Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Clinical Application and Synthesis Methods of Deuterated Drugs

Author(s): Xiao-Liang Xu, Wen Zhang and Guo-Wu Rao*

Volume 30, Issue 36, 2023

Published on: 12 January, 2023

Page: [4096 - 4129] Pages: 34

DOI: 10.2174/0929867330666221122123201

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Many drugs have adverse absorption, distribution, metabolism, and excretory (ADME) properties that prevent their widespread use or limit their use in some indications. In addition to preparation techniques and prodrug strategies, deuterium modification is a viable method for improving ADME properties. Deuterated drugs have attracted increasing attention from the pharmaceutical industry in recent years. To date, two deuterated drugs have been approved by the FDA. In 2017, austedo was approved by the FDA as a new drug for Huntington's disease in the United States, the first deuterium drug to be marketed worldwide. Recently (June 9, 2021), donafinil has been listed in China; this result has caused major pharmaceutical companies and the pharmaceutical industry to pay attention to deuterium technology again. In addition, BMS-986165, RT001, ALK-001, HC-1119, AVP-786 and other drugs are in phase III clinical studies, and some solid deuterium compounds have entered phase I and II clinical trials. The deuterium strategy has been widely used in pharmaceutical research and has become a hot spot in pharmaceutical research in recent years. In this paper, the research and development of deuterated drugs are reviewed, and the influence of deuterium modification on drugs, the advantages of deuterium strategies and the synthesis strategies of deuterated drugs are mainly introduced. Hoping to provide references for clinical application, the discovery of new deuterium chemical entities and research and development of new deuterated drugs.

Keywords: Deuterated drugs, mono-amine oxidase, toxicity, drug metabolism, drug synthesis, ADME properties.

[1]
Bergner, G.; Albert, C.R.; Schiller, M.; Bringmann, G.; Schirmeister, T.; Dietzek, B.; Niebling, S.; Schlücker, S.; Popp, J. Quantitative detection of C-deuterated drugs by CARS microscopy and Raman microspectroscopy. Analyst (Lond.), 2011, 136(18), 3686-3693.
[http://dx.doi.org/10.1039/c0an00956c] [PMID: 21785774]
[2]
Liu, J.F.; Uttamsingh, V.; Nguyen, S.; Gallegos, R.; Bridson, G.W.; Morgan, A.J.; Masse, C.E.; Tung, R.; Harbeson, S. Deuterium in drugs for cardiovascular disease: Design and synthesis of deuterated cilostazol and ranolazine analogs with enhanced metabolic stability. Am. Chem. Soc., 2011, 242, 339.
[3]
Timmins, G.S. Deuterated drugs: Where are we now? Expert Opin. Ther. Pat., 2014, 24(10), 1067-1075.
[http://dx.doi.org/10.1517/13543776.2014.943184] [PMID: 25069517]
[4]
Howland, R.H. Deuterated drugs. J. Psychosoc. Nurs. Ment. Health Serv., 2015, 53(9), 02793695-20150821-55.
[http://dx.doi.org/10.3928/02793695-20150821-55] [PMID: 26325169]
[5]
Radl, S. Deuterated compounds as potential drugs. Chem. Listy, 2015, 109(10), 748-754.
[6]
Mullard, A. Deuterated drugs draw heavier backing. Nat. Rev. Drug Discov., 2016, 15(4), 219-221.
[http://dx.doi.org/10.1038/nrd.2016.63] [PMID: 27032821]
[7]
Timmins, G.S. Deuterated drugs; Updates and obviousness analysis. Expert Opin. Ther. Pat., 2017, 27(12), 1353-1361.
[http://dx.doi.org/10.1080/13543776.2017.1378350] [PMID: 28885861]
[8]
Schmidt, C. First deuterated drug approved. Nat. Biotechnol., 2017, 35(6), 493-494.
[http://dx.doi.org/10.1038/nbt0617-493] [PMID: 28591114]
[9]
Harbeson, S.L.; Morgan, A.J.; Liu, J.F.; Aslanian, A.M.; Nguyen, S.; Bridson, G.W.; Brummel, C.L.; Wu, L.; Tung, R.D.; Pilja, L.; Braman, V.; Uttamsingh, V. Altering metabolic profiles of drugs by precision deuteration 2: Discovery of a deuterated analog of ivacaftor with differentiated pharmacokinetics for clinical development. J. Pharmacol. Exp. Ther., 2017, 362(2), 359-367.
[http://dx.doi.org/10.1124/jpet.117.241497] [PMID: 28611092]
[10]
Timmins, G.S. Deuterated drugs; Updates and obviousness analysis. Expert Opin. Ther. Pat., 2018, 28(8), 653-653.
[http://dx.doi.org/10.1080/13543776.2018.1502972] [PMID: 30064282]
[11]
DeWitt, S.H.; Maryanoff, B.E. Deuterated drug molecules: Focus on FDA-Approved deutetrabenazine. Biochemistry, 2018, 57(5), 472-473.
[http://dx.doi.org/10.1021/acs.biochem.7b00765] [PMID: 29160059]
[12]
Berquist, M.D.; Leth-Petersen, S.; Kristensen, J.L.; Fantegrossi, W.E. In vivo effects of 3,4-methylenedioxymethamphetamine (MDMA) and its deuterated form in rodents: Drug discrimination and thermoregulation. Drug Alcohol Depend., 2020, 208, 107850.
[http://dx.doi.org/10.1016/j.drugalcdep.2020.107850] [PMID: 31954950]
[13]
Demidov, V.V. Site-specifically deuterated essential lipids as new drugs against neuronal, retinal and vascular degeneration. Drug Discov. Today, 2020, 25(8), 1469-1476.
[http://dx.doi.org/10.1016/j.drudis.2020.03.014] [PMID: 32247036]
[14]
Samuels, E.R.; Wang, T. Quantitative 1H NMR analysis of a difficult drug substance and its exo-isomer as hydrochloride salts using alkaline deuterated methanol. J. Pharm. Biomed. Anal., 2020, 187, 113338.
[http://dx.doi.org/10.1016/j.jpba.2020.113338] [PMID: 32408063]
[15]
Makarova, M.; Barrientos, R.C.; Torres, O.B.; Matyas, G.R.; Jacobson, A.E.; Sulima, A.; Rice, K.C. Synthesis of a deuterated 6-AmHap internal standard for the determination of hapten density in a heroin vaccine drug product. J. Labelled Comp. Radiopharm., 2020, 63(13), 564-571.
[http://dx.doi.org/10.1002/jlcr.3880] [PMID: 32876947]
[16]
Foster, A.B. Deuterium isotope effects in studies of drug metabolism. Trends Pharmacol. Sci., 1984, 5, 524-527.
[http://dx.doi.org/10.1016/0165-6147(84)90534-0]
[17]
Cooper, G.J.T.; Surman, A.J.; McIver, J.; Colón-Santos, S.M.; Gromski, P.S.; Buchwald, S.; Suárez Marina, I.; Cronin, L. Miller-Urey spark-discharge experiments in the deuterium world. Angew. Chem. Int. Ed., 2017, 56(28), 8079-8082.
[http://dx.doi.org/10.1002/anie.201610837] [PMID: 28474773]
[18]
Meanwell, N.A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem., 2011, 54(8), 2529-2591.
[http://dx.doi.org/10.1021/jm1013693] [PMID: 21413808]
[19]
Bell, R.P. Liversidge Lecture. Recent advances in the study of kinetic hydrogen isotope effects. Chem. Soc. Rev., 1974, 3(4), 513-544.
[http://dx.doi.org/10.1039/cs9740300513]
[20]
Ling, K.H.J.; Hanzlik, R.P. Deuterium isotope effects on toluene metabolism. Product release as a rate-limiting step in cytochrome P-450 catalysis. Biochem. Biophys. Res. Commun., 1989, 160(2), 844-849.
[http://dx.doi.org/10.1016/0006-291X(89)92511-4] [PMID: 2719701]
[21]
Elison, C.; Rapoport, H.; Laursen, R.; Elliott, H.W. Effect of deuteration of N-CH3 group on potency and enzymatic N-demethylation of morphine. Science, 1961, 134(3485), 1078-1079.
[http://dx.doi.org/10.1126/science.134.3485.1078] [PMID: 13889855]
[22]
Westheimer, F.H. The magnitude of the primary kinetic isotope effect for compounds of hydrogen and deuterium. Chem. Rev., 1961, 61(3), 265-273.
[http://dx.doi.org/10.1021/cr60211a004]
[23]
Schneider, F.; Mattern-Dogru, E.; Hillgenberg, M.; Alken, R.G. Changed phosphodiesterase selectivity and enhanced in vitro efficacy by selective deuteration of sildenafil. Arzneimittelforschung, 2011, 57(6), 293-298.
[http://dx.doi.org/10.1055/s-0031-1296622] [PMID: 17688073]
[24]
Sipes, I.G.; Gandolfi, A.J.; Pohl, L.R.; Krishna, G.; Brown, B.R., Jr Comparison of the biotransformation and hepatotoxicity of halothane and deuterated halothane. J. Pharmacol. Exp. Ther., 1980, 214(3), 716-720.
[PMID: 7400974]
[25]
Darland, G.K.; Hajdu, R.; Kropp, H.; Kahan, F.M.; Walker, R.W.; Vandenheuvel, W.J. Oxidative and defluorinative metabolism of fludalanine, 2-2H-3-fluoro-D-alanine. Drug Metab. Dispos., 1986, 14(6), 668-673.
[PMID: 2877824]
[26]
Higashi, T.; Ogawa, S. Isotope-coded ESI-enhancing derivatization reagents for differential analysis, quantification and profiling of metabolites in biological samples by LC/MS: A review. J. Pharm. Biomed. Anal., 2016, 130, 181-193.
[http://dx.doi.org/10.1016/j.jpba.2016.04.033] [PMID: 27178301]
[27]
Shao, L.; Hewitt, M.C. The kinetic isotope effect in the search for deuterated drugs. Drug News Perspect., 2010, 23(6), 398-404.
[http://dx.doi.org/10.1358/dnp.2010.23.6.1426638] [PMID: 20697607]
[28]
Cleave, A.B.V.; Maass, O. The molecular diameter of deuterium as determined by viscosity measurements. Can. J. Res., 1935, 12(1), 57-62.
[http://dx.doi.org/10.1139/cjr35-005]
[29]
Bartell, L.S.; Roth, E.A.; Hollowell, C.D.; Kuchitsu, K.; Young, J.E., Jr Electron-diffraction study of the structures of C2H4 and C2D4. J. Chem. Phys., 1965, 42(8), 2683-2686.
[http://dx.doi.org/10.1063/1.1703223]
[30]
Kuchitsu, K. Comparison of molecular structures determined by electron diffraction and spectroscopy. Ethane and diborane. J. Chem. Phys., 1968, 49(10), 4456-4462.
[http://dx.doi.org/10.1063/1.1669897]
[31]
Mullard, A. FDA approves first deuterated drug. Nat. Rev. Drug Discov., 2017, 16(5), 305-305.
[http://dx.doi.org/10.1038/nrd.2017.89] [PMID: 28450717]
[32]
Miyagi, M.; Tanaka, K.; Watanabe, S.; Kondo, J.; Kishimoto, T. Identifying protein–drug interactions in cell lysates using histidine hydrogen deuterium exchange. Anal. Chem., 2021, 93(45), 14985-14995.
[http://dx.doi.org/10.1021/acs.analchem.1c02283] [PMID: 34735131]
[33]
Shchepinov, M.S. Do “heavy” eaters live longer? BioEssays, 2007, 29(12), 1247-1256.
[http://dx.doi.org/10.1002/bies.20681] [PMID: 18027392]
[34]
Shchepinov, M.S. Reactive oxygen species, isotope effect, essential nutrients, and enhanced longevity. Rejuvenat. Res., 2007, 10(1), 47-60.
[http://dx.doi.org/10.1089/rej.2006.0506] [PMID: 17378752]
[35]
Alfadda, A.A.; Sallam, R.M. Reactive oxygen species in health and disease. J. Biomed. Biotechnol., 2012, 2012(6), 1-14.
[http://dx.doi.org/10.1155/2012/936486] [PMID: 22927725]
[36]
Brieger, K.; Schiavone, S.; Miller, J., Jr; Krause, K.H. Reactive oxygen species: From health to disease. Swiss Med. Wkly., 2012, 142, w13659.
[http://dx.doi.org/10.4414/smw.2012.13659] [PMID: 22903797]
[37]
Sultana, R.; Perluigi, M.; Butterfield, D.A. Lipid peroxidation triggers neurodegeneration: A redox proteomics view into the Alzheimer disease brain. Free Radic. Biol. Med., 2013, 62, 157-169.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.09.027] [PMID: 23044265]
[38]
Shichiri, M. The role of lipid peroxidation in neurological disorders. J. Clin. Biochem. Nutr., 2014, 54(3), 151-160.
[http://dx.doi.org/10.3164/jcbn.14-10] [PMID: 24895477]
[39]
Farrar, M.A.; Teoh, H.L.; Brammah, S.; Roscioli, T.; Cardamone, M. Glial mitochondropathy in infantile neuroaxonal dystrophy: Pathophysiological and therapeutic implications. Brain, 2016, 139(12), e67.
[http://dx.doi.org/10.1093/brain/aww174] [PMID: 27497490]
[40]
McCarty, L.P.; Malek, R.S.; Larsen, E.R. The effects of deuteration on the metabolism of halogenated anesthetics in the rat. Anesthesiology, 1979, 51(2), 106-110.
[http://dx.doi.org/10.1097/00000542-197908000-00003] [PMID: 453609]
[41]
Cho, E.; Mayhugh, B.M.; Srinivasan, J.M.; Sacha, G.A.; Nail, S.L.; Topp, E.M. Stability of antibody drug conjugate formulations evaluated using solid-state hydrogen-deuterium exchange mass spectrometry. J. Pharm. Sci., 2021, 110(6), 2379-2385.
[http://dx.doi.org/10.1016/j.xphs.2021.03.006] [PMID: 33711346]
[42]
Maltais, F.; Jung, Y.C.; Chen, M.; Tanoury, J.; Perni, R.B.; Mani, N.; Laitinen, L.; Huang, H.; Liao, S.; Gao, H.; Tsao, H.; Block, E.; Ma, C.; Shawgo, R.S.; Town, C.; Brummel, C.L.; Howe, D.; Pazhanisamy, S.; Raybuck, S.; Namchuk, M.; Bennani, Y.L. In vitro and in vivo isotope effects with hepatitis C protease inhibitors: Enhanced plasma exposure of deuterated telaprevir versus telaprevir in rats. J. Med. Chem., 2009, 52(24), 7993-8001.
[http://dx.doi.org/10.1021/jm901023f] [PMID: 19894743]
[43]
Chen, M.C.; Korth, C.C.; Harnett, M.D.; Elenko, E.; Lickliter, J.D. A randomized phase 1 evaluation of deupirfenidone, a novel deuterium-containing drug candidate for interstitial lung disease and other inflammatory and fibrotic diseases. Clin. Pharmacol. Drug Dev., 2022, 11(2), 220-234.
[http://dx.doi.org/10.1002/cpdd.1040] [PMID: 34779583]
[44]
Schneider, F.; Hillgenberg, M.; Koytchev, R.; Alken, R.G. Enhanced plasma concentration by selective deuteration of rofecoxib in rats. Arzneimittelforschung, 2011, 56(4), 295-300.
[http://dx.doi.org/10.1055/s-0031-1296724] [PMID: 16724516]
[45]
Kerekes, A.D.; Esposite, S.J.; Doll, R.J.; Tagat, J.R.; Yu, T.; Xiao, Y.; Zhang, Y.; Prelusky, D.B.; Tevar, S.; Gray, K.; Terracina, G.A.; Lee, S.; Jones, J.; Liu, M.; Basso, A.D.; Smith, E.B. Aurora kinase inhibitors based on the imidazo[1,2-a]pyrazine core: Fluorine and deuterium incorporation improve oral absorption and exposure. J. Med. Chem., 2011, 54(1), 201-210.
[http://dx.doi.org/10.1021/jm1010995] [PMID: 21128646]
[46]
Xu, G.; Lv, B.; Roberge, J.Y.; Xu, B.; Du, J.; Dong, J.; Chen, Y.; Peng, K.; Zhang, L.; Tang, X.; Feng, Y.; Xu, M.; Fu, W.; Zhang, W.; Zhu, L.; Deng, Z.; Sheng, Z.; Welihinda, A.; Sun, X. Design, synthesis, and biological evaluation of deuterated C-aryl glycoside as a potent and long-acting renal sodium-dependent glucose cotransporter 2 inhibitor for the treatment of type 2 diabetes. J. Med. Chem., 2014, 57(4), 1236-1251.
[http://dx.doi.org/10.1021/jm401780b] [PMID: 24456245]
[47]
Belleau, B.; Burba, J.; Pindell, M.; Reiffenstein, J. Effect of deuterium substitution in sympathumimetic amines on adrenergic responses. Science, 1961, 133(3446), 102-104.
[http://dx.doi.org/10.1126/science.133.3446.102] [PMID: 17769335]
[48]
Cargnin, S.; Serafini, M.; Pirali, T. A primer of deuterium in drug design. Future Med. Chem., 2019, 11(16), 2039-2042.
[http://dx.doi.org/10.4155/fmc-2019-0183] [PMID: 31538524]
[49]
Harbeson, S.L.; Tung, R.D. Deuterium in drug discovery and development. Annu. Rep. Med. Chem., 2011, 46, 403-417.
[http://dx.doi.org/10.1016/B978-0-12-386009-5.00003-5]
[50]
Pirali, T.; Serafini, M.; Cargnin, S.; Genazzani, A.A. Applications of deuterium in medicinal chemistry. J. Med. Chem., 2019, 62(11), 5276-5297.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01808] [PMID: 30640460]
[51]
Chang, Y.; Yesilcimen, A.; Cao, M.; Zhang, Y.; Zhang, B.; Chan, J.Z.; Wasa, M. Catalytic deuterium incorporation within metabolically stable β-Amino C–H bonds of drug molecules. J. Am. Chem. Soc., 2019, 141(37), 14570-14575.
[http://dx.doi.org/10.1021/jacs.9b08662] [PMID: 31480842]
[52]
Ahn, J.; Flamm, S.L. Hepatocellular carcinoma. Dis. Mon., 2004, 50(10), 556-573.
[http://dx.doi.org/10.1016/j.disamonth.2004.10.001] [PMID: 15616490]
[53]
Morisue, R.; Kojima, M.; Suzuki, T.; Nakatsura, T.; Ojima, H.; Watanabe, R.; Sugimoto, M.; Kobayashi, S.; Takahashi, S.; Konishi, M.; Ishii, G.; Gotohda, N.; Fujiwara, T.; Ochiai, A. Sarcomatoid hepatocellular carcinoma is distinct from ordinary hepatocellular carcinoma: Clinicopathologic, transcriptomic and immunologic analyses. Int. J. Cancer, 2021, 149(3), 546-560.
[http://dx.doi.org/10.1002/ijc.33545] [PMID: 33662146]
[54]
Iscan, E.; Ekin, U.; Yildiz, G.; Oz, O.; Keles, U.; Suner, A.; Cakan-Akdogan, G.; Ozhan, G.; Nekulova, M.; Vojtesek, B.; Uzuner, H.; Karakülah, G.; Alotaibi, H.; Ozturk, M. TAp73β can promote hepatocellular carcinoma dedifferentiation. Cancers, 2021, 13(4), 783.
[http://dx.doi.org/10.3390/cancers13040783] [PMID: 33668566]
[55]
Citrome, L. Deutetrabenazine for tardive dyskinesia: A systematic review of the efficacy and safety profile for this newly approved novel medication-What is the number needed to treat, number needed to harm and likelihood to be helped or harmed? Int. J. Clin. Pract., 2017, 71(11), e13030.
[http://dx.doi.org/10.1111/ijcp.13030]
[56]
Frank, S.; Testa, C.M. Effect of deutetrabenazine on chorea among patients with Huntington disease: A randomized clinical trial. JAMA, 2016, 316(1), 40-50.
[57]
Frank, S.; Stamler, D.; Kayson, E.; Claassen, D.O.; Colcher, A.; Davis, C.; Duker, A.; Eberly, S.; Elmer, L.; Furr-Stimming, E.; Gudesblatt, M.; Hunter, C.; Jankovic, J.; Kostyk, S.K.; Kumar, R.; Loy, C.; Mallonee, W.; Oakes, D.; Scott, B.L.; Sung, V.; Goldstein, J.; Vaughan, C.; Testa, C.M. Safety of converting from tetrabenazine to deutetrabenazine for the treatment of chorea. JAMA Neurol., 2017, 74(8), 977-982.
[http://dx.doi.org/10.1001/jamaneurol.2017.1352] [PMID: 28692723]
[58]
Jankovic, J.; Jimenez-Shahed, J.; Budman, C.; Coffey, B.; Murphy, T.; Shprecher, D.; Stamler, D. A pilot study of SD-809 (deutetrabenazine) in tics associated with Tourette syndrome. Tremor Other Hyperkinet. Mov., 2016, 6(0), 422.
[http://dx.doi.org/10.5334/tohm.287] [PMID: 27917309]
[59]
Daniel, O.C.; Michael, P.; Benjamin, C. Deutetrabenazine for tardive dyskinesia and chorea associated with Huntington’s disease: A review of clinical trial data. Expert opin pharmaco., 2019, 20(18), 2209-2221.
[http://dx.doi.org/10.1080/14656566.2019.1674281]
[60]
Patel, R.S.; Mansuri, Z.; Motiwala, F.; Saeed, H.; Jannareddy, N.; Patel, H.; Zafar, M.K. A systematic review on treatment of tardive dyskinesia with valbenazine and deutetrabenazine. Ther. Adv. Psychopharmacol., 2019, 9, 2045125319847882.
[http://dx.doi.org/10.1177/2045125319847882] [PMID: 31205680]
[61]
Dean, M.; Sung, V. Review of deutetrabenazine: A novel treatment for chorea associated with Huntington’s disease. Drug Des. Devel. Ther., 2018, 12, 313-319.
[http://dx.doi.org/10.2147/DDDT.S138828] [PMID: 29497277]
[62]
Schneider, F.; Stamler, D.; Bradbury, M.; Loupe, P.S.; Hellriegel, E.; Cox, D.S.; Savola, J.M.; Gordon, M.F.; Rabinovich-Guilatt, L. Pharmacokinetics of deutetrabenazine and tetrabenazine: Dose proportionality and food effect. Clin. Pharmacol. Drug Dev., 2021, 10(6), 647-659.
[http://dx.doi.org/10.1002/cpdd.882] [PMID: 33038289]
[63]
Dorfman, B.J.; Jimenez-Shahed, J. Deutetrabenazine for treatment of involuntary movements in patients with tardive dyskinesia. Expert Rev. Neurother., 2021, 21(1), 9-20.
[http://dx.doi.org/10.1080/14737175.2021.1848548] [PMID: 33174440]
[64]
Ferguson, M.W.; Kennedy, C.J.; Palpagama, T.H.; Waldvogel, H.J.; Faull, R.L.M.; Kwakowsky, A. Current and possible future therapeutic options for Huntington’s disease. J. Cent. Nerv. Syst. Dis., 2022, 14, 11795735221092517.
[http://dx.doi.org/10.1177/11795735221092517] [PMID: 35615642]
[65]
Bashir, H.; Jankovic, J. Deutetrabenazine for the treatment of Huntington’s chorea. Expert Rev. Neurother., 2018, 18(8), 625-631.
[http://dx.doi.org/10.1080/14737175.2018.1500178] [PMID: 29996061]
[66]
Jankovic, J. Dopamine depleters in the treatment of hyperkinetic movement disorders. Expert Opin. Pharmacother., 2016, 17(18), 2461-2470.
[http://dx.doi.org/10.1080/14656566.2016.1258063] [PMID: 27819145]
[67]
FDA. Pharmaceuticals USA Inc. AUSTEDO (deutetrabenazine): US prescribing information. 2017. Available from: http://www.fda.gov [Accessed on 14 May 2018].
[68]
Paton, D.M. Deutetrabenazine: Treatment of hyperkinetic aspects of Huntington’s disease, tardive dyskinesia and Tourette syndrome. Drugs Today (Barc), 2017, 53(2), 89-102.
[http://dx.doi.org/10.1358/dot.2017.53.2.2589164] [PMID: 28387387]
[69]
Reddy, P. Procress for preparetion of ((3R.llbR)-1,3,4,6,7,11b-hexahydro-9,10- di(methoxy-d3)-3-(2-methylpropyl)-2H-benzo[a]quinolizin-2-one. WO Patent 2,019,207,517 Al, October 31, 2019
[70]
Ray, P.C.; Pawar, Y.D.; Singare, D.T.; Deshpande, T.N.; Singh, G.P. Novel process for preparation of tetrabenazine and deutetrabenazine. Org. Process Res. Dev., 2018, 22(4), 520-526.
[http://dx.doi.org/10.1021/acs.oprd.8b00011]
[71]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[72]
Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin., 2016, 66(2), 115-132.
[http://dx.doi.org/10.3322/caac.21338] [PMID: 26808342]
[73]
Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; Schwartz, M.; Porta, C.; Zeuzem, S.; Bolondi, L.; Greten, T.F.; Galle, P.R.; Seitz, J.F.; Borbath, I.; Häussinger, D.; Giannaris, T.; Shan, M.; Moscovici, M.; Voliotis, D.; Bruix, J. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med., 2008, 359(4), 378-390.
[http://dx.doi.org/10.1056/NEJMoa0708857] [PMID: 18650514]
[74]
Escudier, B.; Eisen, T.; Stadler, W.M.; Szczylik, C.; Oudard, S.; Siebels, M.; Negrier, S.; Chevreau, C.; Solska, E.; Desai, A.A.; Rolland, F.; Demkow, T.; Hutson, T.E.; Gore, M.; Freeman, S.; Schwartz, B.; Shan, M.; Simantov, R.; Bukowski, R.M. Sorafenib in advanced clear cell renal cell carcinoma. N. Engl. J. Med., 2007, 356(2), 125-134.
[http://dx.doi.org/10.1056/NEJMoa060655] [PMID: 17215530]
[75]
Liu, J.; Li, X.; Zhang, H.; Chen, G.; Chen, H.; Hu, Y.; Niu, J.; Ding, Y. Safety, pharmacokinetics and efficacy of donafenib in treating advanced hepatocellular carcinoma: report from a phase 1b trial. Pharmazie, 2019, 74(11), 688-693.
[http://dx.doi.org/10.1691/ph.2019.9626] [PMID: 31739839]
[76]
Llovet, J.; Bruix, J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: Chemoembolization improves survival. Hepatology, 2003, 37(2), 429-442.
[http://dx.doi.org/10.1053/jhep.2003.50047] [PMID: 12540794]
[77]
Gant, T.G. Using deuterium in drug discovery: Leaving the label in the drug. J. Med. Chem., 2014, 57(9), 3595-3611.
[http://dx.doi.org/10.1021/jm4007998] [PMID: 24294889]
[78]
Katsnelson, A. Heavy drugs draw heavy interest from pharma backers. Nat. Med., 2013, 19(6), 656-656.
[http://dx.doi.org/10.1038/nm0613-656] [PMID: 23744136]
[79]
Li, X.; Qiu, M.; Wang, S.; Zhu, H.; Feng, B.; Zheng, L. A Phase I dose-escalation, pharmacokinetics and food-effect study of oral donafenib in patients with advanced solid tumours. Cancer Chemother. Pharmacol., 2020, 85(3), 593-604.
[http://dx.doi.org/10.1007/s00280-020-04031-1] [PMID: 32008115]
[80]
Lin, Y.S.; Yang, H.; Ding, Y.; Cheng, Y.Z.; Shi, F.; Tan, J.; Deng, Z.Y.; Chen, Z.D.; Wang, R.F.; Ji, Q.H.; Huang, R.; Li, L.F. Donafenib in progressive locally advanced or metastatic radioactive iodine-refractory differentiated thyroid cancer: results of a randomized, multicenter phase II Trial. Thyroid, 2021, 31(4), 607-615.
[http://dx.doi.org/10.1089/thy.2020.0235] [PMID: 32907500]
[81]
PubChem. National Center for Biotechnology Information. PubChem Compound Summary for CID 25191001, Donafenib Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Donafenib [Accessed on: January 25, 2021].
[82]
Li, Q.; Zhu, H. Donafenib treatment for hepatocellular carcinoma. Medicine (Baltimore), 2021, 100(25), e26373.
[http://dx.doi.org/10.1097/MD.0000000000026373] [PMID: 34160411]
[83]
Bi, F.; Qin, S.; Gu, S. Donafenib versus sorafenib as first-line therapy in advanced hepatocellular carcinoma: An open-label, randomized, multicenter phase II/III trial. J. Clin. Oncol., 2020, 38(15 Suppl.), 4506-4506.
[84]
Feng, W.D.; Gao, X.Y.; Dai, X.J. Preparation method of fluoro-substituted deuterated diphenylurea. U.S. Patent 20,150,175,545, 2015.
[85]
Wrobleski, S.T.; Moslin, R.; Lin, S.; Zhang, Y.; Spergel, S.; Kempson, J.; Tokarski, J.S.; Strnad, J.; Zupa-Fernandez, A.; Cheng, L.; Shuster, D.; Gillooly, K.; Yang, X.; Heimrich, E.; McIntyre, K.W.; Chaudhry, C.; Khan, J.; Ruzanov, M.; Tredup, J.; Mulligan, D.; Xie, D.; Sun, H.; Huang, C.; D’Arienzo, C.; Aranibar, N.; Chiney, M.; Chimalakonda, A.; Pitts, W.J.; Lombardo, L.; Carter, P.H.; Burke, J.R.; Weinstein, D.S. Highly Selective Inhibition of Tyrosine Kinase 2 (TYK2) for the treatment of autoimmune diseases: Discovery of the allosteric inhibitor BMS-986165. J. Med. Chem., 2019, 62(20), 8973-8995.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00444] [PMID: 31318208]
[86]
Chimalakonda, A.; Jones, J., III; Dockens, R.; Throup, J.; Banerjee, S.; Girgis, I. P349 Cyclosporine has no clinically meaningful effect on pharmacokinetics (PK) of BMS-986165, an oral selective tyrosine kinase 2 (TYK2) inhibitor, in healthy subjects. J. Crohn’s Colitis, 2019, 13(Suppl. 1), S277-S278.
[http://dx.doi.org/10.1093/ecco-jcc/jjy222.473]
[87]
Chimalakonda, A.; Burke, J.; Cheng, L.; Strnad, J.; Catlett, I.; Patel, A.; Shen, J.; Girgis, I.; Banerjee, S.; Throup, J. Selective inhibiton of tyrosine kinase 2 with an oral agent, BMS-986165, compared with janus kinase inhibitors. Ann. Rheum. Dis., 2020, 79(Suppl. 1), 1316.1-1316.
[http://dx.doi.org/10.1136/annrheumdis-2020-eular.4598]
[88]
Krueger, J.; Hu, S.; Banerjee, S.; Gordon, K.; Catlett, I. A selective inhibitor of TYK2, BMS-986165, improves molecular, cellular, and clinical biomarkers associated with efficacy in moderate-to-severe psoriasis. J. Am. Acad. Dermatol., 2019, 81(4), AB12-AB12.
[http://dx.doi.org/10.1016/j.jaad.2019.06.083]
[89]
Yao, M.; Gu, X.; Brailsford, J.; Cortes, J.C.; Iyer, R.; Li, W. P177 - Comparative metabolism of [14C]-BMS-986165 in mice, rats, monkey, and humans. Drug Metab. Pharmacokinet., 2020, 35(1), S77-S77.
[http://dx.doi.org/10.1016/j.dmpk.2020.04.178]
[90]
Catlett, I.; Aras, U.; Liu, Y.; Bei, D.; Girgis, I.; Murthy, B.; Honczarenko, M.; Rose, S. A first-in -human, study of BMS-986165, a selective, potent, allosteric small molecule inhibitor of tyrosine kinase 2. Ann. Rheum. Dis., 2017, 76, 859.1-859.
[http://dx.doi.org/10.1136/annrheumdis-2017-eular.3809]
[91]
Liang, Y.; Zhu, Y.; Xia, Y.; Peng, H.; Yang, X.K.; Liu, Y.Y.; Xu, W.D.; Pan, H.F.; Ye, D.Q. Therapeutic potential of tyrosine kinase 2 in autoimmunity. Expert Opin. Ther. Targets, 2014, 18(5), 571-580.
[http://dx.doi.org/10.1517/14728222.2014.892925] [PMID: 24654603]
[92]
Chimalakonda, A.; Jones, J., III; Dockens, R.; Throup, J.; Banerjee, S.; Girgis, I. P638 BMS-986165, an oral selective tyrosine kinase 2 (TYK2) inhibitor, does not affect the pharmacokinetics of methotrexate in healthy subjects. J. Crohn’s Colitis, 2019, 13(Suppl. 1), S437-S438.
[http://dx.doi.org/10.1093/ecco-jcc/jjy222.762]
[93]
Gao, P.; Zeng, M.; Tan, S.L.; Sun, G.J.; Wang, S.B.; Xiu, W.H.; Bao, R.D. The utility model relates to a pyridazine derivative inhibitor, a preparation method and application thereof. WO Patent 2,020,156,311, 2020.
[94]
Pandolfo, M. Friedreich ataxia: the clinical picture. J Neurol., 2009, 256(l 1), 3-8.
[http://dx.doi.org/10.1007/s00415-009-1002-3]
[95]
Weidemann, F.; Rummey, C.; Bijnens, B.; Störk, S.; Jasaityte, R.; Dhooge, J.; Baltabaeva, A.; Sutherland, G.; Schulz, J.B.; Meier, T. The heart in Friedreich ataxia: definition of cardiomyopathy, disease severity, and correlation with neurological symptoms. Circulation, 2012, 125(13), 1626-1634.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.059477] [PMID: 22379112]
[96]
Patel, M.; Isaacs, C.J.; Seyer, L.; Brigatti, K.; Gelbard, S.; Strawser, C.; Foerster, D.; Shinnick, J.; Schadt, K.; Yiu, E.M.; Delatycki, M.B.; Perlman, S.; Wilmot, G.R.; Zesiewicz, T.; Mathews, K.; Gomez, C.M.; Yoon, G.; Subramony, S.H.; Brocht, A.; Farmer, J.; Lynch, D.R. Progression of Friedreich ataxia: Quantitative characterization over 5 years. Ann. Clin. Transl. Neurol., 2016, 3(9), 684-694.
[http://dx.doi.org/10.1002/acn3.332] [PMID: 27648458]
[97]
Hill, S.; Lamberson, C.R.; Xu, L.; To, R.; Tsui, H.S.; Shmanai, V.V.; Bekish, A.V.; Awad, A.M.; Marbois, B.N.; Cantor, C.R.; Porter, N.A.; Clarke, C.F.; Shchepinov, M.S. Small amounts of isotope-reinforced polyunsaturated fatty acids suppress lipid autoxidation. Free Radic. Biol. Med., 2012, 53(4), 893-906.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.06.004] [PMID: 22705367]
[98]
Bedlack, R. ALSUntangled No. 47: RT001. Amyotroph. Lateral Scler. Frontotemporal Degener., 2019, 20(3-4), 294-297.
[http://dx.doi.org/10.1080/21678421.2018.1549531] [PMID: 30689428]
[99]
Zesiewicz, T.; Heerinckx, F.; De Jager, R.; Omidvar, O.; Kilpatrick, M.; Shaw, J.; Shchepinov, M.S. Randomized, clinical trial of RT001: Early signals of efficacy in Friedreich’s ataxia. Mov. Disord., 2018, 33(6), 1000-1005.
[http://dx.doi.org/10.1002/mds.27353] [PMID: 29624723]
[100]
Navratil, A.R.; Shchepinov, M.S.; Dennis, E.A. Lipidomics reveals dramatic physiological kinetic isotope effects during the enzymatic oxygenation of polyunsaturated fatty acids ex vivo. J. Am. Chem. Soc., 2018, 140(1), 235-243.
[http://dx.doi.org/10.1021/jacs.7b09493] [PMID: 29206462]
[101]
Angelova, P.R.; Andruska, K.M.; Midei, M.G.; Barilani, M.; Atwal, P.; Tucher, O.; Milner, P.; Heerinckx, F.; Shchepinov, M.S. RT001 in progressive supranuclear palsy-clinical and in vitro observations. Antioxidants, 2021, 10(7), 1021.
[http://dx.doi.org/10.3390/antiox10071021] [PMID: 34202031]
[102]
Hill, S.; Hirano, K.; Shmanai, V.V.; Marbois, B.N.; Vidovic, D.; Bekish, A.V.; Kay, B.; Tse, V.; Fine, J.; Clarke, C.F.; Shchepinov, M.S. Isotope-reinforced polyunsaturated fatty acids protect yeast cells from oxidative stress. Free Radic. Biol. Med., 2011, 50(1), 130-138.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.10.690] [PMID: 20955788]
[103]
Brenna, J.T.; James, G.; Midei, M.; Heerinckx, F.; Atwal, P.; Milner, P.; Schmidt, K.; van der Ploeg, L.; Fielding, R.; Shchepinov, M.S. Plasma and red blood cell membrane accretion and pharmacokinetics of RT001 (bis-Allylic 11,11-D2-Linoleic Acid Ethyl Ester) during long term dosing in patients. J. Pharm. Sci., 2020, 109(11), 3496-3503.
[http://dx.doi.org/10.1016/j.xphs.2020.08.019] [PMID: 32871154]
[104]
Schepinov, M.S. Oxidative retinal diseases. WO Patent 2,012,148,930, 2012.
[105]
Schepinov, M.S. Neurodegenerative disorders and muscle diseases implicating pufas. WO Patent 2,012,148,926, 2012.
[106]
Scholl, H.P.; Tsang, S.H.; Kay, C.N. Stargardt disease ALK-001 phase 2 clinical trial: 12-month interim data. Invest. Ophthalmol. Vis. Sci., 2019, 60(9), 1336.
[107]
Saad, L.; Washington, I. Can deuterated vitamin A be used to prevent blindness? The case of ALK-001. Abstracts of Papers of the Am. Chem. Soc., 2015, 250, 270.
[108]
Issa, P.C.; Barnard, A.R.; Washington, I.; MacLaren, R.E. C20-D3-Vitamin A (ALK-001) rescues the phenotype of an Abca4(-/-) mouse model of Stargardt disease. Invest. Ophthalmol. Vis. Sci., 2014, 55(13), 5015.
[109]
Scholl, H.P.; Shah, S.M.; Kay, C.N.; Tsang, S.H. TEASE: A phase 2 clinical trial assessing the tolerability and effects of oral once-a day ALK-001 on Stargardt disease. Invest. Ophthalmol. Vis. Sci., 2016, 57(12), 2685.
[110]
Hector, F.; DeLuca, D.; Praveen, K.; Tadikonda, M. Method of synthesis of retinoic acid. U.S. Patent 5,808,120, 1998.
[111]
Adamson, N.J.; Hull, E.; Malcolmson, S.J. Enantioselective intermolecular addition of aliphatic amines to acyclic dienes with a Pd–PHOX Catalyst. J. Am. Chem. Soc., 2017, 139(21), 7180-7183.
[http://dx.doi.org/10.1021/jacs.7b03480] [PMID: 28453290]
[112]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[113]
Palmberg, C.; Koivisto, P.; Visakorpi, T.; Tammela, T.L.J. PSA decline is an independent prognostic marker in hormonally treated prostate cancer. Eur. Urol., 1999, 36(3), 191-196.
[http://dx.doi.org/10.1159/000067996] [PMID: 10450001]
[114]
Gittes, R.F. Carcinoma of the prostate. N. Engl. J. Med., 1991, 324(4), 236-245.
[http://dx.doi.org/10.1056/NEJM199101243240406] [PMID: 1985245]
[115]
Crawford, E.D.; Eisenberger, M.A.; McLeod, D.G.; Spaulding, J.T.; Benson, R.; Dorr, F.A.; Blumenstein, B.A.; Davis, M.A.; Goodman, P.J. A controlled trial of leuprolide with and without flutamide in prostatic carcinoma. N. Engl. J. Med., 1989, 321(7), 419-424.
[http://dx.doi.org/10.1056/NEJM198908173210702] [PMID: 2503724]
[116]
Denis, L.J.; Carnelro, D.; Moura, J.L.; Bono, A. Goserelin acetate andflutamide versus bilateral orchiectomy: A phase III EORTC trial (30853). EORTC GU Group and EORTC Data Center. Urology, 1993, 42(2), 119-129.
[http://dx.doi.org/10.1016/0090-4295(93)90634-M] [PMID: 8367920]
[117]
Schalken, J.; Fitzpatrick, J.M. Enzalutamide: targeting the androgen signalling pathway in metastatic castration-resistant prostate cancer. BJU Int., 2016, 117(2), 215-225.
[http://dx.doi.org/10.1111/bju.13123] [PMID: 25818596]
[118]
Tran, C.; Ouk, S.; Clegg, N.J.; Chen, Y.; Watson, P.A.; Arora, V.; Wongvipat, J.; Smith-Jones, P.M.; Yoo, D.; Kwon, A.; Wasielewska, T.; Welsbie, D.; Chen, C.D.; Higano, C.S.; Beer, T.M.; Hung, D.T.; Scher, H.I.; Jung, M.E.; Sawyers, C.L. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science, 2009, 324(5928), 787-790.
[http://dx.doi.org/10.1126/science.1168175] [PMID: 19359544]
[119]
Scher, H.I.; Fizazi, K.; Saad, F.; Taplin, M.E.; Sternberg, C.N.; Miller, K.; de Wit, R.; Mulders, P.; Chi, K.N.; Shore, N.D.; Armstrong, A.J.; Flaig, T.W.; Fléchon, A.; Mainwaring, P.; Fleming, M.; Hainsworth, J.D.; Hirmand, M.; Selby, B.; Seely, L.; de Bono, J.S. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med., 2012, 367(13), 1187-1197.
[http://dx.doi.org/10.1056/NEJMoa1207506] [PMID: 22894553]
[120]
Wen, L.; Yao, J.; Valderrama, A. Evaluation of treatment patterns and costs in patients with prostate cancer and bone metastases. J Manage. Care Spec. Pharm., 2019, 25(3-b suppl.), S1-S11.
[http://dx.doi.org/10.18553/jmcp.2019.25.3-b.s1]
[121]
Nelson, S.D.; Trager, W.F. The use of deuterium isotope effects to probe the active site properties, mechanism of cytochrome P450-catalyzed reactions, and mechanisms of metabolically dependent toxicity. Drug Metab. Dispos., 2003, 31(12), 1481-1497.
[http://dx.doi.org/10.1124/dmd.31.12.1481] [PMID: 14625345]
[122]
Sharma, R.; Strelevitz, T.J.; Gao, H.; Clark, A.J.; Schildknegt, K.; Obach, R.S.; Ripp, S.L.; Spracklin, D.K.; Tremaine, L.M.; Vaz, A.D.N. Deuterium isotope effects on drug pharmacokinetics. I. System-dependent effects of specific deuteration with aldehyde oxidase cleared drugs. Drug Metab. Dispos., 2012, 40(3), 625-634.
[http://dx.doi.org/10.1124/dmd.111.042770] [PMID: 22190693]
[123]
Zhong, L.; Hou, C.; Zhang, L.; Zhao, J.; Li, F.; Li, W. Synthesis of deuterium-enriched sorafenib derivatives and evaluation of their biological activities. Mol. Divers., 2019, 23(2), 341-350.
[http://dx.doi.org/10.1007/s11030-018-9875-7] [PMID: 30238393]
[124]
Pang, X.; Peng, L.; Chen, Y. Effect of N -methyl deuteration on pharmacokinetics and pharmacodynamics of enzalutamide. J. Labelled Comp. Radiopharm., 2017, 60(9), 401-409.
[http://dx.doi.org/10.1002/jlcr.3516] [PMID: 28432800]
[125]
Joulia, M.L.; Carton, E.; Jouinot, A.; Allard, M.; Huillard, O.; Khoudour, N.; Peyromaure, M.; Zerbib, M.; Schoemann, A.T.; Vidal, M.; Goldwasser, F.; Alexandre, J.; Blanchet, B. Pharmacokinetic/pharmacodynamic relationship of enzalutamide and its active metabolite N-desmethyl enzalutamide in metastatic castration-resistant prostate cancer patients. Clin. Genitourin. Cancer, 2020, 18(2), 155-160.
[http://dx.doi.org/10.1016/j.clgc.2019.05.020] [PMID: 31630979]
[126]
Higano, C.S.; Beer, T.M.; Taplin, M.E.; Efstathiou, E.; Hirmand, M.; Forer, D.; Scher, H.I. Long-term safety and anti-tumor activity in the phase 1-2 study of enzalutamide in pre- and post-docetaxel castration-resistant prostate cancer. Eur. Urol., 2015, 68(5), 795-801.
[http://dx.doi.org/10.1016/j.eururo.2015.01.026] [PMID: 25698064]
[127]
Golshayan, A.R.; Antonarakis, E.S. Enzalutamide: An evidence-based review of its use in the treatment of prostate cancer. Core Evid., 2013, 8, 27-35.
[PMID: 23589709]
[128]
Bi, F.; Zheng, L.; Liu, J.Y.; Cheng, K.; Chao, P.; Zhou, Y.W.; Wei, Q.; Zeng, H.; Shen, P.F.; Shu, Z.Q.; Zhou, Z.X.; Zheng, W.; Chen, Y.W.; Li, X.H. Phase I study of HC-1119, an androgen receptor inhibitor: Results from the dose escalation and expansion cohorts. J. Clin. Oncol., 2018, 36(15), e17021.
[129]
Li, X.; Cheng, K.; Li, X.; Zhou, Y.; Liu, J.; Zeng, H.; Chen, Y.; Liu, X.; Zhang, Y.; Wang, Y.; Bi, F.; Zheng, L. Phase I clinical trial of HC -1119: A deuterated form of enzalutamide. Int. J. Cancer, 2021, 149(7), 1473-1482.
[http://dx.doi.org/10.1002/ijc.33706] [PMID: 34109624]
[130]
Zhu, L.J.; Lei, F. Imidazole diketone compounds and their uses. CN. Patent 103,159,680, 2013.
[131]
Santiago, J.A.; Potashkin, J.A. The impact of disease comorbidities in Alzheimer’s disease. Front. Aging Neurosci., 2021, 13, 631770.
[http://dx.doi.org/10.3389/fnagi.2021.631770] [PMID: 33643025]
[132]
Garay, R.P.; Grossberg, G.T. AVP-786 for the treatment of agitation in dementia of the Alzheimer’s type. Expert Opin. Investig. Drugs, 2017, 26(1), 121-132.
[http://dx.doi.org/10.1080/13543784.2017.1267726] [PMID: 27936965]
[133]
Khoury, R.; Marx, C.; Mirgati, S.; Velury, D.; Chakkamparambil, B.; Grossberg, G.T. AVP-786 as a promising treatment option for Alzheimer’s disease including agitation. Expert Opin. Pharmacother., 2021, 22(7), 783-795.
[http://dx.doi.org/10.1080/14656566.2021.1882995] [PMID: 33615952]
[134]
Li, X.J.Z.; Li, J.Z.; Ma, X.L.; Chi, W.Z.; Liu, H.; Hu, X.H.; Zheng, X.L.; Zhai, Z.J.; Li, J.X. Method for preparing dextromethorphan. CN Patent 104,119,273, 2014.
[135]
Yamao, N. Industrial process of mono-alkylating a piperidine nitrogen in piperidine derivatives with deuterated-alkyl. WO Patent 2,019,049,918, 2019.
[136]
Miyake, M. Method for introducing deuterated lower alkyl into amine moiety of compound containing secondary amin. WO Patent 2,020,184,670, 2020.
[137]
Huebert, N.D.; Palfreyman, M.G.; Haegele, K.D. A comparison of the effects of reversible and irreversible inhibitors of aromatic L-amino acid decarboxylase on the half-life and other pharmacokinetic parameters of oral L-3,4-dihydroxyphenylalanine. Drug Metab. Dispos., 1983, 11(3), 195-200.
[PMID: 6135575]
[138]
Olanow, C.W.; Stern, M.B.; Sethi, K. The scientific and clinical basis for the treatment of Parkinson disease (2009). Neurology, 2009, 72(Supplement 4), S1-S136.
[http://dx.doi.org/10.1212/WNL.0b013e3181a1d44c] [PMID: 19470958]
[139]
Magrinelli, F.; Picelli, A.; Tocco, P.; Federico, A.; Roncari, L.; Smania, N.; Zanette, G.; Tamburin, S. Pathophysiology of motor dysfunction in Parkinson’s disease as the rationale for drug treatment and rehabilitation. Parkinsons Dis., 2016, 2016, 9832839.
[http://dx.doi.org/10.1155/2016/9832839] [PMID: 27366343]
[140]
Nishijima, H.; Mori, F.; Kimura, T.; Miki, Y.; Kinoshita, I.; Nakamura, T.; Kon, T.; Suzuki, C.; Wakabayashi, K.; Tomiyama, M. Cabergoline, a long-acting dopamine agonist, attenuates L-dopa-induced dyskinesia without L-dopa sparing in a rat model of Parkinson’s disease. Neurosci. Res., 2022, 178, 93-97.
[http://dx.doi.org/10.1016/j.neures.2022.02.001] [PMID: 35150767]
[141]
Krauser, J.A.; Guengerich, F.P. Cytochrome P450 3A4-catalyzed testosterone 6beta-hydroxylation stereochemistry, kinetic deuterium isotope effects, and rate-limiting steps. J. Biol. Chem., 2005, 280(20), 19496-19506.
[http://dx.doi.org/10.1074/jbc.M501854200] [PMID: 15772082]
[142]
Malmlöf, T.; Feltmann, K.; Konradsson-Geuken, Å.; Schneider, F.; Alken, R.G.; Svensson, T.H.; Schilström, B. Deuterium-substituted l-DOPA displays increased behavioral potency and dopamine output in an animal model of Parkinson’s disease: Comparison with the effects produced by l-DOPA and an MAO-B inhibitor. J. Neural. Transm. (Vienna), 2015, 122(2), 259-272.
[http://dx.doi.org/10.1007/s00702-014-1247-6] [PMID: 24906468]
[143]
Malmlöf, T.; Svensson, T.H.; Schilström, B. Altered behavioural and neurochemical profile of l-DOPA following deuterium substitutions in the molecule. Exp. Neurol., 2008, 212(2), 538-542.
[http://dx.doi.org/10.1016/j.expneurol.2008.05.003] [PMID: 18561915]
[144]
Malmlöf, T.; Rylander, D.; Alken, R.G.; Schneider, F.; Svensson, T.H.; Cenci, M.A.; Schilström, B. Deuterium substitutions in the L-DOPA molecule improve its anti-akinetic potency without increasing dyskinesias. Exp. Neurol., 2010, 225(2), 408-415.
[http://dx.doi.org/10.1016/j.expneurol.2010.07.018] [PMID: 20659451]
[145]
Heikkinen, H.; Varhe, A.; Laine, T.; Puttonen, J.; Kela, M.; Kaakkola, S.; Reinikainen, K. Entacapone improves the availability of L-DOPA in plasma by decreasing its peripheral metabolism independent of L-DOPA/carbidopa dose. Br. J. Clin. Pharmacol., 2002, 54(4), 363-371.
[http://dx.doi.org/10.1046/j.1365-2125.2002.01654.x] [PMID: 12392583]
[146]
Schneider, F.; Erisson, L.; Beygi, H.; Bradbury, M.; Cohen-Barak, O.; Grachev, I.D.; Guzy, S.; Loupe, P.S.; Levi, M.; McDonald, M.; Savola, J.M.; Papapetropoulos, S.; Tracewell, W.G.; Velinova, M.; Spiegelstein, O. Pharmacokinetics, metabolism and safety of deuterated L-DOPA (SD-1077)/carbidopa compared to L-DOPA/carbidopa following single oral dose administration in healthy subjects. Br. J. Clin. Pharmacol., 2018, 84(10), 2422-2432.
[http://dx.doi.org/10.1111/bcp.13702] [PMID: 29959802]
[147]
Alken, R.; Malmlöf, T.; Feltmann, K.; Konradsson-Geuken, A.; Schneider, F.; Schilström, B.; Svensson, T.H. Less dyskinesia at motor-equivalent doses of triple-deuterated L-DOPA vs. L-DOPA after chronic administration in rats. Eur. Neuropsychopharmacol., 2016, 26, S253-S254.
[http://dx.doi.org/10.1016/S0924-977X(16)31127-0]
[148]
Russ, H.; Mandel, S.A.; Moshav, A.H.; Arie, S.; Orbach, A. Combination of deuterated levodopa with carbidopa and opicapone for the treatment of parkinson's disease. WO Patent 2,017,060,870, 2017.
[149]
Harbeson, S. L. Deuterium medicinal chemistry: From bench to clinic. NERM-345, New Haven, CT, USA, 2015.
[150]
Harbeson, S.L. Deuterium-modified drugs: Discovery and development. Am. Chem. Soc., 2015, 250, 310.
[151]
Harbeson, S. Substituted triazolo-pyridazine derivatives for the treatment of diseases associated with certain GABA-A receptors. WO Patent 2,010,025,407, 2010.
[152]
Igo, D.; Bis, J.; Weissman, S.; Turnquist, D. Preparation of polymorphs of 7-(tert-butyl-d9)-3-(2,5-difluorophenyl)-6-[(1-methyl-1H-1,2,4-triazol-5-yl)methoxy]-1,2,4-triazolo[4,3-b]pyridazine. WO Patent 2,013,170,241, 2013.
[153]
Uttamsingh, V.; Pilja, L.; Brummel, C.L.; Grotbeck, B.; Cassella, J.V.; Braman, G. CTP-656 multiple dose pharmacokinetic profile continues to support a once-daily potentiator for cystic fibrosis patients with gating mutations. Pediatr. Pulmonol., 2016, 51, 277-277.
[154]
Altshuler, D.M.; Anderson, C.D.; Chen, W.C.; Clemens, J.J.; Cleveland, T.; Coon, T.R.; Frieman, B.; Grootenhuis, P.; Hadida, R.S.S.; Hare, B.J.; Kewalramani, R.; McCartney, J.; Miller, M.T.; Paraselli, P.; Pierre, F.; Robertson, S.M.; Sosnay, P.R.; Swift, S.E.; Zhou, J.L. Preparation of macrocyclic compound for treating cystic fibrosis. WO Patent 2,020,102,346, 2020.
[155]
Tang, X.; Bridson, G.; Ke, J.; Wu, L.; Erol, H.; Graham, P.; Lin, C.H.; Braman, V.; Zhao, H.; Liu, J.F.; Lin, Z.J.; Cheng, C. Quantitative analyses of CTP-499 and five major metabolites by core-structure analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 963(963), 1-9.
[http://dx.doi.org/10.1016/j.jchromb.2014.05.043] [PMID: 24927417]
[156]
McCormick, B.B.; Sydor, A.; Akbari, A.; Fergusson, D.; Doucette, S.; Knoll, G. The effect of pentoxifylline on proteinuria in diabetic kidney disease: A meta-analysis. Am. J. Kidney Dis., 2008, 52(3), 454-463.
[http://dx.doi.org/10.1053/j.ajkd.2008.01.025] [PMID: 18433957]
[157]
Levey, A.S.; Cattran, D.; Friedman, A.; Miller, W.G.; Sedor, J.; Tuttle, K.; Kasiske, B.; Hostetter, T. Proteinuria as a surrogate outcome in CKD: Report of a scientific workshop sponsored by the National Kidney Foundation and the US Food and Drug Administration. Am. J. Kidney Dis., 2009, 54(2), 205-226.
[http://dx.doi.org/10.1053/j.ajkd.2009.04.029] [PMID: 19577347]
[158]
Brenner, B.M.; Cooper, M.E.; de Zeeuw, D.; Keane, W.F.; Mitch, W.E.; Parving, H.H.; Remuzzi, G.; Snapinn, S.M.; Zhang, Z.; Shahinfar, S. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med., 2001, 345(12), 861-869.
[http://dx.doi.org/10.1056/NEJMoa011161] [PMID: 11565518]
[159]
Navarro-González, J.F.; Mora-Fernández, C. The role of inflammatory cytokines in diabetic nephropathy. J. Am. Soc. Nephrol., 2008, 19(3), 433-442.
[http://dx.doi.org/10.1681/ASN.2007091048] [PMID: 18256353]
[160]
Sabounjian, L.; Graham, P.; Wu, L.J.; Braman, V.; Cheng, C.F.; Liu, J.L.; Shipley, J.; Neutel, J.; Dao, M. A A first-in-patient, multicenter, double-blind, 2-ARM, placebo-controlled, randomized safety and tolerability study of a novel oral drug candidate, CTP-499, in chronic kidney disease. Clin Pharm Drug Dev., 2016, 5(4), 314-325.
[161]
Jha, V.; Wang, A.Y.M.; Wang, H. The impact of CKD identification in large countries: The burden of illness. Nephrol. Dial. Transplant., 2012, 27(Suppl. 3), iii32-iii38.
[http://dx.doi.org/10.1093/ndt/gfs113] [PMID: 23115140]
[162]
Graham, P.; Sabounjian, L.; Shipley, J.; Braman, V.; Harnett, M.; Turnquist, D.; Cheng, C.F.; Wu, L.J. Safety, tolerability and pharmacokinetics of CTP-499 in a multi-center, double-blind, two-arm, placebo-controlled, randomized study in non-dialysis patients with stage 3 chronic kidney disease. Am. J. Kidney Dis., 2012, 59(4), B38.
[http://dx.doi.org/10.1053/j.ajkd.2012.02.102]
[163]
Singh, B.; Diamond, S.A.; Pergola, P.E.; Shipley, J.E.; Wu, L.J.; Sabounjian, L.A.; Graham, P.B. Effect of CTP-499 on renal function in patients with type 2 diabetes and kidney disease. Am. J. Kidney Dis., 2014, 63(5), B120.
[http://dx.doi.org/10.1053/j.ajkd.2014.01.446]
[164]
Braman, V.; Graham, P.; Cheng, C.; Turnquist, D.; Harnett, M.; Sabounjian, L.; Shipley, J. A randomized phase I evaluation of CTP-499, a novel deuterium-containing drug candidate for diabetic nephropathy. Clin. Pharmacol. Drug Dev., 2013, 2(1), 53-66.
[http://dx.doi.org/10.1002/cpdd.3] [PMID: 27121560]
[165]
Wiberg, K.B. The deuterium isotope effect. Chem. Rev., 1955, 55(4), 713-743.
[http://dx.doi.org/10.1021/cr50004a004]
[166]
Kimura, Y.; Kanematsu, Y.; Sakagami, H.; Rivera Rocabado, D.S.; Shimazaki, T.; Tachikawa, M.; Ishimoto, T. Hydrogen/deuterium transfer from anisole to methoxy radicals: A theoretical study of a deuterium-labeled drug model. J. Phys. Chem. A, 2022, 126(1), 155-163.
[http://dx.doi.org/10.1021/acs.jpca.1c08514] [PMID: 34981930]
[167]
Parasrampuria, D.; Braman, V.; Cheng, C.; Grotbeck, B. First human exposure suggests a unique metabolic profile with multiple active species for CTP-499, a novel agent for treatment of chronic kidney disease. ASN Poster, THPO358, 2011.
[168]
Harbeson, S.; Tung, R. Deuterium medicinal chemistry: A new approach to drug discovery and development. Med. Chem. News., 2014, 2, 8-22.
[169]
Lin, S.L.; Chen, Y.M.; Chiang, W.C.; Tsai, T.J.; Chen, W.Y. Review Article. Pentoxifylline: A potential therapy for chronic kidney disease. Nephrology (Carlton), 2004, 9(4), 198-204.
[http://dx.doi.org/10.1111/j.1440-1797.2004.00267.x] [PMID: 15363050]
[170]
Aslanian, A.; Hogan, K.; West, K.; Bridson, G.; Wu, L. CTP-499, a novel drug for the treatment of chronic kidney disease, ameliorates renal fibrosis and inflammation in vivo. ASN. ASN Poster, 2012.
[171]
Aslanian, A.; Hogan, K.; Qin, S. CTP-499, a novel drug for the potential treatment of chronic kidney disease, has anti-fibrotic, anti-inflammatory, and anti-oxidative activities with in vivo efficacy. ASN Poster, 2011.
[172]
Badri, S.; Dashti-Khavidaki, S.; Lessan-Pezeshki, M.; Abdollahi, M. A review of the potential benefits of pentoxifylline in diabetic and non-diabetic proteinuria. J. Pharm. Pharm. Sci., 2011, 14(1), 128-137.
[http://dx.doi.org/10.18433/J3BP4G] [PMID: 21501559]
[173]
Galkina, E.; Ley, K. Leukocyte recruitment and vascular injury in diabetic nephropathy. J. Am. Soc. Nephrol., 2006, 17(2), 368-377.
[http://dx.doi.org/10.1681/ASN.2005080859] [PMID: 16394109]
[174]
Ghorbani, A.; Omidvar, B.; Beladi-Mousavi, S.S.; Lak, E.; Vaziri, S. The effect of pentoxifylline on reduction of proteinuria among patients with type 2 diabetes under blockade of angiotensin system: a double blind and randomized clinical trial. Nefrologia, 2012, 32(6), 790-796.
[PMID: 23169362]
[175]
Rodríguez-Morán, M.; González-González, G.; Bermúdez-Barba, M.V.; Garza, C.E.M.; Tamez-Pérez, H.E.; Martínez-Martínez, F.J.; Guerrero-Romero, F. Effects of pentoxifylline on the urinary protein excretion profile of type 2 diabetic patients with microproteinuria – A double-blind, placebo-controlled randomized trial. Clin. Nephrol., 2006, 66(7), 3-10.
[http://dx.doi.org/10.5414/CNP66003] [PMID: 16878429]
[176]
Braman, V.; Graham, P.; Cheng, C.; Turnquist, D.; Harnett, M.; Sabounjian, L.; Shipley, J. A randomized phase 1 evaluation of CTP-499, a novel deuterium-containing drug candidate for diabetic nephropathy. Clin. Pharmacol. Drug Dev., 2013, 2(1), 53-66.
[http://dx.doi.org/10.1002/cpdd.3] [PMID: 27121560]
[177]
Tung, R.D.; Liu, J.F.; Harbeson, S.L. Preparation of deuterated xanthine derivatives for pharmaceutical use. U.S. Patent 20,110,059,995, 2011.
[178]
Hogan, K.; Uttamsingh, V.; Hamilton, C.; Aslanian, A.; Brummel, C.; Braman, V.; Cassella, J.; Wong, D. 1060 JAK inhibitor CTP-543: Modeled exposure-response profile suggests improved therapeutic window. J. Invest. Dermatol., 2018, 138(5), S180-S180.
[http://dx.doi.org/10.1016/j.jid.2018.03.1073]
[179]
Von Hehn, J.; Hamilton, C.; Uttamsingh, V.; Hogan, K.; Aslanian, A.M.; Grotbeck, B.; Brummel, C.L.; Braman, V.; Cassella, J. Safety, pharmacokinetic and pharmacodynamic evaluation of CTP-543 (deuterated ruxolitinib) in a phase I healthy volunteer study. J. Am. Acad. Dermatol., 2017, 76(6), AB225-AB225.
[http://dx.doi.org/10.1016/j.jaad.2017.04.877]
[180]
Silverman, I.R.; Liu, J.F.; Morgan, A.J.; Pandya, B.; Harbeson, S.L. Deuterium-substituted derivative of ruxolitinib. CN. Patent 104,725,380, 2015.
[181]
Meng, X.; Ling, Y.; Zhang, L.; Zhang, Q.; Dong, P.; Zhu, T.; Lu, H. Potential for jaktinib hydrochloride to treat cytokine storms in patients with COVID-19. Biosci. Trends, 2020, 14(3), 161-167.
[http://dx.doi.org/10.5582/bst.2020.03106] [PMID: 32536632]
[182]
Liu, J.; Lv, B.; Yin, H.; Zhu, X.; Wei, H.; Ding, Y. A phase I, randomized, double-blind, placebo-controlled, single ascending dose, multiple ascending dose and food effect study to evaluate the tolerance, pharmacokinetics of jaktinib, a new selective janus kinase inhibitor in healthy chinese volunteers. Front. Pharmacol., 2020, 11, 604314.
[http://dx.doi.org/10.3389/fphar.2020.604314] [PMID: 33536914]
[183]
Lv, B.H.; Sheng, Z.L.; Cao, B.W. Deuterated (phenylamino)pyrimidine compounds as JAK kinase inhibitors and their preparation, pharmaceutical compositions and use in the treatment of diseases. WO Patent 2,014,114,274, 2014.
[184]
Boucher, D.; Hillier, S.; Newsome, D.; Wang, Y.; Takemoto, D.; Gu, Y.; Markland, W.; Hoover, R.; Arimoto, R.; Maxwell, J.; Fields, S.Z.; Charifson, P.; Penney, M.S.; Tanner, K. Preclinical characterization of the selective DNA-dependent protein kinase (DNA-PK) inhibitor VX-984 in combination with chemotherapy. Ann. Oncol., 2016, 27, vi122.
[http://dx.doi.org/10.1093/annonc/mdw368.25]
[185]
Boucher, D.; Newsome, D.; Takemoto, D.; Hillier, S.; Wang, Y.; Arimoto, R.; Maxwell, J.; Charifson, P.; Fields, S.Z.; Tanner, K.; Penney, M.S. Preclinical characterization of VX-984, a selective DNA-dependent protein kinase (DNA-PK) inhibitor in combination with doxorubicin in breast and ovarian cancers. Cancer Res., 2017, 77(4), P5-06-05.
[http://dx.doi.org/10.1158/1538-7445.SABCS16-P5-06-05]
[186]
Maxwell, J.; Cottrell, K.; Xu, J.W.; Arimoto, R. Discovery of VX-984: A novel, selective DNA-PK inhibitor for the treatment of cancer. Am. Chem. Soc., 2016, 251
[187]
Cottrell, K.; Boucher, B.; Arimoto, R.; Engtrakul, J. Discovery of VX-984: Mitigation of aldehyde oxidase metabolism through the use of targeted deuteration. Am. Chem. Soc., 2016, 251.
[188]
Timme, C.R.; Rath, B.H.; O’Neill, J.W.; Camphausen, K.; Tofilon, P.J. The DNA-PK inhibitor VX-984 enhances the radiosensitivity of glioblastoma cells grown in vitro and as orthotopic xenografts. Mol. Cancer Ther., 2018, 17(6), 1207-1216.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-1267] [PMID: 29549168]
[189]
Boucher, D.; Hoover, R.; Wang, Y.; Gu, Y.; Newsome, D.; Ford, P.; Moody, C.; Damagnez, V.; Arimoto, R.; Hillier, S.; Wood, M.; Markland, W.; Eustace, B.; Cottrell, K.; Penney, M.; Furey, B.; Tanner, K.; Maxwell, J.; Charifson, P. Abstract 3716: Potent radiation enhancement with VX-984, a selective DNA-PKcs inhibitor for the treatment of NSCLC. Cancer Res., 2016, 76(14 Suppl.), 3716.
[http://dx.doi.org/10.1158/1538-7445.AM2016-3716]
[190]
Charifson, P.S.; Cottrell, K.M.; Deng, H.B.; Duffy, J.P.; Gao, H.; Giroux, S.; Green, J.; Jackson, K.L.; Kennedy, J.M.; Lauffer, D.J.; Ledeboer, M.W.; Li, P.; Maxwell, J.P.; Morris, M.A.; Pierce, A.C.; Waal, N.D.; Xu, J.W. DNA-PK inhibitors. U.S. Patent 20,140,045,869, 2014.
[191]
Reider, P.J.; Conn, R.S.E.; Davis, P.; Grenda, V.J.; Zambito, A.J.; Grabowski, E.J.J. Synthesis of (R)-serine-2-d and its conversion to the broad-spectrum antibiotic fludalanine. J. Org. Chem., 1987, 52(15), 3326-3334.
[http://dx.doi.org/10.1021/jo00391a029]
[192]
Doller, D.; Brummel, C.L.; Liu, J.F.; Tung, R.D.; Wong, D.H.; Petryshen, T.L.; Hurst, R.S. Deuterated analogs of D-serine and uses thereof. WO Patent 2,020,243,650, 2020.
[193]
Wu, Y.S.; Niu, C.S.; Geng, Y.; Zheng, M.L.; Liang, A.; Meng, Q.G.; Yang, T.; Wang, G.H.; Huo, Y.F.; Guo, R.Y.; Li, J.Y.; Zou, D.P. Preparation of deuterated palbociclib derivatives as antitumor agents. CN Patent 106,967,064, 2017.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy