner, K.J.; Boyer, L.; Zhong, R.; Frazier, W.A.; Lacy-Hulbert, A.; Khoury, J.E.; Golenbock, D.T.; Moore, K.J. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat. Immunol., 2010, 11(2), 155-161.
[http://dx.doi.org/10.1038/ni.1836] [PMID: 20037584]
[75]
Sun, G.Y.; Simonyi, A.; Fritsche, K.L.; Chuang, D.Y.; Hannink, M.; Gu, Z.; Greenlief, C.M.; Yao, J.K.; Lee, J.C.; Beversdorf, D.Q. Docosahexaenoic acid (DHA): An essential nutrient and a nutraceutical for brain health and diseases. Prostaglandins Leukot. Essent. Fatty Acids, 2018, 136, 3-13.
[http://dx.doi.org/10.1016/j.plefa.2017.03.006] [PMID: 28314621]
[76]
Peters, B.D.; Machielsen, M.W.J.; Hoen, W.P.; Caan, M.W.A.; Malhotra, A.K.; Szeszko, P.R.; Duran, M.; Olabarriaga, S.D.; de Haan, L. Polyunsaturated fatty acid concentration predicts myelin integrity in early-phase psychosis. Schizophr. Bull., 2013, 39(4), 830-838.
[http://dx.doi.org/10.1093/schbul/sbs089] [PMID: 22927668]
[77]
Yang, B.; Li, R.; Michael Greenlief, C.; Fritsche, K.L.; Gu, Z.; Cui, J.; Lee, J.C.; Beversdorf, D.Q.; Sun, G.Y. Unveiling anti-oxidative and anti-inflammatory effects of docosahexaenoic acid and its lipid peroxidation product on lipopolysaccharide-stimulated BV-2 microglial cells. J. Neuroinflammation, 2018, 15(1), 202.
[http://dx.doi.org/10.1186/s12974-018-1232-3] [PMID: 29986724]
[78]
Łuczaj, W.; Gęgotek, A.; Skrzydlewska, E. Antioxidants and HNE in redox homeostasis. Free Radic. Biol. Med., 2017, 111, 87-101.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.11.033] [PMID: 27888001]
[79]
Urso, C.J.; Zhou, H. Palmitic acid lipotoxicity in microglia cells is ameliorated by unsaturated fatty acids. Int. J. Mol. Sci., 2021, 22(16), 9093.
[http://dx.doi.org/10.3390/ijms22169093] [PMID: 34445796]
[80]
Layé, S.; Nadjar, A.; Joffre, C.; Bazinet, R.P. Anti-inflammatory effects of omega-3 fatty acids in the brain: Physiological mechanisms and relevance to pharmacology. Pharmacol. Rev., 2018, 70(1), 12-38.
[http://dx.doi.org/10.1124/pr.117.014092] [PMID: 29217656]
[81]
Choi, S.H.; Aid, S.; Bosetti, F. The distinct roles of cyclooxygenase-1 and -2 in neuroinflammation: Implications for translational research. Trends Pharmacol. Sci., 2009, 30(4), 174-181.
[http://dx.doi.org/10.1016/j.tips.2009.01.002] [PMID: 19269697]
[82]
Minhas, P.S.; Latif-Hernandez, A.; McReynolds, M.R.; Durairaj, A.S.; Wang, Q.; Rubin, A.; Joshi, A.U.; He, J.Q.; Gauba, E.; Liu, L.; Wang, C.; Linde, M.; Sugiura, Y.; Moon, P.K.; Majeti, R.; Suematsu, M.; Mochly-Rosen, D.; Weissman, I.L.; Longo, F.M.; Rabinowitz, J.D.; Andreasson, K.I. Restoring metabolism of myeloid cells reverses cognitive decline in ageing. Nature, 2021, 590(7844), 122-128.
[http://dx.doi.org/10.1038/s41586-020-03160-0] [PMID: 33473210]
[83]
Pocivavsek, A.; Burns, M.P.; Rebeck, G.W. Low-density lipoprotein receptors regulate microglial inflammation through c-Jun N-terminal kinase. Glia, 2009, 57(4), 444-453.
[http://dx.doi.org/10.1002/glia.20772] [PMID: 18803301]
[84]
Peng, J.; Pang, J.; Huang, L.; Enkhjargal, B.; Zhang, T.; Mo, J.; Wu, P.; Xu, W.; Zuo, Y.; Peng, J.; Zuo, G.; Chen, L.; Tang, J.; Zhang, J.H.; Jiang, Y. LRP1 activation attenuates white matter injury by modulating microglial polarization through Shc1/PI3K/Akt pathway after subarachnoid hemorrhage in rats. Redox Biol., 2019, 21, 101121.
[http://dx.doi.org/10.1016/j.redox.2019.101121] [PMID: 30703614]
[85]
Yang, L.; Liu, C.C.; Zheng, H.; Kanekiyo, T.; Atagi, Y.; Jia, L.; Wang, D.; N’songo, A.; Can, D.; Xu, H.; Chen, X.F.; Bu, G. LRP1 modulates the microglial immune response via regulation of JNK and NF-κB signaling pathways. J. Neuroinflammation, 2016, 13(1), 304.
[http://dx.doi.org/10.1186/s12974-016-0772-7] [PMID: 27931217]
[86]
Pocivavsek, A.; Mikhailenko, I.; Strickland, D.K.; Rebeck, G.W. Microglial low-density lipoprotein receptor-related protein 1 modulates c-Jun N-terminal kinase activation. J. Neuroimmunol., 2009, 214(1-2), 25-32.
[http://dx.doi.org/10.1016/j.jneuroim.2009.06.010] [PMID: 19586665]
[87]
Chen, S.; Peng, J.; Sherchan, P.; Ma, Y.; Xiang, S.; Yan, F.; Zhao, H.; Jiang, Y.; Wang, N.; Zhang, J.H.; Zhang, H. TREM2 activation attenuates neuroinflammation and neuronal apoptosis via PI3K/Akt pathway after intracerebral hemorrhage in mice. J. Neuroinflammation, 2020, 17(1), 168.
[http://dx.doi.org/10.1186/s12974-020-01853-x] [PMID: 32466767]
[88]
Shi, Y.; Andhey, P.S.; Ising, C.; Wang, K.; Snipes, L.L.; Boyer, K.; Lawson, S.; Yamada, K.; Qin, W.; Manis, M.; Serrano, J.R.; Benitez, B.A.; Schmidt, R.E.; Artyomov, M.; Ulrich, J.D.; Holtzman, D.M. Overexpressing low-density lipoprotein receptor reduces tau-associated neurodegeneration in relation to apoE-linked mechanisms. Neuron, 2021, 109(15), 2413-2426.e7.
[http://dx.doi.org/10.1016/j.neuron.2021.05.034] [PMID: 34157306]
[89]
Wang, H.; Eckel, R.H. Lipoprotein lipase: From gene to obesity. Am. J. Physiol. Endocrinol. Metab., 2009, 297(2), E271-E288.
[http://dx.doi.org/10.1152/ajpendo.90920.2008] [PMID: 19318514]
[90]
Bruce, K.D.; Gorkhali, S.; Given, K.; Coates, A.M.; Boyle, K.E.; Macklin, W.B.; Eckel, R.H. Lipoprotein lipase is a feature of alternatively-activated microglia and may facilitate lipid uptake in the CNS during demyelination. Front. Mol. Neurosci., 2018, 11, 57.
[http://dx.doi.org/10.3389/fnmol.2018.00057] [PMID: 29599706]
[91]
Gao, Y.; Vidal-Itriago, A.; Kalsbeek, M.J.; Layritz, C.; García-Cáceres, C.; Tom, R.Z.; Eichmann, T.O.; Vaz, F.M.; Houtkooper, R.H.; van der Wel, N.; Verhoeven, A.J.; Yan, J.; Kalsbeek, A.; Eckel, R.H.; Hofmann, S.M.; Yi, C.X. Lipoprotein lipase maintains microglial innate immunity in obesity. Cell Rep., 2017, 20(13), 3034-3042.
[http://dx.doi.org/10.1016/j.celrep.2017.09.008] [PMID: 28954222]
[92]
Nagy, A.M.; Fekete, R.; Horvath, G.; Koncsos, G.; Kriston, C.; Sebestyen, A.; Giricz, Z.; Kornyei, Z.; Madarasz, E.; Tretter, L. Versatility of microglial bioenergetic machinery under starving conditions. Biochim. Biophys. Acta Bioenerg., 2018, 1859(3), 201-214.
[http://dx.doi.org/10.1016/j.bbabio.2017.12.002] [PMID: 29273412]
[93]
Durán, R.V.; Oppliger, W.; Robitaille, A.M.; Heiserich, L.; Skendaj, R.; Gottlieb, E.; Hall, M.N. Glutaminolysis activates Rag-mTORC1 signaling. Mol. Cell, 2012, 47(3), 349-358.
[http://dx.doi.org/10.1016/j.molcel.2012.05.043] [PMID: 22749528]
[94]
Bernier, L.P.; York, E.M.; Kamyabi, A.; Choi, H.B.; Weilinger, N.L.; MacVicar, B.A. Microglial metabolic flexibility supports immune surveillance of the brain parenchyma. Nat. Commun., 2020, 11(1), 1559.
[http://dx.doi.org/10.1038/s41467-020-15267-z] [PMID: 32214088]
[95]
Moretti, R.; Giuffré, M.; Caruso, P.; Gazzin, S.; Tiribelli, C. Homocysteine in neurology: A possible contributing factor to small vessel disease. Int. J. Mol. Sci., 2021, 22(4), 2051.
[http://dx.doi.org/10.3390/ijms22042051] [PMID: 33669577]
[96]
Chen, S.; Dong, Z.; Cheng, M.; Zhao, Y.; Wang, M.; Sai, N.; Wang, X.; Liu, H.; Huang, G.; Zhang, X. Homocysteine exaggerates microglia activation and neuroinflammation through microglia localized STAT3 overactivation following ischemic stroke. J. Neuroinflammation, 2017, 14(1), 187.
[http://dx.doi.org/10.1186/s12974-017-0963-x] [PMID: 28923114]
[97]
Zou, C.G.; Zhao, Y.S.; Gao, S.Y.; Li, S.D.; Cao, X.Z.; Zhang, M.; Zhang, K.Q. Homocysteine promotes proliferation and activation of microglia. Neurobiol. Aging, 2010, 31(12), 2069-2079.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.11.007] [PMID: 19131143]
[98]
Velazquez, R.; Ferreira, E.; Winslow, W.; Dave, N.; Piras, I.S.; Naymik, M.; Huentelman, M.J.; Tran, A.; Caccamo, A.; Oddo, S. Maternal choline supplementation ameliorates Alzheimer’s disease pathology by reducing brain homocysteine levels across multiple generations. Mol. Psychiatry, 2020, 25(10), 2620-2629.
[http://dx.doi.org/10.1038/s41380-018-0322-z] [PMID: 30622336]
[99]
Lim, C.K.; Fernández-Gomez, F.J.; Braidy, N.; Estrada, C.; Costa, C.; Costa, S.; Bessede, A.; Fernandez-Villalba, E.; Zinger, A.; Herrero, M.T.; Guillemin, G.J. Involvement of the kynurenine pathway in the pathogenesis of Parkinson’s disease. Prog. Neurobiol., 2017, 155, 76-95.
[http://dx.doi.org/10.1016/j.pneurobio.2015.12.009] [PMID: 27072742]
[100]
Guillemin, G.J.; Smythe, G.; Takikawa, O.; Brew, B.J. Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia, 2005, 49(1), 15-23.
[http://dx.doi.org/10.1002/glia.20090] [PMID: 15390107]
[101]
Vilalta, A.; Brown, G.C. Deoxyglucose prevents neurodegeneration in culture by eliminating microglia. J. Neuroinflammation, 2014, 11(1), 58.
[http://dx.doi.org/10.1186/1742-2094-11-58] [PMID: 24669778]
[102]
Yeh, J.H.; Wang, K.C.; Kaizaki, A.; Lee, J.W.; Wei, H.C.; Tucci, M.A.; Ojeda, N.B.; Fan, L.W.; Tien, L.T. Pioglitazone ameliorates lipopolysaccharide-induced behavioral impairment, brain inflammation, white matter injury and mitochondrial dysfunction in neonatal rats. Int. J. Mol. Sci., 2021, 22(12), 6306.
[http://dx.doi.org/10.3390/ijms22126306] [PMID: 34208374]
[103]
Song, X.M.; Yu, Q.; Dong, X.; Yang, H.O.; Zeng, K.W.; Li, J.; Tu, P.F. Aldose reductase inhibitors attenuate β-amyloid-induced TNF-α production in microlgia via ROS-PKC-mediated NF-κB and MAPK pathways. Int. Immunopharmacol., 2017, 50, 30-37.
[http://dx.doi.org/10.1016/j.intimp.2017.06.005] [PMID: 28623716]
[104]
Pan, R.Y.; Ma, J.; Kong, X.X.; Wang, X.F.; Li, S.S.; Qi, X.L.; Yan, Y.H.; Cheng, J.; Liu, Q.; Jin, W.; Tan, C.H.; Yuan, Z. Sodium rutin ameliorates Alzheimer’s disease–like pathology by enhancing microglial amyloid-β clearance. Sci. Adv., 2019, 5(2), eaau6328.
[http://dx.doi.org/10.1126/sciadv.aau6328] [PMID: 30820451]
[105]
Lu, D.Y.; Tsao, Y.Y.; Leung, Y.M.; Su, K.P. Docosahexaenoic acid suppresses neuroinflammatory responses and induces heme oxygenase-1 expression in BV-2 microglia: Implications of antidepressant effects for ω-3 fatty acids. Neuropsychopharmacology, 2010, 35(11), 2238-2248.
[http://dx.doi.org/10.1038/npp.2010.98] [PMID: 20668435]
[106]
Ding, H.; Li, Y.; Chen, S.; Wen, Y.; Zhang, S.; Luo, E.; Li, X.; Zhong, W.; Zeng, H. Fisetin ameliorates cognitive impairment by activating mitophagy and suppressing neuroinflammation in rats with sepsis-associated encephalopathy. CNS Neurosci. Ther., 2022, 28(2), 247-258.
[http://dx.doi.org/10.1111/cns.13765] [PMID: 34837343]
[107]
Ling, J. Wu, Y.; Zou, X.; Chang, Y.; Li, G.; Fang, M. (―)-epicatechin reduces neuroinflammation, protects mitochondria function, and prevents cognitive impairment in sepsis-associated encephalopathy. Oxid. Med. Cell. Longev., 2022, 2022, 1-19.
[http://dx.doi.org/10.1155/2022/2657713] [PMID: 35656027]
[108]
Ingram, D.K.; Roth, G.S. Glycolytic inhibition: An effective strategy for developing calorie restriction mimetics. Geroscience, 2021, 43(3), 1159-1169.
[http://dx.doi.org/10.1007/s11357-020-00298-7] [PMID: 33184758]
[109]
Zhao, Q.; Wu, X.; Yan, S.; Xie, X.; Fan, Y.; Zhang, J.; Peng, C.; You, Z. The antidepressant-like effects of pioglitazone in a chronic mild stress mouse model are associated with PPARγ-mediated alteration of microglial activation phenotypes. J. Neuroinflammation, 2016, 13(1), 259.
[http://dx.doi.org/10.1186/s12974-016-0728-y] [PMID: 27716270]
[110]
Heneka, M.T.; Sastre, M.; Dumitrescu-Ozimek, L.; Hanke, A.; Dewachter, I.; Kuiperi, C.; O’Banion, K.; Klockgether, T.; Van Leuven, F.; Landreth, G.E. Acute treatment with the PPARγ agonist pioglitazone and ibuprofen reduces glial inflammation and Aβ1-42 levels in APPV717I transgenic mice. Brain, 2005, 128(6), 1442-1453.
[http://dx.doi.org/10.1093/brain/awh452] [PMID: 15817521]
[111]
Ramana, K.V.; Srivastava, S.K. Aldose reductase: A novel therapeutic target for inflammatory pathologies. Int. J. Biochem. Cell Biol., 2010, 42(1), 17-20.
[http://dx.doi.org/10.1016/j.biocel.2009.09.009] [PMID: 19778627]
[112]
Zhang, Q.; Bian, G.; Chen, P.; Liu, L.; Yu, C.; Liu, F.; Xue, Q.; Chung, S.K.; Song, B.; Ju, G.; Wang, J. Aldose reductase regulates microglia/macrophages polarization through the cAMP response element-binding protein after spinal cord injury in mice. Mol. Neurobiol., 2016, 53(1), 662-676.
[http://dx.doi.org/10.1007/s12035-014-9035-8] [PMID: 25520004]
[113]
Habtemariam, S. Rutin as a natural therapy for alzheimer’s disease: Insights into its mechanisms of action. Curr. Med. Chem., 2016, 23(9), 860-873.
[http://dx.doi.org/10.2174/0929867323666160217124333] [PMID: 26898570]
[114]
McDougle, D.R.; Watson, J.E.; Abdeen, A.A.; Adili, R.; Caputo, M.P.; Krapf, J.E.; Johnson, R.W.; Kilian, K.A.; Holinstat, M.; Das, A. Anti-inflammatory ω-3 endocannabinoid epoxides. Proc. Natl. Acad. Sci. USA, 2017, 114(30), E6034-E6043.
[http://dx.doi.org/10.1073/pnas.1610325114] [PMID: 28687674]
[115]
Bernatova, I. Biological activities of (―)-epicatechin and (―)-epicatechin-containing foods: Focus on cardiovascular and neuropsychological health. Biotechnol. Adv., 2018, 36(3), 666-681.
[http://dx.doi.org/10.1016/j.biotechadv.2018.01.009] [PMID: 29355598]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy