Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Research Article

Sex, Age, and Regional Differences in CHRM1 and CHRM3 Genes Expression Levels in the Human Brain Biopsies: Potential Targets for Alzheimer's Disease-related Sleep Disturbances

Author(s): Cristina Sanfilippo, Loretta Giuliano, Paola Castrogiovanni, Rosa Imbesi, Martina Ulivieri, Francesco Fazio, Kaj Blennow, Henrik Zetterberg and Michelino Di Rosa*

Volume 21, Issue 3, 2023

Published on: 03 January, 2023

Page: [740 - 760] Pages: 21

DOI: 10.2174/1570159X21666221207091209

Price: $65

conference banner
Abstract

Background: Cholinergic hypofunction and sleep disturbance are hallmarks of Alzheimer’s disease (AD), a progressive disorder leading to neuronal deterioration. Muscarinic acetylcholine receptors (M1-5 or mAChRs), expressed in hippocampus and cerebral cortex, play a pivotal role in the aberrant alterations of cognitive processing, memory, and learning, observed in AD. Recent evidence shows that two mAChRs, M1 and M3, encoded by CHRM1 and CHRM3 genes, respectively, are involved in sleep functions and, peculiarly, in rapid eye movement (REM) sleep.

Methods: We used twenty microarray datasets extrapolated from post-mortem brain tissue of nondemented healthy controls (NDHC) and AD patients to examine the expression profile of CHRM1 and CHRM3 genes. Samples were from eight brain regions and stratified according to age and sex.

Results: CHRM1 and CHRM3 expression levels were significantly reduced in AD compared with ageand sex-matched NDHC brains. A negative correlation with age emerged for both CHRM1 and CHRM3 in NDHC but not in AD brains. Notably, a marked positive correlation was also revealed between the neurogranin (NRGN) and both CHRM1 and CHRM3 genes. These associations were modulated by sex. Accordingly, in the temporal and occipital regions of NDHC subjects, males expressed higher levels of CHRM1 and CHRM3, respectively, than females. In AD patients, males expressed higher levels of CHRM1 and CHRM3 in the temporal and frontal regions, respectively, than females.

Conclusion: Thus, substantial differences, all strictly linked to the brain region analyzed, age, and sex, exist in CHRM1 and CHRM3 brain levels both in NDHC subjects and in AD patients.

Keywords: Alzheimer’s disease, REM-Sleep, sleep disturbance, bioinformatics, CHRM1, CHRM3.

« Previous
Graphical Abstract
[1]
Ahmed, R.M.; Paterson, R.W.; Warren, J.D.; Zetterberg, H.; O’Brien, J.T.; Fox, N.C.; Halliday, G.M.; Schott, J.M. Biomarkers in dementia: clinical utility and new directions. J. Neurol. Neurosurg. Psychiatry, 2014, 85(12), 1426-1434.
[http://dx.doi.org/10.1136/jnnp-2014-307662] [PMID: 25261571]
[2]
Blennow, K.; Zetterberg, H. Biomarkers for Alzheimer’s disease: current status and prospects for the future. J. Intern. Med., 2018, 284(6), 643-663.
[http://dx.doi.org/10.1111/joim.12816] [PMID: 30051512]
[3]
Blennow, K.; de Leon, M.J.; Zetterberg, H. Alzheimer’s disease. Lancet, 2006, 368(9533), 387-403.
[http://dx.doi.org/10.1016/S0140-6736(06)69113-7] [PMID: 16876668]
[4]
Quiroz, Y.T.; Zetterberg, H.; Reiman, E.M.; Chen, Y.; Su, Y.; Fox-Fuller, J.T.; Garcia, G.; Villegas, A.; Sepulveda-Falla, D.; Villada, M.; Arboleda-Velasquez, J.F.; Guzmán-Vélez, E.; Vila-Castelar, C.; Gordon, B.A.; Schultz, S.A.; Protas, H.D.; Ghisays, V.; Giraldo, M.; Tirado, V.; Baena, A.; Munoz, C.; Rios-Romenets, S.; Tariot, P.N.; Blennow, K.; Lopera, F. Plasma neurofilament light chain in the presenilin 1 E280A autosomal dominant Alzheimer’s disease kindred: a cross-sectional and longitudinal cohort study. Lancet Neurol., 2020, 19(6), 513-521.
[http://dx.doi.org/10.1016/S1474-4422(20)30137-X] [PMID: 32470423]
[5]
Sperling, R.A.; Aisen, P.S.; Beckett, L.A.; Bennett, D.A.; Craft, S.; Fagan, A.M.; Iwatsubo, T.; Jack, C.R., Jr; Kaye, J.; Montine, T.J.; Park, D.C.; Reiman, E.M.; Rowe, C.C.; Siemers, E.; Stern, Y.; Yaffe, K.; Carrillo, M.C.; Thies, B.; Morrison-Bogorad, M.; Wagster, M.V.; Phelps, C.H. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement., 2011, 7(3), 280-292.
[http://dx.doi.org/10.1016/j.jalz.2011.03.003] [PMID: 21514248]
[6]
Bateman, R.J.; Xiong, C.; Benzinger, T.L.; Fagan, A.M.; Goate, A.; Fox, N.C.; Marcus, D.S.; Cairns, N.J.; Xie, X.; Blazey, T.M.; Holtzman, D.M.; Santacruz, A.; Buckles, V.; Oliver, A.; Moulder, K.; Aisen, P.S.; Ghetti, B.; Klunk, W.E.; McDade, E.; Martins, R.N.; Masters, C.L.; Mayeux, R.; Ringman, J.M.; Rossor, M.N.; Schofield, P.R.; Sperling, R.A.; Salloway, S.; Morris, J.C.; Dominantly Inherited Alzheimer, N. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N. Engl. J. Med., 2012, 367(9), 795-804.
[http://dx.doi.org/10.1056/NEJMoa1202753] [PMID: 22784036]
[7]
Fagan, A.M.; Xiong, C.; Jasielec, M.S.; Bateman, R.J.; Goate, A.M.; Benzinger, T.L.; Ghetti, B.; Martins, R.N.; Masters, C.L.; Mayeux, R.; Ringman, J.M.; Rossor, M.N.; Salloway, S.; Schofield, P.R.; Sperling, R.A.; Marcus, D.; Cairns, N.J.; Buckles, V.D.; Ladenson, J.H.; Morris, J.C.; Holtzman, D.M.; Dominantly Inherited Alzheimer, N. Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer’s disease. Sci. Transl. Med., 2014, 6(226)226ra30
[http://dx.doi.org/10.1126/scitranslmed.3007901] [PMID: 24598588]
[8]
Hernández, F.; Avila, J. Tauopathies. Cell. Mol. Life Sci., 2007, 64(17), 2219-2233.
[http://dx.doi.org/10.1007/s00018-007-7220-x] [PMID: 17604998]
[9]
Liu, W.; Lin, H.; He, X.; Chen, L.; Dai, Y.; Jia, W.; Xue, X.; Tao, J.; Chen, L. Neurogranin as a cognitive biomarker in cerebrospinal fluid and blood exosomes for Alzheimer’s disease and mild cognitive impairment. Transl. Psychiatry, 2020, 10(1), 125.
[http://dx.doi.org/10.1038/s41398-020-0801-2] [PMID: 32350238]
[10]
Rudelli, R.D.; Ambler, M.W.; Wisniewski, H.M. Morphology and distribution of Alzheimer neuritic (senile) and amyloid plaques in striatum and diencephalon. Acta Neuropathol., 1984, 64(4), 273-281.
[http://dx.doi.org/10.1007/BF00690393] [PMID: 6542292]
[11]
Ju, Y.E.; Lucey, B.P.; Holtzman, D.M. Sleep and Alzheimer disease pathology--a bidirectional relationship. Nat. Rev. Neurol., 2014, 10(2), 115-119.
[http://dx.doi.org/10.1038/nrneurol.2013.269] [PMID: 24366271]
[12]
Moe, K.E.; Vitiello, M.V.; Larsen, L.H.; Prinz, P.N. Symposium: Cognitive processes and sleep disturbances: Sleep/wake patterns in Alzheimer’s disease: relationships with cognition and function. J. Sleep Res., 1995, 4(1), 15-20.
[http://dx.doi.org/10.1111/j.1365-2869.1995.tb00145.x] [PMID: 10607136]
[13]
Jackson, C.E.; Snyder, P.J. Electroencephalography and event-related potentials as biomarkers of mild cognitive impairment and mild Alzheimer’s disease. Alzheimers Dement., 2008, 4(1)(Suppl. 1), S137-S143.
[http://dx.doi.org/10.1016/j.jalz.2007.10.008] [PMID: 18631990]
[14]
Moran, M.; Lynch, C.A.; Walsh, C.; Coen, R.; Coakley, D.; Lawlor, B.A. Sleep disturbance in mild to moderate Alzheimer’s disease. Sleep Med., 2005, 6(4), 347-352.
[http://dx.doi.org/10.1016/j.sleep.2004.12.005] [PMID: 15978517]
[15]
Beaulieu-Bonneau, S.; Hudon, C. Sleep disturbances in older adults with mild cognitive impairment. Int. Psychogeriatr., 2009, 21(4), 654-666.
[http://dx.doi.org/10.1017/S1041610209009120] [PMID: 19426575]
[16]
Craig, D.; Hart, D.J.; Passmore, A.P. Genetically increased risk of sleep disruption in Alzheimer’s disease. Sleep, 2006, 29(8), 1003-1007.
[http://dx.doi.org/10.1093/sleep/29.8.1003] [PMID: 16944667]
[17]
Pace-Schott, E.F.; Spencer, R.M. Age-related changes in the cognitive function of sleep. Prog. Brain Res; , 2011, p. 191, 75-89.
[http://dx.doi.org/10.1016/B978-0-444-53752-2.00012-6] [PMID: 21741545]
[18]
Lim, M.M.; Gerstner, J.R.; Holtzman, D.M. The sleep-wake cycle and Alzheimer’s disease: what do we know? Neurodegener. Dis. Manag., 2014, 4(5), 351-362.
[http://dx.doi.org/10.2217/nmt.14.33] [PMID: 25405649]
[19]
Lloret, M.A.; Cervera-Ferri, A.; Nepomuceno, M.; Monllor, P.; Esteve, D.; Lloret, A. Is sleep disruption a cause or consequence of Alzheimer’s disease? reviewing its possible role as a biomarker. Int. J. Mol. Sci., 2020, 21(3), 21.
[http://dx.doi.org/10.3390/ijms21031168] [PMID: 32050587]
[20]
Abel, T.; Havekes, R.; Saletin, J.M.; Walker, M.P. Sleep, plasticity and memory from molecules to whole-brain networks. Curr. Biol., 2013, 23(17), R774-R788.
[http://dx.doi.org/10.1016/j.cub.2013.07.025] [PMID: 24028961]
[21]
Maquet, P. The role of sleep in learning and memory. Science, 2001, 294(5544), 1048-1052.
[http://dx.doi.org/10.1126/science.1062856] [PMID: 11691982]
[22]
Casement, M.D.; Broussard, J.L.; Mullington, J.M.; Press, D.Z. The contribution of sleep to improvements in working memory scanning speed: a study of prolonged sleep restriction. Biol. Psychol., 2006, 72(2), 208-212.
[http://dx.doi.org/10.1016/j.biopsycho.2005.11.002] [PMID: 16384630]
[23]
Graves, L.A.; Heller, E.A.; Pack, A.I.; Abel, T. Sleep deprivation selectively impairs memory consolidation for contextual fear conditioning. Learn. Mem., 2003, 10(3), 168-176.
[http://dx.doi.org/10.1101/lm.48803] [PMID: 12773581]
[24]
Prince, T.M.; Wimmer, M.; Choi, J.; Havekes, R.; Aton, S.; Abel, T. Sleep deprivation during a specific 3-hour time window post-training impairs hippocampal synaptic plasticity and memory. Neurobiol. Learn. Mem., 2014, 109, 122-130.
[http://dx.doi.org/10.1016/j.nlm.2013.11.021] [PMID: 24380868]
[25]
Swetha, R.; Kumar, D.; Gupta, S.K.; Ganeshpurkar, A.; Singh, R.; Gutti, G.; Kumar, D.; Jana, S.; Krishnamurthy, S.; Singh, S.K. Multifunctional hybrid sulfonamides as novel therapeutic agents for Alzheimer’s disease. Future Med. Chem., 2019, 11(24), 3161-3178.
[http://dx.doi.org/10.4155/fmc-2019-0106] [PMID: 31838895]
[26]
Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimer’s disease: Targeting the cholinergic system. Curr. Neuropharmacol., 2016, 14(1), 101-115.
[http://dx.doi.org/10.2174/1570159X13666150716165726] [PMID: 26813123]
[27]
Veeraragavan, S.; Bui, N.; Perkins, J.R.; Yuva-Paylor, L.A.; Carpenter, R.L.; Paylor, R. Modulation of behavioral phenotypes by a muscarinic M1 antagonist in a mouse model of fragile X syndrome. Psychopharmacology (Berl.), 2011, 217(1), 143-151.
[http://dx.doi.org/10.1007/s00213-011-2276-6] [PMID: 21487657]
[28]
Verma, S.; Kumar, A.; Tripathi, T.; Kumar, A. Muscarinic and nicotinic acetylcholine receptor agonists: current scenario in Alzheimer’s disease therapy. J. Pharm. Pharmacol., 2018, 70(8), 985-993.
[http://dx.doi.org/10.1111/jphp.12919] [PMID: 29663387]
[29]
Roeren, T.; LeVeen, R.F.; Nugent, L. Photoplethysmographic documentation of improved microcirculation after pentoxifylline therapy. Angiology, 1988, 39(11), 929-933.
[http://dx.doi.org/10.1177/000331978803901101] [PMID: 3177959]
[30]
Caulfield, M.P.; Birdsall, N.J. International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol. Rev., 1998, 50(2), 279-290.
[PMID: 9647869]
[31]
Weston-Green, K.; Huang, X.F.; Lian, J.; Deng, C. Effects of olanzapine on muscarinic M3 receptor binding density in the brain relates to weight gain, plasma insulin and metabolic hormone levels. Eur. Neuropsychopharmacol., 2012, 22(5), 364-373.
[http://dx.doi.org/10.1016/j.euroneuro.2011.09.003] [PMID: 21982116]
[32]
Lang, W.; Henke, H. Cholinergic receptor binding and autoradiography in brains of non-neurological and senile dementia of Alzheimer-type patients. Brain Res., 1983, 267(2), 271-280.
[http://dx.doi.org/10.1016/0006-8993(83)90879-X] [PMID: 6871676]
[33]
Piggott, M.A.; Owens, J.; O’Brien, J.; Colloby, S.; Fenwick, J.; Wyper, D.; Jaros, E.; Johnson, M.; Perry, R.H.; Perry, E.K. Muscarinic receptors in basal ganglia in dementia with Lewy bodies, Parkinson’s disease and Alzheimer’s disease. J. Chem. Neuroanat., 2003, 25(3), 161-173.
[http://dx.doi.org/10.1016/S0891-0618(03)00002-4] [PMID: 12706204]
[34]
Scarr, E.; McLean, C.; Dean, B. Higher levels of different muscarinic receptors in the cortex and hippocampus from subjects with Alzheimer’s disease. J. Neural Transm. (Vienna), 2017, 124(3), 273-284.
[http://dx.doi.org/10.1007/s00702-016-1625-3] [PMID: 27688247]
[35]
Colloby, S.J.; McKeith, I.G.; Wyper, D.J.; O’Brien, J.T.; Taylor, J.P. Regional covariance of muscarinic acetylcholine receptors in Alzheimer’s disease using (R, R) [(123)I]-QNB SPECT. J. Neurol., 2015, 262(9), 2144-2153.
[http://dx.doi.org/10.1007/s00415-015-7827-z] [PMID: 26122542]
[36]
Holman, B.L.; Gibson, R.E.; Hill, T.C.; Eckelman, W.C.; Albert, M.; Reba, R.C. Muscarinic acetylcholine receptors in Alzheimer’s disease. In vivo imaging with iodine 123-labeled 3-quinuclidinyl-4-iodobenzilate and emission tomography. JAMA, 1985, 254(21), 3063-3066.
[http://dx.doi.org/10.1001/jama.1985.03360210079035] [PMID: 3877181]
[37]
Jiang, S.; Li, Y.; Zhang, C.; Zhao, Y.; Bu, G.; Xu, H.; Zhang, Y.W. M1 muscarinic acetylcholine receptor in Alzheimer’s disease. Neurosci. Bull., 2014, 30(2), 295-307.
[http://dx.doi.org/10.1007/s12264-013-1406-z] [PMID: 24590577]
[38]
Conn, P.J.; Jones, C.K.; Lindsley, C.W. Subtype-selective allosteric modulators of muscarinic receptors for the treatment of CNS disorders. Trends Pharmacol. Sci., 2009, 30(3), 148-155.
[http://dx.doi.org/10.1016/j.tips.2008.12.002] [PMID: 19201489]
[39]
Davis, A.A.; Fritz, J.J.; Wess, J.; Lah, J.J.; Levey, A.I. Deletion of M1 muscarinic acetylcholine receptors increases amyloid pathology in vitro and in vivo. J. Neurosci., 2010, 30(12), 4190-4196.
[http://dx.doi.org/10.1523/JNEUROSCI.6393-09.2010] [PMID: 20335454]
[40]
Niwa, Y.; Kanda, G.N.; Yamada, R.G.; Shi, S.; Sunagawa, G.A.; Ukai-Tadenuma, M.; Fujishima, H.; Matsumoto, N.; Masumoto, K.H.; Nagano, M.; Kasukawa, T.; Galloway, J.; Perrin, D.; Shigeyoshi, Y.; Ukai, H.; Kiyonari, H.; Sumiyama, K.; Ueda, H.R. Muscarinic acetylcholine receptors Chrm1 and Chrm3 are essential for REM sleep. Cell Rep., 2018, 24(9), 2231-2247.e7.
[http://dx.doi.org/10.1016/j.celrep.2018.07.082] [PMID: 30157420]
[41]
Murillo-Rodriguez, E.; Arias-Carrion, O.; Zavala-Garcia, A.; Sarro-Ramirez, A.; Huitron-Resendiz, S.; Arankowsky-Sandoval, G. Basic sleep mechanisms: an integrative review. Cent. Nerv. Syst. Agents Med. Chem., 2012, 12(1), 38-54.
[http://dx.doi.org/10.2174/187152412800229107] [PMID: 22524274]
[42]
Williams, J.H.; Kauer, J.A. Properties of carbachol-induced oscillatory activity in rat hippocampus. J. Neurophysiol., 1997, 78(5), 2631-2640.
[http://dx.doi.org/10.1152/jn.1997.78.5.2631] [PMID: 9356412]
[43]
Fellous, J.M.; Sejnowski, T.J. Cholinergic induction of oscillations in the hippocampal slice in the slow (0.5-2 Hz), theta (5-12 Hz), and gamma (35-70 Hz) bands. Hippocampus, 2000, 10(2), 187-197.
[http://dx.doi.org/10.1002/(SICI)1098-1063(2000)10:2<187:AID-HIPO8>3.0.CO;2-M] [PMID: 10791841]
[44]
Manseau, F.; Danik, M.; Williams, S. A functional glutamatergic neurone network in the medial septum and diagonal band area. J. Physiol., 2005, 566(Pt 3), 865-884.
[http://dx.doi.org/10.1113/jphysiol.2005.089664] [PMID: 15919710]
[45]
Kim, E.J.; Jeong, D.U. Transdermal scopolamine alters phasic REM activity in normal young adults. Sleep, 1999, 22(4), 515-520.
[http://dx.doi.org/10.1093/sleep/22.4.515] [PMID: 10389227]
[46]
Buzsáki, G. Theta oscillations in the hippocampus. Neuron, 2002, 33(3), 325-340.
[http://dx.doi.org/10.1016/S0896-6273(02)00586-X] [PMID: 11832222]
[47]
Sjöstedt, E.; Zhong, W.; Fagerberg, L.; Karlsson, M.; Mitsios, N.; Adori, C.; Oksvold, P.; Edfors, F.; Limiszewska, A.; Hikmet, F.; Huang, J.; Du, Y.; Lin, L.; Dong, Z.; Yang, L.; Liu, X.; Jiang, H.; Xu, X.; Wang, J.; Yang, H.; Bolund, L.; Mardinoglu, A.; Zhang, C.; von Feilitzen, K.; Lindskog, C.; Pontén, F.; Luo, Y.; Hökfelt, T.; Uhlén, M.; Mulder, J. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science, 2020, 367(6482), 367.
[http://dx.doi.org/10.1126/science.aay5947] [PMID: 32139519]
[48]
Narayanan, M.; Huynh, J.L.; Wang, K.; Yang, X.; Yoo, S.; McElwee, J.; Zhang, B.; Zhang, C.; Lamb, J.R.; Xie, T.; Suver, C.; Molony, C.; Melquist, S.; Johnson, A.D.; Fan, G.; Stone, D.J.; Schadt, E.E.; Casaccia, P.; Emilsson, V.; Zhu, J. Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative diseases. Mol. Syst. Biol., 2014, 10, 743.
[http://dx.doi.org/10.15252/msb.20145304] [PMID: 25080494]
[49]
Kumaran, R.; Cookson, M.R. Pathways to Parkinsonism Redux: convergent pathobiological mechanisms in genetics of Parkinson’s disease. Hum. Mol. Genet., 2015, 24(R1), R32-R44.
[http://dx.doi.org/10.1093/hmg/ddv236] [PMID: 26101198]
[50]
Chen, C.; Meng, Q.; Xia, Y.; Ding, C.; Wang, L.; Dai, R.; Cheng, L.; Gunaratne, P.; Gibbs, R.A.; Min, S.; Coarfa, C.; Reid, J.G.; Zhang, C.; Jiao, C.; Jiang, Y.; Giase, G.; Thomas, A.; Fitzgerald, D.; Brunetti, T.; Shieh, A.; Xia, C.; Wang, Y.; Wang, Y.; Badner, J.A.; Gershon, E.S.; White, K.P.; Liu, C. The transcription factor POU3F2 regulates a gene coexpression network in brain tissue from patients with psychiatric disorders. Sci. Transl. Med., 2018, 10(472), 10.
[http://dx.doi.org/10.1126/scitranslmed.aat8178] [PMID: 30545964]
[51]
Gibbs, J.R.; van der Brug, M.P.; Hernandez, D.G.; Traynor, B.J.; Nalls, M.A.; Lai, S.L.; Arepalli, S.; Dillman, A.; Rafferty, I.P.; Troncoso, J.; Johnson, R.; Zielke, H.R.; Ferrucci, L.; Longo, D.L.; Cookson, M.R.; Singleton, A.B. Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet., 2010, 6(5)e1000952
[http://dx.doi.org/10.1371/journal.pgen.1000952] [PMID: 20485568]
[52]
Zhang, B.; Gaiteri, C.; Bodea, L.G.; Wang, Z.; McElwee, J.; Podtelezhnikov, A.A.; Zhang, C.; Xie, T.; Tran, L.; Dobrin, R.; Fluder, E.; Clurman, B.; Melquist, S.; Narayanan, M.; Suver, C.; Shah, H.; Mahajan, M.; Gillis, T.; Mysore, J.; MacDonald, M.E.; Lamb, J.R.; Bennett, D.A.; Molony, C.; Stone, D.J.; Gudnason, V.; Myers, A.J.; Schadt, E.E.; Neumann, H.; Zhu, J.; Emilsson, V. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell, 2013, 153(3), 707-720.
[http://dx.doi.org/10.1016/j.cell.2013.03.030] [PMID: 23622250]
[53]
Hernandez, D.G.; Nalls, M.A.; Moore, M.; Chong, S.; Dillman, A.; Trabzuni, D.; Gibbs, J.R.; Ryten, M.; Arepalli, S.; Weale, M.E.; Zonderman, A.B.; Troncoso, J.; O’Brien, R.; Walker, R.; Smith, C.; Bandinelli, S.; Traynor, B.J.; Hardy, J.; Singleton, A.B.; Cookson, M.R. Integration of GWAS SNPs and tissue specific expression profiling reveal discrete eQTLs for human traits in blood and brain. Neurobiol. Dis., 2012, 47(1), 20-28.
[http://dx.doi.org/10.1016/j.nbd.2012.03.020] [PMID: 22433082]
[54]
Trabzuni, D.; Ramasamy, A.; Imran, S.; Walker, R.; Smith, C.; Weale, M.E.; Hardy, J.; Ryten, M. Widespread sex differences in gene expression and splicing in the adult human brain. Nat. Commun., 2013, 4, 2771.
[http://dx.doi.org/10.1038/ncomms3771] [PMID: 24264146]
[55]
Patel, H.; Hodges, A.K.; Curtis, C.; Lee, S.H.; Troakes, C.; Dobson, R.J.B.; Newhouse, S.J. Transcriptomic analysis of probable asymptomatic and symptomatic alzheimer brains. Brain Behav. Immun., 2019, 80, 644-656.
[http://dx.doi.org/10.1016/j.bbi.2019.05.009] [PMID: 31063847]
[56]
Kang, H.J.; Kawasawa, Y.I.; Cheng, F.; Zhu, Y.; Xu, X.; Li, M.; Sousa, A.M.; Pletikos, M.; Meyer, K.A.; Sedmak, G.; Guennel, T.; Shin, Y.; Johnson, M.B.; Krsnik, Z.; Mayer, S.; Fertuzinhos, S.; Umlauf, S.; Lisgo, S.N.; Vortmeyer, A.; Weinberger, D.R.; Mane, S.; Hyde, T.M.; Huttner, A.; Reimers, M.; Kleinman, J.E.; Sestan, N. Spatio-temporal transcriptome of the human brain. Nature, 2011, 478(7370), 483-489.
[http://dx.doi.org/10.1038/nature10523] [PMID: 22031440]
[57]
French, L.; Ma, T.; Oh, H.; Tseng, G.C.; Sibille, E. Age-related gene expression in the frontal cortex suggests synaptic function changes in specific inhibitory neuron subtypes. Front. Aging Neurosci., 2017, 9, 162.
[http://dx.doi.org/10.3389/fnagi.2017.00162] [PMID: 28611654]
[58]
Hokama, M.; Oka, S.; Leon, J.; Ninomiya, T.; Honda, H.; Sasaki, K.; Iwaki, T.; Ohara, T.; Sasaki, T.; LaFerla, F.M.; Kiyohara, Y.; Nakabeppu, Y. Altered expression of diabetes-related genes in Alzheimer’s disease brains: the Hisayama study. Cereb. Cortex, 2014, 24(9), 2476-2488.
[http://dx.doi.org/10.1093/cercor/bht101] [PMID: 23595620]
[59]
Durrenberger, P.F.; Fernando, F.S.; Kashefi, S.N.; Bonnert, T.P.; Seilhean, D.; Nait-Oumesmar, B.; Schmitt, A.; Gebicke-Haerter, P.J.; Falkai, P.; Grünblatt, E.; Palkovits, M.; Arzberger, T.; Kretzschmar, H.; Dexter, D.T.; Reynolds, R. Common mechanisms in neurodegeneration and neuroinflammation: a BrainNet Europe gene expression microarray study. J. Neural Transm. (Vienna), 2015, 122(7), 1055-1068.
[http://dx.doi.org/10.1007/s00702-014-1293-0] [PMID: 25119539]
[60]
Wang, M.; Roussos, P.; McKenzie, A.; Zhou, X.; Kajiwara, Y.; Brennand, K.J.; De Luca, G.C.; Crary, J.F.; Casaccia, P.; Buxbaum, J.D.; Ehrlich, M.; Gandy, S.; Goate, A.; Katsel, P.; Schadt, E.; Haroutunian, V.; Zhang, B. Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer’s disease. Genome Med., 2016, 8(1), 104.
[http://dx.doi.org/10.1186/s13073-016-0355-3] [PMID: 27799057]
[61]
Liang, W.S.; Dunckley, T.; Beach, T.G.; Grover, A.; Mastroeni, D.; Walker, D.G.; Caselli, R.J.; Kukull, W.A.; McKeel, D.; Morris, J.C.; Hulette, C.; Schmechel, D.; Alexander, G.E.; Reiman, E.M.; Rogers, J.; Stephan, D.A. Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain. Physiol. Genomics, 2007, 28(3), 311-322.
[http://dx.doi.org/10.1152/physiolgenomics.00208.2006] [PMID: 17077275]
[62]
Berchtold, N.C.; Cribbs, D.H.; Coleman, P.D.; Rogers, J.; Head, E.; Kim, R.; Beach, T.; Miller, C.; Troncoso, J.; Trojanowski, J.Q.; Zielke, H.R.; Cotman, C.W. Gene expression changes in the course of normal brain aging are sexually dimorphic. Proc. Natl. Acad. Sci. USA, 2008, 105(40), 15605-15610.
[http://dx.doi.org/10.1073/pnas.0806883105] [PMID: 18832152]
[63]
Berchtold, N.C.; Coleman, P.D.; Cribbs, D.H.; Rogers, J.; Gillen, D.L.; Cotman, C.W. Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer’s disease. Neurobiol. Aging, 2013, 34(6), 1653-1661.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.11.024] [PMID: 23273601]
[64]
Gelman, B.B.; Chen, T.; Lisinicchia, J.G.; Soukup, V.M.; Carmical, J.R.; Starkey, J.M.; Masliah, E.; Commins, D.L.; Brandt, D.; Grant, I.; Singer, E.J.; Levine, A.J.; Miller, J.; Winkler, J.M.; Fox, H.S.; Luxon, B.A.; Morgello, S. The National NeuroAIDS Tissue Consortium brain gene array: two types of HIV-associated neurocognitive impairment. PLoS One, 2012, 7(9)e46178
[http://dx.doi.org/10.1371/journal.pone.0046178] [PMID: 23049970]
[65]
Blalock, E.M.; Buechel, H.M.; Popovic, J.; Geddes, J.W.; Landfield, P.W. Microarray analyses of laser-captured hippocampus reveal distinct gray and white matter signatures associated with incipient Alzheimer’s disease. J. Chem. Neuroanat., 2011, 42(2), 118-126.
[http://dx.doi.org/10.1016/j.jchemneu.2011.06.007] [PMID: 21756998]
[66]
Piras, I.S.; Krate, J.; Delvaux, E.; Nolz, J.; Mastroeni, D.F.; Persico, A.M.; Jepsen, W.M.; Beach, T.G.; Huentelman, M.J.; Coleman, P.D. Transcriptome changes in the Alzheimer’s disease middle temporal gyrus: Importance of RNA metabolism and mitochondria-associated membrane genes. J. Alzheimers Dis., 2019, 70(3), 691-713.
[http://dx.doi.org/10.3233/JAD-181113] [PMID: 31256118]
[67]
Antonell, A.; Lladó, A.; Altirriba, J.; Botta-Orfila, T.; Balasa, M.; Fernández, M.; Ferrer, I.; Sánchez-Valle, R.; Molinuevo, J.L. A preliminary study of the whole-genome expression profile of sporadic and monogenic early-onset Alzheimer’s disease. Neurobiol. Aging, 2013, 34(7), 1772-1778.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.12.026] [PMID: 23369545]
[68]
Sanfilippo, C.; Castrogiovanni, P.; Imbesi, R.; Kazakowa, M.; Musumeci, G.; Blennow, K.; Zetterberg, H.; Di Rosa, M. Sex difference in CHI3L1 expression levels in human brain aging and in Alzheimer’s disease. Brain Res., 2019, 1720146305
[http://dx.doi.org/10.1016/j.brainres.2019.146305] [PMID: 31247206]
[69]
Xiao, J.; Cao, H.; Chen, J. False discovery rate control incorporating phylogenetic tree increases detection power in microbiome-wide multiple testing. Bioinformatics, 2017, 33(18), 2873-2881.
[http://dx.doi.org/10.1093/bioinformatics/btx311] [PMID: 28505251]
[70]
Smyth, G.K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol., 2004, 3.
[http://dx.doi.org/10.2202/1544-6115.1027] [PMID: 16646809]
[71]
Davis, S.; Meltzer, P.S. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics, 2007, 23(14), 1846-1847.
[http://dx.doi.org/10.1093/bioinformatics/btm254] [PMID: 17496320]
[72]
Mauri, E.; Sacchetti, A.; Vicario, N.; Peruzzotti-Jametti, L.; Rossi, F.; Pluchino, S. Evaluation of RGD functionalization in hybrid hydrogels as 3D neural stem cell culture systems. Biomater. Sci., 2018, 6(3), 501-510.
[http://dx.doi.org/10.1039/C7BM01056G] [PMID: 29368775]
[73]
Tiao, GEPBGC Bayesian Inference in Statistical Analysis; , 1992.
[74]
Cheadle, C.; Vawter, M.P.; Freed, W.J.; Becker, K.G. Analysis of microarray data using Z score transformation. J. Mol. Diagn., 2003, 5(2), 73-81.
[http://dx.doi.org/10.1016/S1525-1578(10)60455-2] [PMID: 12707371]
[75]
Wang, J.; Coombes, K.R.; Highsmith, W.E.; Keating, M.J.; Abruzzo, L.V. Differences in gene expression between B-cell chronic lymphocytic leukemia and normal B cells: a meta-analysis of three microarray studies. Bioinformatics, 2004, 20(17), 3166-3178.
[http://dx.doi.org/10.1093/bioinformatics/bth381] [PMID: 15231529]
[76]
Reddy, T.B.; Riley, R.; Wymore, F.; Montgomery, P.; DeCaprio, D.; Engels, R.; Gellesch, M.; Hubble, J.; Jen, D.; Jin, H.; Koehrsen, M.; Larson, L.; Mao, M.; Nitzberg, M.; Sisk, P.; Stolte, C.; Weiner, B.; White, J.; Zachariah, Z.K.; Sherlock, G.; Galagan, J.E.; Ball, C.A.; Schoolnik, G.K. TB database: an integrated platform for tuberculosis research. Nucleic Acids Res., 2009, 37(Database issue), D499-D508.
[http://dx.doi.org/10.1093/nar/gkn652] [PMID: 18835847]
[77]
Mehmood, R.; El-Ashram, S.; Bie, R.; Dawood, H.; Kos, A. Clustering by fast search and merge of local density peaks for gene expression microarray data. Sci. Rep., 2017, 7, 45602.
[http://dx.doi.org/10.1038/srep45602] [PMID: 28422088]
[78]
Kang, C.; Huo, Y.; Xin, L.; Tian, B.; Yu, B. Feature selection and tumor classification for microarray data using relaxed Lasso and generalized multi-class support vector machine. J. Theor. Biol., 2019, 463, 77-91.
[http://dx.doi.org/10.1016/j.jtbi.2018.12.010] [PMID: 30537483]
[79]
De Vos, A.; Jacobs, D.; Struyfs, H.; Fransen, E.; Andersson, K.; Portelius, E.; Andreasson, U.; De Surgeloose, D.; Hernalsteen, D.; Sleegers, K.; Robberecht, C.; Van Broeckhoven, C.; Zetterberg, H.; Blennow, K.; Engelborghs, S.; Vanmechelen, E. C-terminal neurogranin is increased in cerebrospinal fluid but unchanged in plasma in Alzheimer’s disease. Alzheimers Dement., 2015, 11(12), 1461-1469.
[http://dx.doi.org/10.1016/j.jalz.2015.05.012] [PMID: 26092348]
[80]
Kvartsberg, H.; Lashley, T.; Murray, C.E.; Brinkmalm, G.; Cullen, N.C.; Höglund, K.; Zetterberg, H.; Blennow, K.; Portelius, E. The intact postsynaptic protein neurogranin is reduced in brain tissue from patients with familial and sporadic Alzheimer’s disease. Acta Neuropathol., 2019, 137(1), 89-102.
[http://dx.doi.org/10.1007/s00401-018-1910-3] [PMID: 30244311]
[81]
Caltabiano, R.; Castrogiovanni, P.; Barbagallo, I.; Ravalli, S.; Szychlinska, M.A.; Favilla, V.; Schiavo, L.; Imbesi, R.; Musumeci, G.; Di Rosa, M. Identification of novel markers of prostate cancer progression, potentially modulated by vitamin D. Appl. Sci., 2019, 9(22), 4923.
[http://dx.doi.org/10.3390/app9224923]
[82]
Fagone, P.; Nunnari, G.; Lazzara, F.; Longo, A.; Cambria, D.; Distefano, G.; Palumbo, M.; Nicoletti, F.; Malaguarnera, L.; Di Rosa, M. Induction of OAS gene family in HIV monocyte infected patients with high and low viral load. Antiviral Res., 2016, 131, 66-73.
[http://dx.doi.org/10.1016/j.antiviral.2016.04.009] [PMID: 27107898]
[83]
Sanfilippo, C.; Castrogiovanni, P.; Imbesi, R.; Tibullo, D.; Li Volti, G.; Barbagallo, I.; Vicario, N.; Musumeci, G.; Di Rosa, M. Middle-aged healthy women and Alzheimer’s disease patients present an overlapping of brain cell transcriptional profile. Neuroscience, 2019, 406, 333-344.
[http://dx.doi.org/10.1016/j.neuroscience.2019.03.008] [PMID: 30872162]
[84]
Castrogiovanni, P.; Li Volti, G.; Sanfilippo, C.; Tibullo, D.; Galvano, F.; Vecchio, M.; Avola, R.; Barbagallo, I.; Malaguarnera, L.; Castorina, S.; Musumeci, G.; Imbesi, R.; Di Rosa, M. Fasting and fast food diet play an opposite role in mice brain aging. Mol. Neurobiol., 2018, 55(8), 6881-6893.
[http://dx.doi.org/10.1007/s12035-018-0891-5] [PMID: 29353457]
[85]
Sanfilippo, C.; Nunnari, G.; Calcagno, A.; Malaguarnera, L.; Blennow, K.; Zetterberg, H.; Di Rosa, M. The chitinases expression is related to simian immunodeficiency virus encephalitis (SIVE) and in HIV encephalitis (HIVE). Virus Res., 2017, 227, 220-230.
[http://dx.doi.org/10.1016/j.virusres.2016.10.012] [PMID: 27794455]
[86]
Sanfilippo, C.; Malaguarnera, L.; Di Rosa, M. Chitinase expression in Alzheimer’s disease and non-demented brains regions. J. Neurol. Sci., 2016, 369, 242-249.
[http://dx.doi.org/10.1016/j.jns.2016.08.029] [PMID: 27653898]
[87]
Sanfilippo, C.; Longo, A.; Lazzara, F.; Cambria, D.; Distefano, G.; Palumbo, M.; Cantarella, A.; Malaguarnera, L.; Di Rosa, M. CHI3L1 and CHI3L2 overexpression in motor cortex and spinal cord of sALS patients. Mol. Cell. Neurosci., 2017, 85, 162-169.
[http://dx.doi.org/10.1016/j.mcn.2017.10.001] [PMID: 28989002]
[88]
Sanfilippo, C.; Pinzone, M.R.; Cambria, D.; Longo, A.; Palumbo, M.; Di Marco, R.; Condorelli, F.; Nunnari, G.; Malaguarnera, L.; Di Rosa, M. OAS gene family expression is associated with HIV-related neurocognitive disorders. Mol. Neurobiol., 2018, 55(3), 1905-1914.
[http://dx.doi.org/10.1007/s12035-017-0460-3] [PMID: 28236279]
[89]
Sanfilippo, C.; Castrogiovanni, P.; Imbesi, R.; Di Rosa, M. CHI3L2 expression levels are correlated with AIF1, PECAM1, and CALB1 in the brains of Alzheimer’s disease patients. J. Mol. Neurosci., 2020, 70(10), 1598-1610.
[http://dx.doi.org/10.1007/s12031-020-01667-9] [PMID: 32705525]
[90]
Di Rosa, M.; Sanfilippo, C.; Libra, M.; Musumeci, G.; Malaguarnera, L. Different pediatric brain tumors are associated with different gene expression profiling. Acta Histochem., 2015, 117(4-5), 477-485.
[http://dx.doi.org/10.1016/j.acthis.2015.02.010] [PMID: 25792036]
[91]
Richter, J.A.; Perry, E.K.; Tomlinson, B.E. Acetylcholine and choline levels in post-mortem human brain tissue: preliminary observations in Alzheimer’s disease. Life Sci., 1980, 26(20), 1683-1689.
[http://dx.doi.org/10.1016/0024-3205(80)90176-9] [PMID: 7392805]
[92]
Pákáski, M.; Kálmán, J. Interactions between the amyloid and cholinergic mechanisms in Alzheimer’s disease. Neurochem. Int., 2008, 53(5), 103-111.
[http://dx.doi.org/10.1016/j.neuint.2008.06.005] [PMID: 18602955]
[93]
Bonner, T.I.; Buckley, N.J.; Young, A.C.; Brann, M.R. Identification of a family of muscarinic acetylcholine receptor genes. Science, 1987, 237(4814), 527-532.
[http://dx.doi.org/10.1126/science.3037705] [PMID: 3037705]
[94]
Levey, A.I. Immunological localization of m1-m5 muscarinic acetylcholine receptors in peripheral tissues and brain. Life Sci., 1993, 52(5-6), 441-448.
[http://dx.doi.org/10.1016/0024-3205(93)90300-R] [PMID: 8441326]
[95]
Hamilton, S.E.; Loose, M.D.; Qi, M.; Levey, A.I.; Hille, B.; McKnight, G.S.; Idzerda, R.L.; Nathanson, N.M. Disruption of the m1 receptor gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice. Proc. Natl. Acad. Sci. USA, 1997, 94(24), 13311-13316.
[http://dx.doi.org/10.1073/pnas.94.24.13311] [PMID: 9371842]
[96]
Chang, C.C.; Lin, Y.F.; Chiu, C.H.; Liao, Y.M.; Ho, M.H.; Lin, Y.K.; Chou, K.R.; Liu, M.F. Prevalence and factors associated with food intake difficulties among residents with dementia. PLoS One, 2017, 12(2)e0171770
[http://dx.doi.org/10.1371/journal.pone.0171770] [PMID: 28225776]
[97]
Wong, S.; Irish, M.; Savage, G.; Hodges, J.R.; Piguet, O.; Hornberger, M. Strategic value-directed learning and memory in Alzheimer’s disease and behavioural-variant frontotemporal dementia. J. Neuropsychol., 2019, 13(2), 328-353.
[http://dx.doi.org/10.1111/jnp.12152] [PMID: 29431279]
[98]
Mazure, C.M.; Swendsen, J. Sex differences in Alzheimer’s disease and other dementias. Lancet Neurol., 2016, 15(5), 451-452.
[http://dx.doi.org/10.1016/S1474-4422(16)00067-3] [PMID: 26987699]
[99]
Brzecka, A.; Leszek, J.; Ashraf, G.M.; Ejma, M.; Ávila-Rodriguez, M.F.; Yarla, N.S.; Tarasov, V.V.; Chubarev, V.N.; Samsonova, A.N.; Barreto, G.E.; Aliev, G. Sleep disorders associated with Alzheimer’s disease: A perspective. Front. Neurosci., 2018, 12, 330.
[http://dx.doi.org/10.3389/fnins.2018.00330] [PMID: 29904334]
[100]
Peever, J.; Luppi, P.H.; Montplaisir, J. Breakdown in REM sleep circuitry underlies REM sleep behavior disorder. Trends Neurosci., 2014, 37(5), 279-288.
[http://dx.doi.org/10.1016/j.tins.2014.02.009] [PMID: 24673896]
[101]
Lim, A.S.; Kowgier, M.; Yu, L.; Buchman, A.S.; Bennett, D.A. Sleep Fragmentation and the Risk of Incident Alzheimer’s Disease and Cognitive Decline in Older Persons. Sleep, 2013, 36(7), 1027-1032.
[http://dx.doi.org/10.5665/sleep.2802] [PMID: 23814339]
[102]
Xu, J.; Patassini, S.; Rustogi, N.; Riba-Garcia, I.; Hale, B.D.; Phillips, A.M.; Waldvogel, H.; Haines, R.; Bradbury, P.; Stevens, A.; Faull, R.L.M.; Dowsey, A.W.; Cooper, G.J.S.; Unwin, R.D. Regional protein expression in human Alzheimer’s brain correlates with disease severity. Commun. Biol., 2019, 2, 43.
[http://dx.doi.org/10.1038/s42003-018-0254-9] [PMID: 30729181]
[103]
Lindberg, E.; Janson, C.; Gislason, T.; Björnsson, E.; Hetta, J.; Boman, G. Sleep disturbances in a young adult population: can gender differences be explained by differences in psychological status? Sleep, 1997, 20(6), 381-387.
[http://dx.doi.org/10.1093/sleep/20.6.381] [PMID: 9302720]
[104]
Zhang, B.; Wing, Y.K. Sex differences in insomnia: a meta-analysis. Sleep, 2006, 29(1), 85-93.
[http://dx.doi.org/10.1093/sleep/29.1.85] [PMID: 16453985]
[105]
Mong, J.A.; Cusmano, D.M. Sex differences in sleep: impact of biological sex and sex steroids. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2016, 371(1688), 20150110.
[http://dx.doi.org/10.1098/rstb.2015.0110] [PMID: 26833831]
[106]
Jee, H.J.; Shin, W.; Jung, H.J.; Kim, B.; Lee, B.K.; Jung, Y.S. Impact of Sleep Disorder as a Risk Factor for Dementia in Men and Women. Biomol. Ther. (Seoul), 2020, 28(1), 58-73.
[http://dx.doi.org/10.4062/biomolther.2019.192] [PMID: 31838834]
[107]
Jahn, H. Memory loss in Alzheimer’s disease. Dialogues Clin. Neurosci., 2013, 15(4), 445-454.
[http://dx.doi.org/10.31887/DCNS.2013.15.4/hjahn] [PMID: 24459411]
[108]
Kurowski, P.; Gawlak, M.; Szulczyk, P. Muscarinic receptor control of pyramidal neuron membrane potential in the medial prefrontal cortex (mPFC) in rats. Neuroscience, 2015, 303, 474-488.
[http://dx.doi.org/10.1016/j.neuroscience.2015.07.023] [PMID: 26186898]
[109]
Balhorn, R.; Gledhill, B.L.; Wyrobek, A.J. Mouse sperm chromatin proteins: quantitative isolation and partial characterization. Biochemistry, 1977, 16(18), 4074-4080.
[http://dx.doi.org/10.1021/bi00637a021] [PMID: 911755]
[110]
Filon, J.R.; Intorcia, A.J.; Sue, L.I.; Vazquez Arreola, E.; Wilson, J.; Davis, K.J.; Sabbagh, M.N.; Belden, C.M.; Caselli, R.J.; Adler, C.H.; Woodruff, B.K.; Rapscak, S.Z.; Ahern, G.L.; Burke, A.D.; Jacobson, S.; Shill, H.A.; Driver-Dunckley, E.; Chen, K.; Reiman, E.M.; Beach, T.G.; Serrano, G.E. Gender differences in Alzheimer disease: Brain atrophy, histopathology burden, and cognition. J. Neuropathol. Exp. Neurol., 2016, 75(8), 748-754.
[http://dx.doi.org/10.1093/jnen/nlw047] [PMID: 27297671]
[111]
Caccamo, A.; Fisher, A.; LaFerla, F.M. M1 agonists as a potential disease-modifying therapy for Alzheimer’s disease. Curr. Alzheimer Res., 2009, 6(2), 112-117.
[http://dx.doi.org/10.2174/156720509787602915] [PMID: 19355845]
[112]
Nathan, P.J.; Millais, S.B.; Godwood, A.; Dewit, O.; Cross, D.M.; Liptrot, J.; Ruparelia, B.; Jones, S.P.; Bakker, G.; Maruff, P.T.; Light, G.A.; Brown, A.J.H.; Weir, M.P.; Congreve, M.; Tasker, T. A phase 1b/2a multicenter study of the safety and preliminary pharmacodynamic effects of selective muscarinic M1 receptor agonist HTL0018318 in patients with mild-to-moderate Alzheimer’s disease. Alzheimers Dement. (N. Y.), 2022, 8(1)e12273
[http://dx.doi.org/10.1002/trc2.12273] [PMID: 35229025]
[113]
Abd-Elrahman, K.S.; Sarasija, S.; Colson, T.L.; Ferguson, S.S.G. A positive allosteric modulator for the muscarinic receptor (M1 mAChR) improves pathology and cognitive deficits in female APPswe/PSEN1ΔE9 mice. Br. J. Pharmacol., 2022, 179(8), 1769-1783.
[http://dx.doi.org/10.1111/bph.15750] [PMID: 34820835]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy