Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

The Natural Neuroprotective Compounds Used in the 6-Hydroxydopamine- Induced Parkinson’s Disease in Zebrafish: The Current Applications and Perspectives

Author(s): Sara Abidar, Lucian Hritcu* and Mohamed Nhiri

Volume 22, Issue 10, 2023

Published on: 23 November, 2022

Page: [1472 - 1483] Pages: 12

DOI: 10.2174/1871527322666221028152600

Price: $65

conference banner
Abstract

Background and Objective: Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of the dopaminergic neurons in the substantia nigra pars compacta, resulting in the loss of dopamine in the striatum, leading thus to the PD classic movement symptoms: resting tremor, rigidity, and bradykinesia/akinesia. Furthermore, Levodopa’s efficacy declines with long-term use, generating serious motor complications. Neuroprotection implies the use of different agents exhibiting various neuroprotective strategies to prevent brain degeneration and neuron loss. The present review aims to summarize and analyze the natural neuroprotective compounds that have been tested against PD induced by the 6-hydroxydopamine (6-OHDA) in zebrafish.

Results: The current study collected 23 different natural substances, divided into five distinct categories, namely herbal extracts, herbal formulations, bioactive compounds, marine products, and marine extracts. They modulate various signaling pathways involved in PD pathogenesis and exhibit specific activities such as an anxiolytic profile, improving locomotor impairment, restoring memory troubles, preventing DNA loss, inhibiting acetylcholinesterase, reducing lipid peroxidation and antiinflammatory activity, and enhancing the brain antioxidant enzymes.

Conclusion and Perspectives: This review discusses the most promising natural neuroprotective compounds that have been evaluated for their potential efficiency on the 6-OHDA-induced lesions in the zebrafish model. These natural substances deserve further consideration for determination of their optimum concentrations, bioavailability, and their ability to cross the blood-brain-barrier to exert their effects on PD. Furthermore, a complete understanding of the molecular mechanisms involved in PD and larger epidemiologic and randomized clinical trials in humans is also required.

Keywords: 6-Hydroxydopamine, natural compounds, neuroprotection, zebrafish, antioxidants, herbal extracts, Parkinson’s disease.

Graphical Abstract
[1]
Dexter DT, Jenner P. Parkinson disease: From pathology to molecular disease mechanisms. Free Radic Biol Med 2013; 62: 132-44.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.01.018] [PMID: 23380027]
[2]
Pringsheim T, Jette N, Frolkis A, Steeves TDL. The prevalence of Parkinson’s disease: A systematic review and meta-analysis. Mov Disord 2014; 29(13): 1583-90.
[http://dx.doi.org/10.1002/mds.25945] [PMID: 24976103]
[3]
Valldeoriola F, Puig-Junoy J, Puig-Peiró R. Cost analysis of the treatments for patients with advanced Parkinson’s disease: SCOPE study. J Med Econ 2013; 16(2): 191-201.
[http://dx.doi.org/10.3111/13696998.2012.737392] [PMID: 23035627]
[4]
Gershanik OS. Clinical problems in late-stage Parkinson’s disease. J Neurol 2010; 257(S2): 288-91.
[http://dx.doi.org/10.1007/s00415-010-5717-y] [PMID: 21080191]
[5]
Dorsey ER, Elbaz A, Nichols E, et al. Global, regional, and national burden of Parkinson’s disease, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2018; 17(11): 939-53.
[http://dx.doi.org/10.1016/S1474-4422(18)30295-3] [PMID: 30287051]
[6]
Findley LJ, Wood E, Lowin J, Roeder C, Bergman A, Schifflers M. The economic burden of advanced Parkinson’s disease: An analysis of a UK patient dataset. J Med Econ 2011; 14(1): 130-9.
[http://dx.doi.org/10.3111/13696998.2010.551164] [PMID: 21235405]
[7]
Winter Y, von Campenhausen S, Brozova H, et al. Costs of Parkinson’s disease in Eastern Europe: A czech cohort study. Parkinsonism Relat Disord 2010; 16(1): 51-6.
[http://dx.doi.org/10.1016/j.parkreldis.2009.07.005] [PMID: 19665915]
[8]
Winter Y, von Campenhausen S, Reese JP, et al. Costs of Parkinson’s disease and antiparkinsonian pharmacotherapy: An Italian cohort study. Neurodegener Dis 2010; 7(6): 365-72.
[http://dx.doi.org/10.1159/000302644] [PMID: 20523028]
[9]
Postuma RB, Berg D, Adler CH, et al. The new definition and diagnostic criteria of Parkinson’s disease. Lancet Neurol 2016; 15(6): 546-8.
[http://dx.doi.org/10.1016/S1474-4422(16)00116-2] [PMID: 27302120]
[10]
Surmeier DJ, Guzman JN, Sanchez-Padilla J, Schumacker PT. The role of calcium and mitochondrial oxidant stress in the loss of sub-stantia nigra pars compacta dopaminergic neurons in Parkinson’s disease. Neuroscience 2011; 198: 221-31.
[http://dx.doi.org/10.1016/j.neuroscience.2011.08.045] [PMID: 21884755]
[11]
Venkateshappa C, Harish G, Mythri RB, Mahadevan A, Srinivas Bharath MM, Shankar SK. Increased oxidative damage and decreased antioxidant function in aging human substantia nigra compared to striatum: Implications for Parkinson’s disease. Neurochem Res 2012; 37(2): 358-69.
[http://dx.doi.org/10.1007/s11064-011-0619-7] [PMID: 21971758]
[12]
Hirsch EC, Vyas S, Hunot S. Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord 2012; 18(S1): S210-2.
[http://dx.doi.org/10.1016/S1353-8020(11)70065-7] [PMID: 22166438]
[13]
Wang Y, Tong Q, Ma SR, et al. Oral berberine improves brain dopa/dopamine levels to ameliorate Parkinson’s disease by regulating gut microbiota. Signal Transduct Target Ther 2021; 6: 1-20.
[14]
Martinez-Martin P, Rodriguez-Blazquez C, Kurtis MM, Chaudhuri KR. The impact of non-motor symptoms on health-related quality of life of patients with Parkinson’s disease. Mov Disord 2011; 26(3): 399-406.
[http://dx.doi.org/10.1002/mds.23462] [PMID: 21264941]
[15]
Seppi K, Weintraub D, Coelho M, et al. The movement disorder society evidence-based medicine review update: Treatments for the non-motor symptoms of Parkinson’s disease. Mov Disord 2011; 26(S3): S42-80.
[http://dx.doi.org/10.1002/mds.23884] [PMID: 22021174]
[16]
Kurtz AL, Kaufer DI. Dementia in Parkinson’s disease. Curr Treat Options Neurol 2011; 13(3): 242-54.
[http://dx.doi.org/10.1007/s11940-011-0121-1] [PMID: 21461668]
[17]
Pagonabarraga J, Kulisevsky J. Cognitive impairment and dementia in Parkinson’s disease. Neurobiol Dis 2012; 46(3): 590-6.
[http://dx.doi.org/10.1016/j.nbd.2012.03.029] [PMID: 22484304]
[18]
Taylor JM, Main BS, Crack PJ. Neuroinflammation and oxidative stress: Co-conspirators in the pathology of Parkinson’s disease. Neurochem Int 2013; 62(5): 803-19.
[http://dx.doi.org/10.1016/j.neuint.2012.12.016] [PMID: 23291248]
[19]
Games D, Valera E, Spencer B, et al. Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson’s disease-like models. J Neurosci 2014; 34(28): 9441-54.
[http://dx.doi.org/10.1523/JNEUROSCI.5314-13.2014] [PMID: 25009275]
[20]
Sampson TR, Debelius JW, Thron T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson’s disease. Cell 2016; 167(6): 1469-1480.e12.
[http://dx.doi.org/10.1016/j.cell.2016.11.018] [PMID: 27912057]
[21]
González-Burgos E, Fernandez-Moriano C, Gómez-Serranillos MP. Potential neuroprotective activity of Ginseng in Parkinson’s disease: A review. J Neuroimmune Pharmacol 2015; 10(1): 14-29.
[http://dx.doi.org/10.1007/s11481-014-9569-6] [PMID: 25349145]
[22]
Malkus KA, Tsika E, Ischiropoulos H. Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkin-son’s disease: How neurons are lost in the Bermuda triangle. Mol Neurodegener 2009; 4(1): 24.
[http://dx.doi.org/10.1186/1750-1326-4-24] [PMID: 19500376]
[23]
Cho SY, Shim SR, Rhee HY, et al. Effectiveness of acupuncture and bee venom acupuncture in idiopathic Parkinson’s disease. Parkinsonism Relat Disord 2012; 18(8): 948-52.
[http://dx.doi.org/10.1016/j.parkreldis.2012.04.030] [PMID: 22632852]
[24]
Sarkar S, Raymick J, Imam S. Neuroprotective and therapeutic strategies against Parkinson’s disease: Recent perspectives. Int J Mol Sci 2016; 17(6): 904.
[http://dx.doi.org/10.3390/ijms17060904] [PMID: 27338353]
[25]
Müller T. Catechol-O-methyltransferase inhibitors in Parkinson’s disease. Drugs 2015; 75(2): 157-74.
[http://dx.doi.org/10.1007/s40265-014-0343-0] [PMID: 25559423]
[26]
Bezard E, Yue Z, Kirik D, Spillantini MG. Animal models of Parkinson’s disease: Limits and relevance to neuroprotection studies. Mov Disord 2013; 28(1): 61-70.
[http://dx.doi.org/10.1002/mds.25108] [PMID: 22753348]
[27]
Olson KE, Gendelman HE. Immunomodulation as a neuroprotective and therapeutic strategy for Parkinson’s disease. Curr Opin Pharmacol 2016; 26: 87-95.
[http://dx.doi.org/10.1016/j.coph.2015.10.006] [PMID: 26571205]
[28]
Sekeroglu N, Senol FS, Orhan IE, Gulpinar AR, Kartal M, Sener B. In vitro prospective effects of various traditional herbal coffees con-sumed in Anatolia linked to neurodegeneration. Food Res Int 2012; 45(1): 197-203.
[http://dx.doi.org/10.1016/j.foodres.2011.10.008]
[29]
Decressac M, Mattsson B, Björklund A. Comparison of the behavioural and histological characteristics of the 6-OHDA and α-synuclein rat models of Parkinson’s disease. Exp Neurol 2012; 235(1): 306-15.
[http://dx.doi.org/10.1016/j.expneurol.2012.02.012] [PMID: 22394547]
[30]
Richetti SK, Blank M, Capiotti KM, et al. Quercetin and rutin prevent scopolamine-induced memory impairment in zebrafish. Behav Brain Res 2011; 217(1): 10-5.
[http://dx.doi.org/10.1016/j.bbr.2010.09.027] [PMID: 20888863]
[31]
Newman M, Ebrahimie E, Lardelli M. Using the zebrafish model for Alzheimer’s disease research. Front Genet 2014; 5: 189.
[http://dx.doi.org/10.3389/fgene.2014.00189] [PMID: 25071820]
[32]
Khan MM, Ahmad A, Ishrat T, et al. Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of Parkinson’s disease. Brain Res 2010; 1328: 139-51.
[http://dx.doi.org/10.1016/j.brainres.2010.02.031] [PMID: 20167206]
[33]
Wang M, Zhang Z, Cheang LCV, Lin Z, Lee SMY. Eriocaulon buergerianum extract protects PC12 cells and neurons in zebrafish against 6-hydroxydopamine-induced damage. Chin Med 2011; 6(1): 16.
[http://dx.doi.org/10.1186/1749-8546-6-16] [PMID: 21527031]
[34]
Zhang C, Li C, Chen S, et al. Berberine protects against 6-OHDA-induced neurotoxicity in PC12 cells and zebrafish through hormetic mechanisms involving PI3K/AKT/Bcl-2 and Nrf2/HO-1 pathways. Redox Biol 2017; 11: 1-11.
[http://dx.doi.org/10.1016/j.redox.2016.10.019] [PMID: 27835779]
[35]
Panula P, Chen YC, Priyadarshini M, et al. The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol Dis 2010; 40(1): 46-57.
[http://dx.doi.org/10.1016/j.nbd.2010.05.010] [PMID: 20472064]
[36]
Zhang C, Li C, Chen S, et al. Hormetic effect of panaxatriol saponins confers neuroprotection in PC12 cells and zebrafish through PI3K/AKT/mTOR and AMPK/SIRT1/FOXO3 pathways. Sci Rep 2017; 7(1): 41082.
[http://dx.doi.org/10.1038/srep41082] [PMID: 28112228]
[37]
Song JX, Sze SCW, Ng TB, et al. Anti-Parkinsonian drug discovery from herbal medicines: What have we got from neurotoxic models? J Ethnopharmacol 2012; 139(3): 698-711.
[http://dx.doi.org/10.1016/j.jep.2011.12.030] [PMID: 22212501]
[38]
Vijayanathan Y, Lim FT, Lim SM, et al. 6-OHDA-lesioned adult zebrafish as a useful Parkinson’s disease model for dopaminergic neu-roregeneration. Neurotox Res 2017; 32(3): 496-508.
[http://dx.doi.org/10.1007/s12640-017-9778-x] [PMID: 28707266]
[39]
Schapira AHV. Future strategies for neuroprotection in Parkinson’s disease. Neurodegener Dis 2010; 7(1-3): 210-2.
[http://dx.doi.org/10.1159/000295666] [PMID: 20224288]
[40]
Chong CM, Zhou ZY, Razmovski-Naumovski V, et al. Danshensu protects against 6-hydroxydopamine-induced damage of PC12 cells in vitro and dopaminergic neurons in zebrafish. Neurosci Lett 2013; 543: 121-5.
[http://dx.doi.org/10.1016/j.neulet.2013.02.069] [PMID: 23562886]
[41]
Foyet HS, Hritcu L, Ciobica A, Stefan M, Kamtchouing P, Cojocaru D. Methanolic extract of Hibiscus asper leaves improves spatial memory deficits in the 6-hydroxydopamine-lesion rodent model of Parkinson’s disease. J Ethnopharmacol 2011; 133(2): 773-9.
[http://dx.doi.org/10.1016/j.jep.2010.11.011] [PMID: 21070845]
[42]
Serratos IN, Castellanos P, Pastor N, et al. Early expression of the receptor for advanced glycation end products in a toxic model pro-duced by 6-hydroxydopamine in the rat striatum. Chem Biol Interact 2016; 249: 10-8.
[http://dx.doi.org/10.1016/j.cbi.2016.02.014] [PMID: 26902637]
[43]
Beppe GJ, Dongmo AB, Foyet HS, et al. Memory-enhancing activities of the aqueous extract of Albizia adianthifolia leaves in the 6-hydroxydopamine-lesion rodent model of Parkinson’s disease. BMC Complement Altern Med 2014; 14(1): 142.
[http://dx.doi.org/10.1186/1472-6882-14-142] [PMID: 24884469]
[44]
Cruces-Sande A, Méndez-Álvarez E, Soto-Otero R. Copper increases the ability of 6-hydroxydopamine to generate oxidative stress and the ability of ascorbate and glutathione to potentiate this effect: Potential implications in Parkinson’s disease. J Neurochem 2017; 141(5): 738-49.
[http://dx.doi.org/10.1111/jnc.14019] [PMID: 28294337]
[45]
Latchoumycandane C, Anantharam V, Jin H, Kanthasamy A, Kanthasamy A. Dopaminergic neurotoxicant 6-OHDA induces oxidative damage through proteolytic activation of PKCδ in cell culture and animal models of Parkinson’s disease. Toxicol Appl Pharmacol 2011; 256(3): 314-23.
[http://dx.doi.org/10.1016/j.taap.2011.07.021] [PMID: 21846476]
[46]
Hernandez-Baltazar D, Zavala-Flores LM, Villanueva-Olivo A. The 6-hydroxydopamine model and parkinsonian pathophysiology: Novel findings in an older model. Neurologia 2017; 32(8): 533-9.
[http://dx.doi.org/10.1016/j.nrl.2015.06.011] [PMID: 26304655]
[47]
Boix J, von Hieber D, Connor B. Gait analysis for early detection of motor symptoms in the 6-ohda rat model of parkinson’s disease. Front Behav Neurosci 2018; 12: 39.
[http://dx.doi.org/10.3389/fnbeh.2018.00039] [PMID: 29559901]
[48]
Iancu R, Mohapel P, Brundin P, Paul G. Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson’s disease in mice. Behav Brain Res 2005; 162(1): 1-10.
[http://dx.doi.org/10.1016/j.bbr.2005.02.023] [PMID: 15922062]
[49]
Yuan H, Sarre S, Ebinger G, Michotte Y. Histological, behavioural and neurochemical evaluation of medial forebrain bundle and striatal 6-OHDA lesions as rat models of Parkinson’s disease. J Neurosci Methods 2005; 144(1): 35-45.
[http://dx.doi.org/10.1016/j.jneumeth.2004.10.004] [PMID: 15848237]
[50]
Anichtchik OV, Kaslin J, Peitsaro N, Scheinin M, Panula P. Neurochemical and behavioural changes in zebrafish Danio rerio after sys-temic administration of 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurochem 2004; 88(2): 443-53.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02190.x] [PMID: 14690532]
[51]
Kozioł E, Skalicka-Woźniak K, Michalak A, Kaszubska K, Budzyńska B. Xanthotoxin reverses Parkinson’s disease-like symptoms in zebrafish larvae and mice models: A comparative study. Pharmacol Rep 2021; 73(1): 122-9.
[http://dx.doi.org/10.1007/s43440-020-00136-9] [PMID: 32700246]
[52]
Vaz RL, Sousa S, Chapela D, et al. Identification of antiparkinsonian drugs in the 6-hydroxydopamine zebrafish model. Pharmacol Biochem Behav 2020; 189172828
[http://dx.doi.org/10.1016/j.pbb.2019.172828] [PMID: 31785245]
[53]
Cronin A, Grealy M. Neuroprotective and neuro-restorative effects of minocycline and rasagiline in a zebrafish 6-hydroxydopamine model of Parkinson’s disease. Neuroscience 2017; 367: 34-46.
[http://dx.doi.org/10.1016/j.neuroscience.2017.10.018] [PMID: 29079063]
[54]
López-Olmeda JF, Sánchez-Vázquez FJ. Thermal biology of zebrafish (Danio rerio). J Therm Biol 2011; 36(2): 91-104.
[http://dx.doi.org/10.1016/j.jtherbio.2010.12.005]
[55]
Rico EP, Rosemberg DB, Seibt KJ, Capiotti KM, Da Silva RS, Bonan CD. Zebrafish neurotransmitter systems as potential pharmacologi-cal and toxicological targets. Neurotoxicol Teratol 2011; 33(6): 608-17.
[http://dx.doi.org/10.1016/j.ntt.2011.07.007] [PMID: 21907791]
[56]
Mathur P, Guo S. Differences of acute versus chronic ethanol exposure on anxiety-like behavioral responses in zebrafish. Behav Brain Res 2011; 219(2): 234-9.
[http://dx.doi.org/10.1016/j.bbr.2011.01.019] [PMID: 21255611]
[57]
Magno LDP, Fontes A, Gonçalves BMN, Gouveia A Jr. Pharmacological study of the light/dark preference test in zebrafish (Danio rerio): Waterborne administration. Pharmacol Biochem Behav 2015; 135: 169-76.
[http://dx.doi.org/10.1016/j.pbb.2015.05.014] [PMID: 26026898]
[58]
Hou L, Chen W, Liu X, Qiao D, Zhou FM. Exercise-induced neuroprotection of the nigrostriatal dopamine system in Parkinson’s dis-ease. Front Aging Neurosci 2017; 9: 358.
[http://dx.doi.org/10.3389/fnagi.2017.00358] [PMID: 29163139]
[59]
Fu W, Zhuang W, Zhou S, Wang X. Plant-derived neuroprotective agents in Parkinson’s disease. Am J Transl Res 2015; 7(7): 1189-202.
[PMID: 26328004]
[60]
Salamon A, Zádori D, Szpisjak L, Klivényi P, Vécsei L. Neuroprotection in Parkinson’s disease: Facts and hopes. J Neural Transm 2020; 127(5): 821-9.
[http://dx.doi.org/10.1007/s00702-019-02115-8] [PMID: 31828513]
[61]
Reglodi D, Renaud J, Tamas A, et al. Novel tactics for neuroprotection in Parkinson’s disease: Role of antibiotics, polyphenols and neu-ropeptides. Prog Neurobiol 2017; 155: 120-48.
[http://dx.doi.org/10.1016/j.pneurobio.2015.10.004] [PMID: 26542398]
[62]
Tarazi FI, Sahli ZT, Wolny M, Mousa SA. Emerging therapies for Parkinson’s disease: From bench to bedside. Pharmacol Ther 2014; 144(2): 123-33.
[http://dx.doi.org/10.1016/j.pharmthera.2014.05.010] [PMID: 24854598]
[63]
Koppula S, Kumar H, More SV, Kim BW, Kim IS, Choi DK. Recent advances on the neuroprotective potential of antioxidants in experi-mental models of Parkinson’s disease. Int J Mol Sci 2012; 13(8): 10608-29.
[http://dx.doi.org/10.3390/ijms130810608] [PMID: 22949883]
[64]
Sen S, Chakraborty R, Sridhar C, et al. Free radicals, antioxidants, diseases and phytomedicines: Current status and future prospect. Int J Pharm Sci Rev Res 2010; 3(1): 91-100.
[65]
Sharma N, Nehru B. Curcumin affords neuroprotection and inhibits α-synuclein aggregation in lipopolysaccharide-induced Parkinson’s disease model. Inflammopharmacology 2018; 26(2): 349-60.
[http://dx.doi.org/10.1007/s10787-017-0402-8] [PMID: 29027056]
[66]
Milatovic D, Gupta RC, Yu Y, Zaja-Milatovic S, Aschner M. Protective effects of antioxidants and anti-inflammatory agents against man-ganese-induced oxidative damage and neuronal injury. Toxicol Appl Pharmacol 2011; 256(3): 219-26.
[http://dx.doi.org/10.1016/j.taap.2011.06.001] [PMID: 21684300]
[67]
Ghosh A, Kanthasamy A, Joseph J, et al. Anti-inflammatory and neuroprotective effects of an orally active apocynin derivative in pre-clinical models of Parkinson’s disease. J Neuroinflammation 2012; 9(1): 241.
[http://dx.doi.org/10.1186/1742-2094-9-241] [PMID: 23092448]
[68]
Sergi D, Gélinas A, Beaulieu J, et al. Anti-apoptotic and anti-inflammatory role of trans ε-viniferin in a neuron–glia co-culture cellular model of Parkinson’s disease. Foods 2021; 10(3): 586.
[http://dx.doi.org/10.3390/foods10030586] [PMID: 33799534]
[69]
Abushouk AI, Negida A, Ahmed H, Abdel-Daim MM. Neuroprotective mechanisms of plant extracts against MPTP induced neurotoxici-ty: Future applications in Parkinson’s disease. Biomed Pharmacother 2017; 85: 635-45.
[http://dx.doi.org/10.1016/j.biopha.2016.11.074] [PMID: 27890431]
[70]
Löhle M, Reichmann H. Clinical neuroprotection in Parkinson’s disease — Still waiting for the breakthrough. J Neurol Sci 2010; 289(1-2): 104-14.
[http://dx.doi.org/10.1016/j.jns.2009.08.025] [PMID: 19772974]
[71]
Santra S, Xu L, Shah M, Johnson M, Dutta A. D-512 and D-440 as novel multifunctional dopamine agonists: characterization of neuro-protection properties and evaluation of in vivo efficacy in a Parkinson’s disease animal model. ACS Chem Neurosci 2013; 4(10): 1382-92.
[http://dx.doi.org/10.1021/cn400106n] [PMID: 23906010]
[72]
Carradori S, D’Ascenzio M, Chimenti P, Secci D, Bolasco A. Selective MAO-B inhibitors: A lesson from natural products. Mol Divers 2014; 18(1): 219-43.
[http://dx.doi.org/10.1007/s11030-013-9490-6] [PMID: 24218136]
[73]
Robakis D, Fahn S. Defining the role of the monoamine oxidase-B inhibitors for Parkinson’s disease. CNS Drugs 2015; 29(6): 433-41.
[http://dx.doi.org/10.1007/s40263-015-0249-8] [PMID: 26164425]
[74]
Carradori S, Gidaro MC, Petzer A, et al. Inhibition of human monoamine oxidase: Biological and molecular modeling studies on selected natural flavonoids. J Agric Food Chem 2016; 64(47): 9004-11.
[http://dx.doi.org/10.1021/acs.jafc.6b03529] [PMID: 27933876]
[75]
Ohta K, Kuno S, Inoue S, Ikeda E, Fujinami A, Ohta M. The effect of dopamine agonists: The expression of GDNF, NGF, and BDNF in cultured mouse astrocytes. J Neurol Sci 2010; 291(1-2): 12-6.
[http://dx.doi.org/10.1016/j.jns.2010.01.013] [PMID: 20129627]
[76]
Sullivan AM, Toulouse A. Neurotrophic factors for the treatment of Parkinson’s disease. Cytokine Growth Factor Rev 2011; 22(3): 157-65.
[http://dx.doi.org/10.1016/j.cytogfr.2011.05.001] [PMID: 21689963]
[77]
Rangasamy SB, Soderstrom K, Bakay RAE, Kordower JH. Neurotrophic factor therapy for Parkinson’s disease Prog Brain Res 2010; 184: 237-64.
[http://dx.doi.org/10.1016/S0079-6123(10)84013-0] [PMID: 20887879]
[78]
da Silva PGC, Domingues DD, de Carvalho LA, Allodi S, Correa CL. Neurotrophic factors in Parkinson’s disease are regulated by exer-cise: Evidence-based practice. J Neurol Sci 2016; 363: 5-15.
[http://dx.doi.org/10.1016/j.jns.2016.02.017] [PMID: 27000212]
[79]
Zhang ZJ, Cheang LCV, Wang MW, et al. Ethanolic extract of fructus Alpinia oxyphylla protects against 6-hydroxydopamine-induced damage of PC12 cells in vitro and dopaminergic neurons in zebrafish. Cell Mol Neurobiol 2012; 32(1): 27-40.
[http://dx.doi.org/10.1007/s10571-011-9731-0] [PMID: 21744117]
[80]
Abidar S, Boiangiu R, Dumitru G, et al. The aqueous extract from ceratonia siliqua leaves protects against 6-hydroxydopamine in zebrafish: Understanding the underlying mechanism. Antioxidants 2020; 9(4): 304.
[http://dx.doi.org/10.3390/antiox9040304]
[81]
Dumitru G, Abidar S, Nhiri M, et al. Effect of ceratonia siliqua methanolic extract and 6-hydroxydopamine on memory impairment and oxidative stress in zebrafish (Danio rerio) model. Revista de Chimie 2019; 69(12): 3545-8.
[http://dx.doi.org/10.37358/RC.18.12.6788]
[82]
Hritcu L, Abidar S, Dumitru G, et al. Ceratonia siliqua methanolic extract on 6-OHDA zebrafish model antiacetylcholinesterase and anxiolytic profile. Revista de Chimie 2019; 70(4): 1364-7.
[http://dx.doi.org/10.37358/RC.19.4.7128]
[83]
Yu D, Zhang P, Li J, et al. Neuroprotective effects of Ginkgo biloba dropping pills in Parkinson’s disease. J Pharm Anal 2021; 11(2): 220-31.
[http://dx.doi.org/10.1016/j.jpha.2020.06.002] [PMID: 34012698]
[84]
Kuang S, Yang L, Rao Z, et al. Effects of Ginkgo biloba extract on A53T α-synuclein transgenic mouse models of Parkinson’s disease. Can J Neurol Sci 2018; 45(2): 182-7.
[http://dx.doi.org/10.1017/cjn.2017.268] [PMID: 29506601]
[85]
DeKosky ST, Fitzpatrick A, Ives DG, et al. The Ginkgo Evaluation of Memory (GEM) study: Design and baseline data of a randomized trial of Ginkgo biloba extract in prevention of dementia. Contemp Clin Trials 2006; 27(3): 238-53.
[http://dx.doi.org/10.1016/j.cct.2006.02.007] [PMID: 16627007]
[86]
Sun M, Chai L, Lu F, et al. Efficacy and safety of Ginkgo Biloba pills for coronary heart disease with impaired glucose regulation: Study protocol for a series of n-of-1 randomized, double-blind, placebo-controlled trials. Evid Based Complement Alternat Med 2018; 2018: 1-8.
[http://dx.doi.org/10.1155/2018/7571629]
[87]
Li M, Zhou F, Xu T, Song H, Lu B. Acteoside protects against 6-OHDA-induced dopaminergic neuron damage via Nrf2-ARE signaling pathway. Food Chem Toxicol 2018; 119: 6-13.
[http://dx.doi.org/10.1016/j.fct.2018.06.018] [PMID: 29906474]
[88]
Yuan J, Ren J, Wang Y, He X, Zhao Y. Acteoside binds to caspase-3 and exerts neuroprotection in the rotenone rat model of Parkinson’s disease. PLoS One 2016; 11(9)e0162696
[http://dx.doi.org/10.1371/journal.pone.0162696] [PMID: 27632381]
[89]
Aimaiti M, Wumaier A, Aisa Y, et al. Acteoside exerts neuroprotection effects in the model of Parkinson’s disease via inducing autopha-gy: Network pharmacology and experimental study. Eur J Pharmacol 2021; 903174136
[http://dx.doi.org/10.1016/j.ejphar.2021.174136] [PMID: 33940032]
[90]
Li G, Zhang Z, Quan Q, et al. Discovery, synthesis, and functional characterization of a novel neuroprotective natural product from the fruit of Alpinia oxyphylla for use in Parkinson’s disease through LC/MS-based multivariate data analysis-guided fractionation. J Proteome Res 2016; 15(8): 2595-606.
[http://dx.doi.org/10.1021/acs.jproteome.6b00152] [PMID: 27246451]
[91]
Zhou H, Li S, Li C, et al. Oxyphylla A promotes degradation of α-synuclein for neuroprotection via activation of immunoproteasome. Aging Dis 2020; 11(3): 559-74.
[http://dx.doi.org/10.14336/AD.2019.0612] [PMID: 32489702]
[92]
Kwon IH, Choi HS, Shin KS, et al. Effects of berberine on 6-hydroxydopamine-induced neurotoxicity in PC12 cells and a rat model of Parkinson’s disease. Neurosci Lett 2010; 486(1): 29-33.
[http://dx.doi.org/10.1016/j.neulet.2010.09.038] [PMID: 20851167]
[93]
Kim , Cho KH, Shin MS, et al. Berberine prevents nigrostriatal dopaminergic neuronal loss and suppresses hippocampal apoptosis in mice with Parkinson’s disease. Int J Mol Med 2014; 33(4): 2870-89.
[http://dx.doi.org/10.3892/ijmm.2014.1656] [PMID: 24535622]
[94]
Angelopoulou E, Pyrgelis ES, Piperi C. Neuroprotective potential of chrysin in Parkinson’s disease: Molecular mechanisms and clinical implications. Neurochem Int 2020; 132104612
[http://dx.doi.org/10.1016/j.neuint.2019.104612] [PMID: 31785348]
[95]
Krishnamoorthy A, Sevanan M, Mani S, Balu M, Balaji S. P R. Chrysin restores MPTP induced neuroinflammation, oxidative stress and neurotrophic factors in an acute Parkinson’s disease mouse model. Neurosci Lett 2019; 709134382
[http://dx.doi.org/10.1016/j.neulet.2019.134382] [PMID: 31325581]
[96]
Goes ATR, Jesse CR, Antunes MS, et al. Protective role of chrysin on 6-hydroxydopamine-induced neurodegeneration a mouse model of Parkinson’s disease: Involvement of neuroinflammation and neurotrophins. Chem Biol Interact 2018; 279: 111-20.
[http://dx.doi.org/10.1016/j.cbi.2017.10.019] [PMID: 29054324]
[97]
Del Fabbro L, Rossito Goes A, Jesse CR, et al. Chrysin protects against behavioral, cognitive and neurochemical alterations in a 6-hydroxydopamine model of Parkinson’s disease. Neurosci Lett 2019; 706: 158-63.
[http://dx.doi.org/10.1016/j.neulet.2019.05.036] [PMID: 31121284]
[98]
Ahmed MR, Shaikh MA, Ul Haq SHI, Nazir S. Neuroprotective role of chrysin in attenuating loss of dopaminergic neurons and improv-ing motor, learning and memory functions in rats. Int J Health Sci 2018; 12(3): 35-43.
[PMID: 29896070]
[99]
Cui G, Shan L, Chen Y, Zhou H, Wang Y, Lee SMY. A new Danshensu derivative protects against 6-hydroxydopamine-induced neuro-toxicity in vitro and in vivo. Am J Chin Med 2016; 44(7): 1349-61.
[http://dx.doi.org/10.1142/S0192415X16500750] [PMID: 27785944]
[100]
Kesh S, Kannan RR, Sivaji K, Balakrishnan A. Hesperidin downregulates kinases lrrk2 and gsk3β in a 6-OHDA induced Parkinson’s disease model. Neurosci Lett 2021; 740135426
[http://dx.doi.org/10.1016/j.neulet.2020.135426] [PMID: 33075420]
[101]
Antunes MS, Goes ATR, Boeira SP, Prigol M, Jesse CR. Protective effect of hesperidin in a model of Parkinson’s disease induced by 6-hydroxydopamine in aged mice. Nutrition 2014; 30(11-12): 1415-22.
[http://dx.doi.org/10.1016/j.nut.2014.03.024] [PMID: 25280422]
[102]
Antunes MS, Cattelan Souza L, Ladd FVL, et al. Hesperidin ameliorates anxiety-depressive-like behavior in 6-OHDA model of parkin-son’s disease by regulating striatal cytokine and neurotrophic factors levels and dopaminergic innervation loss in the striatum of mice. Mol Neurobiol 2020; 57(7): 3027-41.
[http://dx.doi.org/10.1007/s12035-020-01940-3] [PMID: 32458386]
[103]
Manivasagam T, Nataraj J, Tamilselvam K, Essa MM, Janakiraman U. Antioxidant and anti-inflammatory potential of hesperidin against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced experimental Parkinson′s disease in mice. Int J Nutr Pharmacol Neurol Dis 2013; 3(3): 294.
[http://dx.doi.org/10.4103/2231-0738.114875]
[104]
Poetini MR, Araujo SM, Trindade de Paula M, et al. Hesperidin attenuates iron-induced oxidative damage and dopamine depletion in Drosophila melanogaster model of Parkinson’s disease. Chem Biol Interact 2018; 279: 177-86.
[http://dx.doi.org/10.1016/j.cbi.2017.11.018] [PMID: 29191452]
[105]
Rushdy H, Rushdy H, Salem A, et al. Influence of Hesperidin combined with Sinemet on genetical and biochemical abnormalities in rats suffering from Parkinson’s disease. Life Sci J 2012; 9(4): 930-45.
[106]
Kesh S, Kannan RR, Balakrishnan A. Naringenin alleviates 6-hydroxydopamine induced Parkinsonism in SHSY5Y cells and zebrafish model. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239108893
[http://dx.doi.org/10.1016/j.cbpc.2020.108893] [PMID: 32949818]
[107]
Mani S, Sekar S, Barathidasan R, et al. Naringenin decreases α-synuclein expression and neuroinflammation in MPTP-induced Parkin-son’s disease model in mice. Neurotox Res 2018; 33: 656-70.
[108]
Sugumar M, Sevanan M, Sekar S. Neuroprotective effect of naringenin against MPTP-induced oxidative stress. Int J Neurosci 2019; 129(6): 534-9.
[http://dx.doi.org/10.1080/00207454.2018.1545772] [PMID: 30433834]
[109]
Ahmad MH, Fatima M, Ali M, Rizvi MA, Mondal AC. Naringenin alleviates paraquat-induced dopaminergic neuronal loss in SH-SY5Y cells and a rat model of Parkinson’s disease. Neuropharmacology 2021; 201108831
[http://dx.doi.org/10.1016/j.neuropharm.2021.108831] [PMID: 34655599]
[110]
Lou H, Jing X, Wei X, Shi H, Ren D, Zhang X. Naringenin protects against 6-OHDA-induced neurotoxicity via activation of the Nrf2/ARE signaling pathway. Neuropharmacology 2014; 79: 380-8.
[http://dx.doi.org/10.1016/j.neuropharm.2013.11.026] [PMID: 24333330]
[111]
Luo FC, Wang SD, Qi L, Song JY, Lv T, Bai J. Protective effect of panaxatriol saponins extracted from Panax notoginseng against MPTP-induced neurotoxicity in vivo. J Ethnopharmacol 2011; 133(2): 448-53.
[http://dx.doi.org/10.1016/j.jep.2010.10.017] [PMID: 20951784]
[112]
Zhang Z, Li G, Szeto SSW, et al. Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of Parkinson disease. Free Radic Biol Med 2015; 84: 331-43.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.02.030] [PMID: 25769424]
[113]
An LJ, Guan S, Shi GF, Bao YM, Duan YL, Jiang B. Protocatechuic acid from Alpinia oxyphylla against MPP+-induced neurotoxicity in PC12 cells. Food Chem Toxicol 2006; 44(3): 436-43.
[http://dx.doi.org/10.1016/j.fct.2005.08.017] [PMID: 16223555]
[114]
Zhang ZJ, Cheang LCV, Wang MW, Lee SM. Quercetin exerts a neuroprotective effect through inhibition of the iNOS/NO system and pro-inflammation gene expression in PC12 cells and in zebrafish. Int J Mol Med 2011; 27(2): 195-203.
[PMID: 21132259]
[115]
Ay M, Luo J, Langley M, et al. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson’s Disease. J Neurochem 2017; 141(5): 766-82.
[http://dx.doi.org/10.1111/jnc.14033] [PMID: 28376279]
[116]
Lv C, Hong T, Yang Z, et al. Effect of quercetin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkin-son’s disease. Evid Based Complement Alternat Med 2012; 2012: 1-6.
[http://dx.doi.org/10.1155/2012/928643]
[117]
Karuppagounder SS, Madathil SK, Pandey M, Haobam R, Rajamma U, Mohanakumar KP. Quercetin up-regulates mitochondrial com-plex-I activity to protect against programmed cell death in rotenone model of Parkinson’s disease in rats. Neuroscience 2013; 236: 136-48.
[http://dx.doi.org/10.1016/j.neuroscience.2013.01.032] [PMID: 23357119]
[118]
Haleagrahara N, Siew CJ, Mitra NK, Kumari M. Neuroprotective effect of bioflavonoid quercetin in 6-hydroxydopamine-induced oxida-tive stress biomarkers in the rat striatum. Neurosci Lett 2011; 500(2): 139-43.
[http://dx.doi.org/10.1016/j.neulet.2011.06.021] [PMID: 21704673]
[119]
Sriraksa N, Wattanathorn J, Muchimapura S, et al. Cognitive-enhancing effect of quercetin in a rat model of Parkinson’s disease induced by 6-Hydroxydopamine. Evid Based Complement Alternat Med 2012; 2012: 1-9.
[http://dx.doi.org/10.1155/2012/823206]
[120]
Hickson LJ, Langhi Prata LGP, Bobart SA, et al. Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine 2019; 47: 446-56.
[http://dx.doi.org/10.1016/j.ebiom.2019.08.069] [PMID: 31542391]
[121]
Shatylo V, Antoniuk-Shcheglova I, Naskalova S, et al. Cardio-metabolic benefits of quercetin in elderly patients with metabolic syn-drome. PharmaNutrition 2021; 15100250
[http://dx.doi.org/10.1016/j.phanu.2020.100250]
[122]
Zhang LQ, Sa F, Chong CM, et al. Schisantherin A protects against 6-OHDA-induced dopaminergic neuron damage in zebrafish and cytotoxicity in SH-SY5Y cells through the ROS/NO and AKT/GSK3β pathways. J Ethnopharmacol 2015; 170: 8-15.
[http://dx.doi.org/10.1016/j.jep.2015.04.040] [PMID: 25934514]
[123]
Sa F, Zhang LQ, Chong CM, et al. Discovery of novel anti-parkinsonian effect of schisantherin A in in vitro and in vivo. Neurosci Lett 2015; 593: 7-12.
[http://dx.doi.org/10.1016/j.neulet.2015.03.016] [PMID: 25770828]
[124]
Yan T, Sun Y, Gong G, et al. The neuroprotective effect of schisandrol A on 6-OHDA-induced PD mice may be related to PI3K/AKT and IKK/IκBα/NF-κB pathway. Exp Gerontol 2019; 128110743
[http://dx.doi.org/10.1016/j.exger.2019.110743] [PMID: 31629801]
[125]
Xu DP, Zhang K, Zhang ZJ, et al. A novel tetramethylpyrazine bis-nitrone (TN-2) protects against 6-hydroxyldopamine-induced neuro-toxicity via modulation of the NF-κB and the PKCα/PI3-K/Akt pathways. Neurochem Int 2014; 78: 76-85.
[http://dx.doi.org/10.1016/j.neuint.2014.09.001] [PMID: 25217805]
[126]
Wu W, Han H, Liu J, et al. Fucoxanthin prevents 6-OHDA-induced neurotoxicity by targeting keap1. Oxid Med Cell Longev 2021; 2021: 1-14.
[http://dx.doi.org/10.1155/2021/6688708]
[127]
Feng CW, Hung HC, Huang SY, et al. Neuroprotective effect of the marine-derived compound 11-dehydrosinulariolide through DJ-1-related pathway in in vitro and in vivo models of Parkinson’s disease. Mar Drugs 2016; 14(10): 187.
[http://dx.doi.org/10.3390/md14100187] [PMID: 27763504]
[128]
Chen WF, Chakraborty C, Sung CS, et al. Neuroprotection by marine-derived compound, 11-dehydrosinulariolide, in an in vitro Parkin-son’s model: A promising candidate for the treatment of Parkinson’s disease. Naunyn Schmiedebergs Arch Pharmacol 2012; 385(3): 265-75.
[http://dx.doi.org/10.1007/s00210-011-0710-2] [PMID: 22119889]
[129]
Kao CJ, Chen WF, Guo BL, et al. The 1-tosylpentan-3-one protects against 6-hydroxydopamine-induced neurotoxicity. Int J Mol Sci 2017; 18(5): 1096.
[http://dx.doi.org/10.3390/ijms18051096] [PMID: 28534853]
[130]
Feng CW, Chen NF, Wen ZH, et al. In vitro and in vivo neuroprotective effects of stellettin B through anti-apoptosis and the Nrf2/HO-1 pathway. Mar Drugs 2019; 17(6): 315.
[http://dx.doi.org/10.3390/md17060315] [PMID: 31146323]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy