Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Understanding, Status, and Therapeutic Potentials of Stem Cells in Goat

Author(s): Paramjeet Sharma, Neelesh Sharma, Shanti Choudhary, Priyanka Luhach and Ratan K. Choudhary*

Volume 18, Issue 7, 2023

Published on: 30 December, 2022

Page: [947 - 957] Pages: 11

DOI: 10.2174/1574888X18666221128152831

Price: $65

conference banner
Abstract

The utility of animal stem cells finds implications in enhancing milk, meat, and fiber production and serving animal models for human diseases. Stem cells are involved in tissue development, growth, and repair, and in regenerative therapy. Caprine embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and other tissue-specific adult stem cells (ASCs) have tremendous potential for their use in regenerative medicine. The application of goat ESCs, iPSCs, mammary stem cells (MaSC), mesenchymal stem cells (MSCs), spermatogonial stem cells (SSCs) and others can find their implication in increasing caprine production potential and human disease model. The onset of the disease and therapeutic effects of stem cells of many human diseases like sub-fertility, joint conditions, intervertebral disc defects, osteoarthritis, and chondrogenesis can be well studied in goats. Increasing evidence of MSCs and their secreted factors have drawn the attention of animal scientists in regenerative medicine. This review summarizes a comprehensive overview of research made on caprine stem cells and illustrates some potential applications of stem cells in caprine regenerative medicine and their utility as a model animal in understanding human diseases.

Keywords: Goat, mesenchymal stem cells, mammary stem cells, expansion, therapeutic applications, milk-stem cells.

Graphical Abstract
[1]
Sandmaier SES, Nandal A, Powell A, et al. Generation of induced pluripotent stem cells from domestic goats. Mol Reprod Dev 2015; 82(9): 709-21.
[http://dx.doi.org/10.1002/mrd.22512] [PMID: 26118622]
[2]
Kumar D, Talluri TR, Selokar NL, Hyder I, Kues WA. Perspectives of pluripotent stem cells in livestock. World J Stem Cells 2021; 13(1): 1-29.
[http://dx.doi.org/10.4252/wjsc.v13.i1.1] [PMID: 33584977]
[3]
Chhabra SN, Booth BW. Asymmetric cell division of mammary stem cells. Cell Div 2021; 16(1): 5.
[http://dx.doi.org/10.1186/s13008-021-00073-w] [PMID: 34587981]
[4]
Malik HN, Singhal DK, Saini S, Malakar D. Derivation of oocyte-like cells from putative embryonic stem cells and parthenogenetically activated into blastocysts in goat. Sci Rep 2020; 10(1): 10086.
[http://dx.doi.org/10.1038/s41598-020-66609-2] [PMID: 32572061]
[5]
Cong X, Zhang SM, Ellis MW, Luo J. Large animal models for the clinical application of human induced pluripotent stem cells. Stem Cells Dev 2019; 28(19): 1288-98.
[http://dx.doi.org/10.1089/scd.2019.0136] [PMID: 31359827]
[6]
Gandolfi F, Vanelli A, Pennarossa G, Rahaman M, Acocella F, Brevini TAL. Large animal models for cardiac stem cell therapies. Theriogenology 2011; 75(8): 1416-25.
[http://dx.doi.org/10.1016/j.theriogenology.2011.01.026] [PMID: 21463721]
[7]
Harding J, Roberts RM, Mirochnitchenko O. Large animal models for stem cell therapy. Stem Cell Res Ther 2013; 4(2): 23.
[http://dx.doi.org/10.1186/scrt171] [PMID: 23672797]
[8]
Choudhary RK. Mammary stem cells: Expansion and animal productivity. J Anim Sci Biotechnol 2014; 5(1): 36.
[http://dx.doi.org/10.1186/2049-1891-5-36] [PMID: 25057352]
[9]
Chepko G, Smith GH. Three division-competent, structurally-distinct cell populations contribute to murine mammary epithelial renewal. Tissue Cell 1997; 29(2): 239-53.
[http://dx.doi.org/10.1016/S0040-8166(97)80024-9]
[10]
Smith GH. Experimental mammary epithelial morphogenesis in an in vivo model: Evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Res Treat 1996; 39(1): 21-31.
[http://dx.doi.org/10.1007/BF01806075] [PMID: 8738603]
[11]
Kordon EC, Smith GH. An entire functional mammary gland may comprise the progeny from a single cell. Development 1998; 125(10): 1921-30.
[http://dx.doi.org/10.1242/dev.125.10.1921] [PMID: 9550724]
[12]
Kenney NJ, Smith GH, Lawrence E, Barrett JC, Salomon DS. Identification of stem cell units in the terminal end bud and duct of the mouse mammary gland. J Biomed Biotechnol 2001; 1(3): 133-43.
[http://dx.doi.org/10.1155/S1110724301000304] [PMID: 12488607]
[13]
Capuco AV. Identification of putative bovine mammary epithelial stem cells by their retention of labeled DNA strands. Exp Biol Med (Maywood) 2007; 232(10): 1381-90.
[http://dx.doi.org/10.3181/0703-RM-58] [PMID: 17959851]
[14]
Smith GH. Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands. Development 2005; 132(4): 681-7.
[http://dx.doi.org/10.1242/dev.01609] [PMID: 15647322]
[15]
Smalley MJ, Clarke RB. The mammary gland “side population”: a putative stem/progenitor cell marker? J Mammary Gland Biol Neoplasia 2005; 10(1): 37-47.
[http://dx.doi.org/10.1007/s10911-005-2539-0] [PMID: 15886885]
[16]
Shackleton M, Vaillant F, Simpson KJ, et al. Generation of a functional mammary gland from a single stem cell. Nature 2006; 439(7072): 84-8.
[http://dx.doi.org/10.1038/nature04372] [PMID: 16397499]
[17]
Stingl J, Eirew P, Ricketson I, et al. Purification and unique properties of mammary epithelial stem cells. Nature 2006; 439(7079): 993-7.
[http://dx.doi.org/10.1038/nature04496] [PMID: 16395311]
[18]
Blanpain C, Fuchs E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 2009; 10(3): 207-17.
[http://dx.doi.org/10.1038/nrm2636] [PMID: 19209183]
[19]
Visvader JE. Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev 2009; 23(22): 2563-77.
[http://dx.doi.org/10.1101/gad.1849509] [PMID: 19933147]
[20]
Asselin-Labat ML, Vaillant F, Sheridan JM, et al. Control of mammary stem cell function by steroid hormone signalling. Nature 2010; 465(7299): 798-802.
[http://dx.doi.org/10.1038/nature09027] [PMID: 20383121]
[21]
Rios AC, Fu NY, Lindeman GJ, Visvader JE. In situ identification of bipotent stem cells in the mammary gland. Nature 2014; 506(7488): 322-7.
[http://dx.doi.org/10.1038/nature12948] [PMID: 24463516]
[22]
Wang D, Cai C, Dong X, et al. Identification of multipotent mammary stem cells by protein C receptor expression. Nature 2014; 17(7532): 81-4.
[http://dx.doi.org/10.1038/nature13851] [PMID: 25327250]
[23]
He S, Pant D, Schiffmacher A, et al. Developmental expression of pluripotency determining factors in caprine embryos: Novel pattern of NANOG protein localization in the nucleolus. Mol Reprod Dev 2006; 73(12): 1512-22.
[http://dx.doi.org/10.1002/mrd.20525] [PMID: 16894532]
[24]
Habibi R, Hosseini SM, Zadegan FG, et al. Functional characterization of NANOG in goat pre-implantation embryonic development. Theriogenology 2018; 120: 33-9.
[http://dx.doi.org/10.1016/j.theriogenology.2018.07.023] [PMID: 30092372]
[25]
Behboodi E, Bondareva A, Begin I, et al. Establishment of goat embryonic stem cells from in vivo produced blastocyst-stage embryos. Mol Reprod Dev 2011; 78(3): 202-11.
[http://dx.doi.org/10.1002/mrd.21290] [PMID: 21387453]
[26]
Dutta R, Malakar D, Akshey YS, et al. Production and characterization of putative ntES cells from handmade cloned goat embryos derived from adult fibroblast donor cells. J Reproduct Stem Cell Biotechnol 2011; 2(1): 64-76.
[http://dx.doi.org/10.1177/205891581100200108]
[27]
Song H, Li H, Huang M, et al. Induced pluripotent stem cells from goat fibroblasts. Mol Reprod Dev 2013; 80(12): 1009-17.
[http://dx.doi.org/10.1002/mrd.22266] [PMID: 24123501]
[28]
Chu Z, Niu B, Zhu H, et al. PRMT5 enhances generation of induced pluripotent stem cells from dairy goat embryonic fibroblasts via down-regulation of p53. Cell Prolif 2015; 48(1): 29-38.
[http://dx.doi.org/10.1111/cpr.12150] [PMID: 25424361]
[29]
Chen H, Zuo Q, Wang Y, et al. Inducing goat pluripotent stem cells with four transcription factor mRNAs that activate endogenous promoters. BMC Biotechnol 2017; 17(1): 11.
[http://dx.doi.org/10.1186/s12896-017-0336-7] [PMID: 28193206]
[30]
Ren J, Pak Y, He L, et al. Generation of hircine-induced pluripotent stem cells by somatic cell reprogramming. Cell Res 2011; 21(5): 849-53.
[http://dx.doi.org/10.1038/cr.2011.37] [PMID: 21403680]
[31]
Tai D, Liu P, Gao J, et al. Generation of arbas cashmere goat induced pluripotent stem cells through fibroblast reprogramming. Cell Reprogram 2015; 17(4): 297-305.
[http://dx.doi.org/10.1089/cell.2014.0107] [PMID: 26731591]
[32]
Hanna M, Sahito RGA, Rateb M, et al. Generation of transgene-free induced pluripotent stem cells from cardiac fibroblasts of goat embryos. J Stem Cells Regen Med 2020; 16(2): 34-43.
[http://dx.doi.org/10.46582/jsrm.1602007] [PMID: 33414579]
[33]
Li P, Wilde CJ, Finch LMB, Fernig DG, Rudland PS. Identification of cell types in the developing goat mammary gland. Histochem J 1999; 31(6): 379-93.
[http://dx.doi.org/10.1023/A:1003700224900] [PMID: 10462224]
[34]
Prpar S, Martignani E, Dovc P, Baratta M. Identification of goat mammary stem/progenitor cells. Biol Reprod 2012; 86(4): 117.
[http://dx.doi.org/10.1095/biolreprod.111.095489] [PMID: 22238284]
[35]
Prpar Mihevc S, Ogorevc J, Dovc P. Lineage-specific markers of goat mammary cells in primary culture. In Vitro Cell Dev Biol Anim 2014; 50(10): 926-36.
[http://dx.doi.org/10.1007/s11626-014-9796-4] [PMID: 25213688]
[36]
Mihevc SP, Ogorevc J. Dovč P. Markers and antibodies for characterization of goat mammary tissue and the derived primary epithelial cell cultures. Braz J Anim Sci 2020; 49(9): 1-9.
[37]
Costa CRM, Feitosa MLT, Rocha AR, et al. Adipose stem cells in reparative goat mastitis mammary gland. PLoS One 2019; 14(10): e0223751.
[http://dx.doi.org/10.1371/journal.pone.0223751] [PMID: 31639137]
[38]
Joshi PA, Waterhouse PD, Kasaian K, et al. PDGFRα+ stromal adipocyte progenitors transition into epithelial cells during lobulo-alveologenesis in the murine mammary gland. Nat Commun 2019; 10(1): 1760.
[http://dx.doi.org/10.1038/s41467-019-09748-z] [PMID: 30988300]
[39]
Visvader JE, Stingl J. Mammary stem cells and the differentiation hierarchy: current status and perspectives. Genes Dev 2014; 28(11): 1143-58.
[http://dx.doi.org/10.1101/gad.242511.114] [PMID: 24888586]
[40]
Lee E, Piranlioglu R, Wicha MS, Korkaya H. Plasticity and potency of mammary stem cell subsets during mammary gland development. Int J Mol Sci 2019; 20(9): 2357.
[http://dx.doi.org/10.3390/ijms20092357] [PMID: 31085991]
[41]
Sun P, Yuan Y, Li A, Li B, Dai X. Cytokeratin expression during mouse embryonic and early postnatal mammary gland development. Histochem Cell Biol 2010; 133(2): 213-21.
[http://dx.doi.org/10.1007/s00418-009-0662-5] [PMID: 19937336]
[42]
Fan Y, Chong YS, Choolani MA, Cregan MD, Chan JKY. Unravelling the mystery of stem/progenitor cells in human breast milk. PLoS One 2010; 5(12): e14421.
[http://dx.doi.org/10.1371/journal.pone.0014421] [PMID: 21203434]
[43]
Cregan MD, Fan Y, Appelbee A, et al. Identification of nestin-positive putative mammary stem cells in human breastmilk. Cell Tissue Res 2007; 329(1): 129-36.
[http://dx.doi.org/10.1007/s00441-007-0390-x] [PMID: 17440749]
[44]
Sani M, Hosseini SM, Salmannejad M, et al. Origins of the breast milk-derived cells; an endeavor to find the cell sources. Cell Biol Int 2015; 39(5): 611-8.
[http://dx.doi.org/10.1002/cbin.10432] [PMID: 25572907]
[45]
Goudarzi N, Shabani R, Ebrahimi M, et al. Comparative phenotypic characterization of human colostrum and breast milk-derived stem cells. Hum Cell 2020; 33(2): 308-17.
[http://dx.doi.org/10.1007/s13577-019-00320-x] [PMID: 31975030]
[46]
Ninkina N, Kukharsky MS, Hewitt MV, et al. Stem cells in human breast milk. Hum Cell 2019; 32(3): 223-30.
[http://dx.doi.org/10.1007/s13577-019-00251-7] [PMID: 30972555]
[47]
Saipin N, Noophun J, Chumyim P, Rungsiwiwut R. Goat milk: Non-invasive source for mammary epithelial cell isolation and in vitro culture. Anat Histol Embryol 2018; 47(3): 187-94.
[http://dx.doi.org/10.1111/ahe.12339] [PMID: 29460420]
[48]
Sharma N, Singh NK, Bhadwal MS. Relationship of somatic cell count and mastitis: An overview. Asian-Australas J Anim Sci 2011; 24(3): 429-38.
[http://dx.doi.org/10.5713/ajas.2011.10233]
[49]
Damm M, Holm C, Blaabjerg M, Bro MN, Schwarz D. Differential somatic cell count—A novel method for routine mastitis screening in the frame of Dairy Herd Improvement testing programs. J Dairy Sci 2017; 100(6): 4926-40.
[http://dx.doi.org/10.3168/jds.2016-12409] [PMID: 28365116]
[50]
Mukherjee J, De K, Chaudhury M, Dang AK. Seasonal variation in in vitro immune activity of milk leukocytes in elite and non-elite crossbred cows of Indian sub-tropical semi-arid climate. Biol Rhythm Res 2015; 46(3): 425-33.
[http://dx.doi.org/10.1080/09291016.2015.1020200]
[51]
Sheldrake RF, Hoare RJT, McGregor GD. Lactation stage, parity, and infection affecting somatic cells, electrical conductivity, and serum albumin in milk. J Dairy Sci 1983; 66(3): 542-7.
[http://dx.doi.org/10.3168/jds.S0022-0302(83)81823-2] [PMID: 6841752]
[52]
Zecconi A, Zanini L, Cipolla M, Stefanon B. Factors affecting the patterns of total amount and proportions of leukocytes in Bovine milk. Animals (Basel) 2020; 10(6): 992.
[http://dx.doi.org/10.3390/ani10060992] [PMID: 32517222]
[53]
Singh M, Ludri RS. Somatic cell counts in marrah buffaloes (Bubalus bubalis) during different stages of lactation, parity and season. Asian-Australas J Anim Sci 2001; 14(2): 189-92.
[http://dx.doi.org/10.5713/ajas.2001.189]
[54]
Kehrli ME Jr, Shuster DE. Factors affecting milk somatic cells and their role in health of the bovine mammary gland. J Dairy Sci 1994; 77(2): 619-27.
[http://dx.doi.org/10.3168/jds.S0022-0302(94)76992-7] [PMID: 8182187]
[55]
Alhussien MN, Panda BSK, Dang AK. A comparative study on changes in total and differential milk cell counts, activity, and expression of milk phagocytes of healthy and mastitic indigenous sahiwal cows. Front Vet Sci 2021; 8: 670811.
[http://dx.doi.org/10.3389/fvets.2021.670811] [PMID: 34235202]
[56]
Verma M, Kimothi S. Factors Affecting Somatic cell counts in Buffalo (Bubalus bubalis) Milk. Int J Livest Res 2021; 11(0): 1.
[http://dx.doi.org/10.5455/ijlr.20201013114029]
[57]
Laevens H, Deluyker H, Schukken YH, et al. Influence of parity and stage of lactation on the somatic cell count in bacteriologically negative dairy cows. J Dairy Sci 1997; 80(12): 3219-26.
[http://dx.doi.org/10.3168/jds.S0022-0302(97)76295-7] [PMID: 9436102]
[58]
Bernabucci U, Basiricò L, Morera P, et al. Effect of summer season on milk protein fractions in Holstein cows. J Dairy Sci 2015; 98(3): 1815-27.
[http://dx.doi.org/10.3168/jds.2014-8788] [PMID: 25547301]
[59]
Castro Á, Pereira JM, Amiama C, Bueno J. Typologies of dairy farms with automatic milking system in northwest spain and farmers’ satisfaction. Ital J Anim Sci 2015; 14(2): 3559.
[http://dx.doi.org/10.4081/ijas.2015.3559]
[60]
Alhussien M, Manjari P, Mohammed S, et al. Incidence of mastitis and activity of milk neutrophils in Tharparkar cows reared under semi-arid conditions. Trop Anim Health Prod 2016; 48(6): 1291-5.
[http://dx.doi.org/10.1007/s11250-016-1068-8] [PMID: 27154217]
[61]
Alhussien M, Manjari P, Sheikh AA, et al. Immunological attributes of blood and milk neutrophils isolated from crossbred cows during different physiological conditions. Czech J Anim Sci 2016; 61(5): 223-31.
[http://dx.doi.org/10.17221/63/2015-CJAS]
[62]
Alhussien MN, Dang AK. Integrated effect of seasons and lactation stages on the plasma inflammatory cytokines, function and receptor expression of milk neutrophils in Sahiwal (Bos indicus) cows. Vet Immunol Immunopathol 2017; 191: 14-21.
[http://dx.doi.org/10.1016/j.vetimm.2017.07.010] [PMID: 28895861]
[63]
Lopes Júnior JEF, Lange CC, Brito MAVP, et al. Relationship between total bacteria counts and somatic cell counts from mammary quarters infected by mastitis pathogens. Cienc Rural 2012; 42(4): 691-6.
[http://dx.doi.org/10.1590/S0103-84782012000400019]
[64]
Souza FN, Cunha AF, Rosa DLSO, et al. Somatic cell count and mastitis pathogen detection in composite and single or duplicate quarter milk samples. Pesqui Vet Bras 2016; 36(9): 811-8.
[http://dx.doi.org/10.1590/s0100-736x2016000900004]
[65]
Le Maréchal C, Thiéry R, Vautor E, Le Loir Y. Mastitis impact on technological properties of milk and quality of milk products—a review. Dairy Sci Technol 2011; 91(3): 247-82.
[http://dx.doi.org/10.1007/s13594-011-0009-6]
[66]
Albenzio M, Santillo A, Kelly AL, Caroprese M, Marino R, Sevi A. Activities of indigenous proteolytic enzymes in caprine milk of different somatic cell counts. J Dairy Sci 2015; 98(11): 7587-94.
[http://dx.doi.org/10.3168/jds.2015-9762] [PMID: 26342976]
[67]
Lerondelle C, Richard Y, Issartial J. Factors affecting somatic cell counts in goat milk. Small Rumin Res 1992; 8(1-2): 129-39.
[http://dx.doi.org/10.1016/0921-4488(92)90014-U]
[68]
Paape MJ, Wiggans GR, Bannerman DD, et al. Monitoring goat and sheep milk somatic cell counts. Small Rumin Res 2007; 68(1-2): 114-25.
[http://dx.doi.org/10.1016/j.smallrumres.2006.09.014]
[69]
Silanikove N, Merin U, Shapiro F, Leitner G. Subclinical mastitis in goats is associated with upregulation of nitric oxide-derived oxidative stress that causes reduction of milk antioxidative properties and impairment of its quality. J Dairy Sci 2014; 97(6): 3449-55.
[http://dx.doi.org/10.3168/jds.2013-7334] [PMID: 24704229]
[70]
Ellis S, Capuco AV. Cell proliferation in bovine mammary epithelium: identification of the primary proliferative cell population. Tissue Cell 2002; 34(3): 155-63.
[http://dx.doi.org/10.1016/S0040-8166(02)00025-3] [PMID: 12182808]
[71]
Ogorevc J. Dovč P. Expression of estrogen receptor 1 and progesterone receptor in primary goat mammary epithelial cells. Anim Sci J 2016; 87(12): 1464-71.
[http://dx.doi.org/10.1111/asj.12553] [PMID: 27018494]
[72]
Capuco AV, Evock-Clover CM, Minuti A, Wood DL. In vivo expansion of the mammary stem/progenitor cell population by xanthosine infusion. Exp Biol Med (Maywood) 2009; 234(4): 475-82.
[http://dx.doi.org/10.3181/0811-RM-320] [PMID: 19176874]
[73]
Choudhary RK, Capuco AV. In vitro expansion of the mammary stem/progenitor cell population by xanthosine treatment. BMC Cell Biol 2012; 13(1): 14.
[http://dx.doi.org/10.1186/1471-2121-13-14] [PMID: 22698263]
[74]
Choudhary RK, Choudhary S, Verma R. In vivo response of xanthosine on mammary gene expression of lactating Beetal goat. Mol Biol Rep 2018; 45(4): 581-90.
[http://dx.doi.org/10.1007/s11033-018-4196-6] [PMID: 29804277]
[75]
Voga M, Adamic N, Vengust M, Majdic G. Stem cells in veterinary medicine-current state and treatment options. Front Vet Sci 2020; 7: 278.
[http://dx.doi.org/10.3389/fvets.2020.00278] [PMID: 32656249]
[76]
Markoski MM. Advances in the use of stem cells in veterinary medicine: From basic research to clinical practice. Scientifica (Cairo) 2016; 2016: 1-12.
[http://dx.doi.org/10.1155/2016/4516920] [PMID: 27379197]
[77]
Choudhary RK, Choudhary S, Pathak D, et al. Evaluation of xanthosine treatment on gene expression of mammary glands in early lactating goats. J Dairy Res 2018; 85(3): 288-94.
[http://dx.doi.org/10.1017/S0022029918000493] [PMID: 30156522]
[78]
Frese L, Dijkman PE, Hoerstrup SP. Adipose tissue-derived stem cells in regenerative medicine. Transfus Med Hemother 2016; 43(4): 268-74.
[http://dx.doi.org/10.1159/000448180] [PMID: 27721702]
[79]
Murphy JM, Fink DJ, Hunziker EB, et al. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 2003; 48(12): 3464-74.
[80]
Moshrefi M, Babaei H, Nematollahi-Mahani SN. Isolation and characterization of mesenchymal cells isolated from caprine umbilical cord matrix. Anim Reprod 2010; 7: 367-72.
[81]
Martins GR, Marinho RC, Bezerra-Junior RQ, et al. Isolation, culture and characterization of multipotent mesenchymal stem cells from goat umbilical cord blood. Pesqui Vet Bras 2017; 37: 643-9.
[http://dx.doi.org/10.1590/s0100-736x2017000600019]
[82]
Pratheesh MD, Gade NE, Nath A, et al. Research in Veterinary Science Isolation, culture and characterization of caprine mesenchymal stem cells derived from amniotic fluid. Res Veterin Sci 2012; pp. 1-7.
[83]
Tamadon A, Mehrabani D, Zarezadeh Y, Rahmanifar F, Dianatpour M, Zare S. Caprine endometrial mesenchymal stromal stem cell: Multilineage potential, characterization, and growth kinetics in breeding and anestrous stages. Vet Med Int 2017; 2017: 1-7.
[http://dx.doi.org/10.1155/2017/5052801] [PMID: 28357151]
[84]
Neves GCS, Argôlo Neto NM, Ferraz MS, et al. Characterization and plasticity of Wharton’s jelly mesenchymal stem cells of goat. Biosci J 2021; 37: e37002-2.
[http://dx.doi.org/10.14393/BJ-v37n0a2021-50386]
[85]
Alves JPM, Rossetto R, Fernandes CCL, et al. Impact of donor nutritional balance on the growth and development of mesenchymal stem cells from caprine umbilical cord Wharton’s jelly. Vet Res Commun 2022; 46(1): 169-82.
[http://dx.doi.org/10.1007/s11259-021-09843-x] [PMID: 34625865]
[86]
Mahajan A, Hazra S, Arora A, Katti DS. Isolation, expansion, and differentiation of mesenchymal stem cells from the infrapatellar fat pad of the goat stifle joint. J Vis Exp 2022; 2: 186.
[http://dx.doi.org/10.3791/63617] [PMID: 35993721]
[87]
Zhang C, Gullbrand SE, Schaer TP, et al. Inflammatory cytokine and catabolic enzyme expression in a goat model of intervertebral disc degeneration. J Orthop Res 2020; 38(11): 2521-31.
[http://dx.doi.org/10.1002/jor.24639] [PMID: 32091156]
[88]
Ko JY, Lee J, Lee J, Ryu YH, Im GI. SOX - 6, 9 -Transfected adipose stem cells to treat surgically-induced osteoarthritis in goats. Tissue Eng Part A 2019; 25(13-14): 990-1000.
[http://dx.doi.org/10.1089/ten.tea.2018.0189] [PMID: 30484378]
[89]
Ahangar P, Mills SJ, Cowin AJ. Mesenchymal stem cell secretome as an emerging cell-free alternative for improving wound repair. Int J Mol Sci 2020; 21(19): 7038.
[http://dx.doi.org/10.3390/ijms21197038] [PMID: 32987830]
[90]
Ferreira JR, Teixeira GQ, Santos SG, Barbosa MA, Almeida-Porada G, Gonçalves RM. Mesenchymal stromal cell secretome: Influencing therapeutic potential by cellular pre-conditioning. Front Immunol 2018; 9: 2837.
[http://dx.doi.org/10.3389/fimmu.2018.02837] [PMID: 30564236]
[91]
L PK, Kandoi S, Misra R, S V, K R, Verma RS. The mesenchymal stem cell secretome: A new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor Rev 2019; 46: 1-9.
[http://dx.doi.org/10.1016/j.cytogfr.2019.04.002] [PMID: 30954374]
[92]
Brini AT, Amodeo G, Ferreira LM, et al. Therapeutic effect of human adipose-derived stem cells and their secretome in experimental diabetic pain. Sci Rep 2017; 7(1): 9904.
[http://dx.doi.org/10.1038/s41598-017-09487-5] [PMID: 28851944]
[93]
Pouya S, Heidari M, Baghaei K, et al. Study the effects of mesenchymal stem cell conditioned medium injection in mouse model of acute colitis. Int Immunopharmacol 2018; 54: 86-94.
[http://dx.doi.org/10.1016/j.intimp.2017.11.001] [PMID: 29112894]
[94]
Kay AG, Long G, Tyler G, et al. Mesenchymal stem cell-conditioned medium reduces disease severity and immune responses in inflammatory arthritis. Sci Rep 2017; 7(1): 18019.
[http://dx.doi.org/10.1038/s41598-017-18144-w] [PMID: 29269885]
[95]
An SY, Jang YJ, Lim HJ, et al. Milk fat globule-egf factor 8, secreted by mesenchymal stem cells, protects against liver fibrosis in mice. Gastroenterology 2017; 152(5): 1174-86.
[http://dx.doi.org/10.1053/j.gastro.2016.12.003] [PMID: 27956229]
[96]
Yao Y, Huang C, Gu P, Wen T. Combined MSC-secreted factors and neural stem cell transplantation promote functional recovery of PD rats. Cell Transplant 2016; 25(6): 1101-13.
[http://dx.doi.org/10.3727/096368915X689938] [PMID: 26607204]
[97]
Xu J, Wang B, Sun Y, et al. Human fetal mesenchymal stem cell secretome enhances bone consolidation in distraction osteogenesis. Stem Cell Res Ther 2016; 7(1): 134.
[http://dx.doi.org/10.1186/s13287-016-0392-2] [PMID: 27612565]
[98]
Gul M, Hildorf S, Dong L, et al. Review of injection techniques for spermatogonial stem cell transplantation. Hum Reprod Update 2020; 26(3): 368-91.
[http://dx.doi.org/10.1093/humupd/dmaa003] [PMID: 32163572]
[99]
Sharma A, Shah SM, Tiwari M, et al. Propagation of goat putative spermatogonial stem cells under growth factors defined serum-free culture conditions. Cytotechnology 2020; 72(3): 489-97.
[http://dx.doi.org/10.1007/s10616-020-00386-8] [PMID: 32124159]
[100]
Du X, Wu S, Wei Y, et al. PAX7 promotes CD49f‐positive dairy goat spermatogonial stem cells’ self‐renewal. J Cell Physiol 2021; 236(2): 1481-93.
[http://dx.doi.org/10.1002/jcp.29954] [PMID: 32692417]
[101]
Zhang M, Li N, Liu W, et al. Eif2s3y promotes the proliferation of spermatogonial stem cells by activating ERK signaling. Stem Cells Int 2021; 2021: 6668658.
[http://dx.doi.org/10.1155/2021/6668658] [PMID: 33603791]
[102]
Diao L, Turek PJ, John CM, Fang F, Reijo Pera RA. Roles of spermatogonial stem cells in spermatogenesis and fertility restoration. Front Endocrinol (Lausanne) 2022; 13: 895528.
[http://dx.doi.org/10.3389/fendo.2022.895528] [PMID: 35634498]
[103]
Cai Y, Deng M, Liu Z, et al. EZH2 expression and its role in spermatogonial stem cell self-renewal in goats. Theriogenology 2020; 155: 222-31.
[http://dx.doi.org/10.1016/j.theriogenology.2020.06.013] [PMID: 32731005]
[104]
Ren F, Fang Q, Xi H, Feng T, Wang L, Hu J. Platelet-derived growth factor-BB and epidermal growth factor promote dairy goat spermatogonial stem cells proliferation via Ras/ERK1/2 signaling pathway. Theriogenology 2020; 155: 205-12.
[http://dx.doi.org/10.1016/j.theriogenology.2020.06.012] [PMID: 32721699]
[105]
Pang J, Yang H, Feng X, et al. HT-2 toxin affects cell viability of goat spermatogonial stem cells through AMPK-ULK1 autophagy pathways. Theriogenology 2021; 164: 22-30.
[http://dx.doi.org/10.1016/j.theriogenology.2021.01.015] [PMID: 33529808]
[106]
Patra T, Gupta MK. Solid surface vitrification of goat testicular cell suspension enriched for spermatogonial stem cells. Cryobiology 2022; 104: 8-14.
[http://dx.doi.org/10.1016/j.cryobiol.2021.11.177] [PMID: 34822805]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy