摘要
可卡因,也被称为甲基苯甲酰茶碱,是滥用最多的药物之一,也是最古老的药物之一;然而,最近这种物质的消费量有所增加。这一趋势再次引起了科学界的关注。我们讨论了目前对这种药物的了解,将注意力集中在法医方法上。尽管毒品测试中可卡因阳性的临界值相当高,但目前的大多数测试都能够检测到低得多的浓度,并可以在死后调查和人员筛选方面改进法医科学。对可卡因具有显著交叉反应性的免疫分析对筛查口腔液、头发和死后血液特别有用,在这些地方可以发现大量的毒品浓度。液相色谱法现在已经取代了以前的技术,因为它非常敏感和特异性,并且只需要最少的样品制备,就可以在更短的时间内分析样品。最近的研究集中在提高灵敏度、减少处理时间和降低分析成本上。
关键词: 法医学,毒理学,可卡因,新的检测方法,适配体,甲基苯甲酰茶碱。
[1]
European monitoring center for drugs and drug addiction (EMCDDA). European Drug Report 2022: Trends and Developments, 2019. s.
[2]
Figg, B. Substance abuse and mental health services administration. J. Consum. Health Internet, 2018, 22(3), 253-262.
[http://dx.doi.org/10.1080/15398285.2018.1513760]
[http://dx.doi.org/10.1080/15398285.2018.1513760]
[3]
Pomara, C.; Cassano, T.; D’Errico, S.; Bello, S.; Romano, A.D.; Riezzo, I.; Serviddio, G. Data available on the extent of cocaine use and dependence: Biochemistry, pharmacologic effects and global burden of disease of cocaine abusers. Curr. Med. Chem., 2012, 19(33), 5647-5657.
[http://dx.doi.org/10.2174/092986712803988811] [PMID: 22856655]
[http://dx.doi.org/10.2174/092986712803988811] [PMID: 22856655]
[4]
Lapeyre-Mestre, M.; Boucher, A.; Daveluy, A.; Gibaja, V.; Jouanjus, E.; Mallaret, M.; Peyrière, H.; Micallef, J.; Bouquet, E.; Chaouachi, L.; Chevallier, C.; Deheul, S.; Eiden, C.; Fouilhé, N.; Fournier-Choma, C.; Frauger, E.; Guerlais, M.; Le Boisselier, R.; Miremont, G.; Roussin, A.; Tournebize, J. Addictovigilance contribution during COVID-19 epidemic and lockdown in France. Therapie, 2020, 75(4), 343-354.
[http://dx.doi.org/10.1016/j.therap.2020.06.006] [PMID: 32660776]
[http://dx.doi.org/10.1016/j.therap.2020.06.006] [PMID: 32660776]
[5]
Panagiotidis, P.; Rantis, K.; Holeva, V.; Parlapani, E.; Diakogiannis, I. Changes in alcohol use habits in the general population, during the COVID-19 lockdown in Greece. Alcohol Alcohol., 2020, 55(6), 702-704.
[http://dx.doi.org/10.1093/alcalc/agaa092] [PMID: 32959877]
[http://dx.doi.org/10.1093/alcalc/agaa092] [PMID: 32959877]
[6]
Banducci, A.N.; Weiss, N.H. Caring for patients with posttraumatic stress and substance use disorders during the COVID-19 pandemic. Psychol. Trauma, 2020, 12(S1), S113-S114.
[http://dx.doi.org/10.1037/tra0000824] [PMID: 32525388]
[http://dx.doi.org/10.1037/tra0000824] [PMID: 32525388]
[7]
Ornell, F.; Moura, H.F.; Scherer, J.N.; Pechansky, F.; Kessler, F.H.P.; von Diemen, L. The COVID-19 pandemic and its impact on substance use: Implications for prevention and treatment. Psychiatry Res., 2020, 289, 113096.
[http://dx.doi.org/10.1016/j.psychres.2020.113096] [PMID: 32405115]
[http://dx.doi.org/10.1016/j.psychres.2020.113096] [PMID: 32405115]
[8]
Baillargeon, J.; Polychronopoulou, E.; Kuo, Y.F.; Raji, M.A. The impact of substance use disorder on COVID-19 outcomes. Psychiatr. Serv., 2021, 72(5), 578-581.
[http://dx.doi.org/10.1176/appi.ps.202000534] [PMID: 33138712]
[http://dx.doi.org/10.1176/appi.ps.202000534] [PMID: 33138712]
[9]
Esposito, M.; Salerno, M.; Scoto, E.; Di Nunno, N.; Sessa, F. The impact of the COVID-19 pandemic on the practice of forensic medicine: An overview. Healthcare (Basel), 2022, 10(2), 319.
[http://dx.doi.org/10.3390/healthcare10020319] [PMID: 35206933]
[http://dx.doi.org/10.3390/healthcare10020319] [PMID: 35206933]
[10]
Farhoudian, A.; Radfar, S.R.; Mohaddes Ardabili, H.; Rafei, P.; Ebrahimi, M.; Khojasteh Zonoozi, A.; De Jong, C.A.J.; Vahidi, M.; Yunesian, M.; Kouimtsidis, C.; Arunogiri, S.; Hansen, H.; Brady, K.T.; Potenza, M.N.; Baldacchino, A.M.; Ekhtiari, H. A global survey on changes in the supply, price, and use of illicit drugs and alcohol, and related complications during the 2020 COVID-19 pandemic. Front. Psychiatry, 2021, 12, 646206.
[http://dx.doi.org/10.3389/fpsyt.2021.646206] [PMID: 34421664]
[http://dx.doi.org/10.3389/fpsyt.2021.646206] [PMID: 34421664]
[11]
Goldstein, R.A.; DesLauriers, C.; Burda, A.; Johnson-Arbor, K. Cocaine: History, social implications, and toxicity: A review. Semin. Diagn. Pathol., 2009, 26(1), 10-17.
[http://dx.doi.org/10.1053/j.semdp.2008.12.001] [PMID: 19292024]
[http://dx.doi.org/10.1053/j.semdp.2008.12.001] [PMID: 19292024]
[12]
Warner, E.A. Cocaine abuse. Ann. Intern. Med., 1993, 119(3), 226-235.
[http://dx.doi.org/10.7326/0003-4819-119-3-199308010-00009] [PMID: 8323092]
[http://dx.doi.org/10.7326/0003-4819-119-3-199308010-00009] [PMID: 8323092]
[13]
Broséus, J.; Gentile, N.; Esseiva, P. The cutting of cocaine and heroin: A critical review. Forensic Sci. Int., 2016, 262, 73-83.
[http://dx.doi.org/10.1016/j.forsciint.2016.02.033] [PMID: 26974713]
[http://dx.doi.org/10.1016/j.forsciint.2016.02.033] [PMID: 26974713]
[14]
Roque Bravo, R.; Faria, A.C.; Brito-da-Costa, A.M.; Carmo, H.; Mladěnka, P.; Dias da Silva, D.; Remião, F.; Researchers, O.B.O.T.O. Cocaine: An updated overview on chemistry, detection, biokinetics, and pharmacotoxicological aspects including abuse pattern. Toxins (Basel), 2022, 14(4), 278.
[http://dx.doi.org/10.3390/toxins14040278] [PMID: 35448887]
[http://dx.doi.org/10.3390/toxins14040278] [PMID: 35448887]
[15]
Espinoza, L.R.; Perez Alamino, R. Cocaine-induced vasculitis: Clinical and immunological spectrum. Curr. Rheumatol. Rep., 2012, 14(6), 532-538.
[http://dx.doi.org/10.1007/s11926-012-0283-1] [PMID: 22875288]
[http://dx.doi.org/10.1007/s11926-012-0283-1] [PMID: 22875288]
[16]
Lee, K.C.; Ladizinski, B.; Federman, D.G. Complications associated with use of levamisole-contaminated cocaine: An emerging public health challenge. Mayo Clin. Proc., 2012, 87(6), 581-586.
[http://dx.doi.org/10.1016/j.mayocp.2012.03.010] [PMID: 22677078]
[http://dx.doi.org/10.1016/j.mayocp.2012.03.010] [PMID: 22677078]
[17]
Singh, S. Chemistry, design, and structure-activity relationship of cocaine antagonists. Chem. Rev., 2000, 100(3), 925-1024.
[http://dx.doi.org/10.1021/cr9700538] [PMID: 11749256]
[http://dx.doi.org/10.1021/cr9700538] [PMID: 11749256]
[18]
Shanti, C.M.; Lucas, C.E. Cocaine and the critical care challenge. Crit. Care Med., 2003, 31(6), 1851-1859.
[http://dx.doi.org/10.1097/01.CCM.0000063258.68159.71] [PMID: 12794430]
[http://dx.doi.org/10.1097/01.CCM.0000063258.68159.71] [PMID: 12794430]
[19]
Mallette, J.R.; Casale, J.F.; Colley, V.L.; Morello, D.R.; Jordan, J. Changes in illicit cocaine hydrochloride processing identified and revealed through multivariate analysis of cocaine signature data. Sci. Justice, 2018, 58(2), 90-97.
[http://dx.doi.org/10.1016/j.scijus.2017.12.003] [PMID: 29526270]
[http://dx.doi.org/10.1016/j.scijus.2017.12.003] [PMID: 29526270]
[20]
Alballa, T.; Boone, E.L.; Ma, L.; Snyder, A.; Moeller, F.G. Exploring the relationship between white matter integrity, cocaine use and GAD polymorphisms using Bayesian Model Averaging. PLoS One, 2021, 16(7), e0254776.
[http://dx.doi.org/10.1371/journal.pone.0254776] [PMID: 34310624]
[http://dx.doi.org/10.1371/journal.pone.0254776] [PMID: 34310624]
[21]
Oliveira, K.D.; Fraga, G.P.; Baracat, E.C.E.; Morcillo, A.M.; Lanaro, R.; Costa, J.L.; Capitani, E.M.; Bucaretchi, F.; Ferreira Filho, A.I.; Gimenes, V.C.; de Azevedo, R.C.S. Prevalence of cocaine and derivatives in blood and urine samples of trauma patients and correlation with injury severity: A prospective observational study. Eur. J. Trauma Emerg. Surg., 2019, 45(1), 159-165.
[http://dx.doi.org/10.1007/s00068-017-0868-5] [PMID: 29116350]
[http://dx.doi.org/10.1007/s00068-017-0868-5] [PMID: 29116350]
[22]
Strzelecki, A.; Weafer, J.; Stoops, W.W. Human behavioral pharmacology of stimulant drugs: An update and narrative review. Adv. Pharmacol., 2022, 93, 77-103.
[http://dx.doi.org/10.1016/bs.apha.2021.07.001] [PMID: 35341574]
[http://dx.doi.org/10.1016/bs.apha.2021.07.001] [PMID: 35341574]
[23]
Menzies, E.L.; Archer, J.R.H.; Dargan, P.I.; Parkin, M.C.; Yamamoto, T.; Wood, D.M.; Braithwaite, R.A.; Elliott, S.P.; Kicman, A.T. Detection of cocaine and its metabolites in whole blood and plasma following a single dose, controlled administration of intranasal cocaine. Drug Test. Anal., 2019, 11(9), 1419-1430.
[http://dx.doi.org/10.1002/dta.2657] [PMID: 31150569]
[http://dx.doi.org/10.1002/dta.2657] [PMID: 31150569]
[24]
Knuepfer, M.M. Cardiovascular disorders associated with cocaine use: Myths and truths. Pharmacol. Ther., 2003, 97(3), 181-222.
[http://dx.doi.org/10.1016/S0163-7258(02)00329-7] [PMID: 12576134]
[http://dx.doi.org/10.1016/S0163-7258(02)00329-7] [PMID: 12576134]
[25]
O’Dell, L.E.; George, F.R.; Ritz, M.C. Antidepressant drugs appear to enhance cocaine-induced toxicity. Exp. Clin. Psychopharmacol., 2000, 8(1), 133-141.
[http://dx.doi.org/10.1037/1064-1297.8.1.133] [PMID: 10743914]
[http://dx.doi.org/10.1037/1064-1297.8.1.133] [PMID: 10743914]
[26]
Volkow, N.D.; Wang, G.J.; Fischman, M.W.; Foltin, R.W.; Fowler, J.S.; Abumrad, N.N.; Vitkun, S.; Logan, J.; Gatley, S.J.; Pappas, N.; Hitzemann, R.; Shea, C.E. Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature, 1997, 386(6627), 827-830.
[http://dx.doi.org/10.1038/386827a0] [PMID: 9126740]
[http://dx.doi.org/10.1038/386827a0] [PMID: 9126740]
[27]
Puig, S.; Noble, F.; Benturquia, N. Short- and long-lasting behavioral and neurochemical adaptations: Relationship with patterns of cocaine administration and expectation of drug effects in rats. Transl. Psychiatry, 2012, 2(10), e175-e175.
[http://dx.doi.org/10.1038/tp.2012.103] [PMID: 23092979]
[http://dx.doi.org/10.1038/tp.2012.103] [PMID: 23092979]
[28]
Patanè, F.G.; Liberto, A.; Maria Maglitto, A.N.; Malandrino, P.; Esposito, M.; Amico, F.; Cocimano, G.; Rosi, G.L.; Condorelli, D.; Nunno, N.D.; Montana, A. Nandrolone decanoate: Use, abuse and side effects. Medicina (Kaunas), 2020, 56(11), 606.
[http://dx.doi.org/10.3390/medicina56110606] [PMID: 33187340]
[http://dx.doi.org/10.3390/medicina56110606] [PMID: 33187340]
[29]
Cerretani, D.; Bello, S.; Cantatore, S.; Fiaschi, A.I.; Montefrancesco, G.; Neri, M.; Pomara, C.; Riezzo, I.; Fiore, C.; Bonsignore, A.; Turillazzi, E.; Fineschi, V. Acute administration of 3,4-methylenedioxymethamphetamine (MDMA) induces oxidative stress, lipoperoxidation and TNFα-mediated apoptosis in rat liver. Pharmacol. Res., 2011, 64(5), 517-527.
[http://dx.doi.org/10.1016/j.phrs.2011.08.002] [PMID: 21864684]
[http://dx.doi.org/10.1016/j.phrs.2011.08.002] [PMID: 21864684]
[30]
Volkow, N.D.; Wang, G.J.; Fischman, M.W.; Foltin, R.; Fowler, J.S.; Franceschi, D.; Franceschi, M.; Logan, J.; Gatley, S.J.; Wong, C.; Ding, Y.S.; Hitzemann, R.; Pappas, N. Effects of route of administration on cocaine induced dopamine transporter blockade in the human brain. Life Sci., 2000, 67(12), 1507-1515.
[http://dx.doi.org/10.1016/S0024-3205(00)00731-1] [PMID: 10983846]
[http://dx.doi.org/10.1016/S0024-3205(00)00731-1] [PMID: 10983846]
[31]
Thomas, M.J.; Kalivas, P.W.; Shaham, Y. Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. Br. J. Pharmacol., 2008, 154(2), 327-342.
[http://dx.doi.org/10.1038/bjp.2008.77] [PMID: 18345022]
[http://dx.doi.org/10.1038/bjp.2008.77] [PMID: 18345022]
[32]
Gu, H.; Salmeron, B.J.; Ross, T.J.; Geng, X.; Zhan, W.; Stein, E.A.; Yang, Y. Mesocorticolimbic circuits are impaired in chronic cocaine users as demonstrated by resting-state functional connectivity. Neuroimage, 2010, 53(2), 593-601.
[http://dx.doi.org/10.1016/j.neuroimage.2010.06.066] [PMID: 20603217]
[http://dx.doi.org/10.1016/j.neuroimage.2010.06.066] [PMID: 20603217]
[33]
Georgieva, E.; Karamalakova, Y.; Miteva, R.; Abrashev, H.; Nikolova, G. Oxidative stress and cocaine intoxication as start points in the pathology of cocaine-induced cardiotoxicity. Toxics, 2021, 9(12), 317.
[http://dx.doi.org/10.3390/toxics9120317] [PMID: 34941752]
[http://dx.doi.org/10.3390/toxics9120317] [PMID: 34941752]
[34]
Hayase, T.; Yamamoto, Y.; Yamamoto, K.; Muso, E.; Shiota, K. Stressor-like effects of cocaine on heat shock protein and stress-activated protein kinase expression in the rat hippocampus: Interaction with ethanol and anti-toxicity drugs. Leg. Med. (Tokyo), 2003, 5(Suppl. 1), S87-S90.
[http://dx.doi.org/10.1016/S1344-6223(02)00093-7] [PMID: 12935560]
[http://dx.doi.org/10.1016/S1344-6223(02)00093-7] [PMID: 12935560]
[35]
Pomara, C.; D’Errico, S.; Zummo, L.; Cappello, F.; Li Volti, G. MDMA administration and heat shock proteins response: Foreseeing a molecular link. Curr. Pharm. Biotechnol., 2010, 11(5), 496-499.
[http://dx.doi.org/10.2174/138920110791591445] [PMID: 20420569]
[http://dx.doi.org/10.2174/138920110791591445] [PMID: 20420569]
[36]
Riezzo, I.; Cerretani, D.; Fiore, C.; Bello, S.; Centini, F.; D’Errico, S.; Fiaschi, A.I.; Giorgi, G.; Neri, M.; Pomara, C.; Turillazzi, E.; Fineschi, V. Enzymatic-nonenzymatic cellular antioxidant defense systems response and immunohistochemical detection of MDMA, VMAT2, HSP70, and apoptosis as biomarkers for MDMA (Ecstasy) neurotoxicity. J. Neurosci. Res., 2009, 88(4), 22245.
[http://dx.doi.org/10.1002/jnr.22245] [PMID: 19798748]
[http://dx.doi.org/10.1002/jnr.22245] [PMID: 19798748]
[37]
Mash, D.C.; Duque, L.; Pablo, J.; Qin, Y.; Adi, N.; Hearn, W.L.; Hyma, B.A.; Karch, S.B.; Druid, H.; Wetli, C.V. Brain biomarkers for identifying excited delirium as a cause of sudden death. Forensic Sci. Int., 2009, 190(1-3), e13-e19.
[http://dx.doi.org/10.1016/j.forsciint.2009.05.012] [PMID: 19541436]
[http://dx.doi.org/10.1016/j.forsciint.2009.05.012] [PMID: 19541436]
[38]
Shields, L.B.E.; Rolf, C.M.; Hunsaker, J.C., III Sudden death due to acute cocaine toxicity-excited delirium in a body packer. J. Forensic Sci., 2015, 60(6), 1647-1651.
[http://dx.doi.org/10.1111/1556-4029.12860] [PMID: 26294349]
[http://dx.doi.org/10.1111/1556-4029.12860] [PMID: 26294349]
[39]
Gonin, P.; Beysard, N.; Yersin, B.; Carron, P.N. Excited delirium: A systematic review. Acad. Emerg. Med., 2018, 25(5), 552-565.
[http://dx.doi.org/10.1111/acem.13330] [PMID: 28990246]
[http://dx.doi.org/10.1111/acem.13330] [PMID: 28990246]
[40]
Gill, J.R. The syndrome of excited delirium. Forensic Sci. Med. Pathol., 2014, 10(2), 223-228.
[http://dx.doi.org/10.1007/s12024-014-9530-2] [PMID: 24526411]
[http://dx.doi.org/10.1007/s12024-014-9530-2] [PMID: 24526411]
[41]
Morton, W.A. Cocaine and psychiatric symptoms. Prim. Care Companion J. Clin. Psychiatry, 1999, 1(4), 109-113.
[http://dx.doi.org/10.4088/PCC.v01n0403] [PMID: 15014683]
[http://dx.doi.org/10.4088/PCC.v01n0403] [PMID: 15014683]
[42]
Broderick, P.; Rosenbaum, T. Sex-specific brain deficits in auditory processing in an animal model of cocaine-related schizophrenic disorders. Brain Sci., 2013, 3(4), 504-520.
[http://dx.doi.org/10.3390/brainsci3020504] [PMID: 24961412]
[http://dx.doi.org/10.3390/brainsci3020504] [PMID: 24961412]
[43]
McKee, S.A.; McRae-Clark, A.L. Consideration of sex and gender differences in addiction medication response. Biol. Sex Differ., 2022, 13(1), 34.
[http://dx.doi.org/10.1186/s13293-022-00441-3] [PMID: 35761351]
[http://dx.doi.org/10.1186/s13293-022-00441-3] [PMID: 35761351]
[44]
Jacobsen, L.K.; Staley, J.K.; Malison, R.T.; Zoghbi, S.S.; Seibyl, J.P.; Kosten, T.R.; Innis, R.B. Elevated central serotonin transporter binding availability in acutely abstinent cocaine-dependent patients. Am. J. Psychiatry, 2000, 157(7), 1134-1140.
[http://dx.doi.org/10.1176/appi.ajp.157.7.1134] [PMID: 10873923]
[http://dx.doi.org/10.1176/appi.ajp.157.7.1134] [PMID: 10873923]
[45]
Sessa, F.; Maglietta, F.; Bertozzi, G.; Salerno, M.; Di Mizio, G.; Messina, G.; Montana, A.; Ricci, P.; Pomara, C. Human brain injury and miRNAs: An experimental study. Int. J. Mol. Sci., 2019, 20(7), 1546.
[http://dx.doi.org/10.3390/ijms20071546] [PMID: 30934805]
[http://dx.doi.org/10.3390/ijms20071546] [PMID: 30934805]
[46]
Sessa, F.; Salerno, M.; Cipolloni, L.; Bertozzi, G.; Messina, G.; Mizio, G.D.; Asmundo, A.; Pomara, C. Anabolic-androgenic steroids and brain injury: miRNA evaluation in users compared to cocaine abusers and elderly people. Aging (Albany NY), 2020, 12(15), 15314-15327.
[http://dx.doi.org/10.18632/aging.103512] [PMID: 32756006]
[http://dx.doi.org/10.18632/aging.103512] [PMID: 32756006]
[47]
Maraj, S.; Figueredo, V.M.; Lynn Morris, D. Cocaine and the heart. Clin. Cardiol., 2010, 33(5), 264-269.
[http://dx.doi.org/10.1002/clc.20746] [PMID: 20513064]
[http://dx.doi.org/10.1002/clc.20746] [PMID: 20513064]
[48]
Phillips, K.; Luk, A.; Soor, G.S.; Abraham, J.R.; Leong, S.; Butany, J. Cocaine cardiotoxicity. Am. J. Cardiovasc. Drugs, 2009, 9(3), 177-196.
[http://dx.doi.org/10.1007/BF03256574] [PMID: 19463023]
[http://dx.doi.org/10.1007/BF03256574] [PMID: 19463023]
[49]
Cerretani, D.; Riezzo, I.; Fiaschi, A.I.; Centini, F.; Giorgi, G.; D’Errico, S.; Fiore, C.; Karch, S.B.; Neri, M.; Pomara, C.; Turillazzi, E.; Fineschi, V. Cardiac oxidative stress determination and myocardial morphology after a single ecstasy (MDMA) administration in a rat model. Int. J. Legal Med., 2008, 122(6), 461-469.
[http://dx.doi.org/10.1007/s00414-008-0262-2] [PMID: 18594849]
[http://dx.doi.org/10.1007/s00414-008-0262-2] [PMID: 18594849]
[50]
Kim, S.; Park, T. Acute and chronic effects of cocaine on cardiovascular health. Int. J. Mol. Sci., 2019, 20(3), 584.
[http://dx.doi.org/10.3390/ijms20030584] [PMID: 30700023]
[http://dx.doi.org/10.3390/ijms20030584] [PMID: 30700023]
[51]
Terra Filho, M.; Yen, C.C.; Santos, U.P.; Muñoz, D.R. Pulmonary alterations in cocaine users. Sao Paulo Med. J., 2004, 122(1), 26-31.
[http://dx.doi.org/10.1590/S1516-31802004000100007] [PMID: 15160524]
[http://dx.doi.org/10.1590/S1516-31802004000100007] [PMID: 15160524]
[52]
Lim, K.O.; Choi, S.J.; Pomara, N.; Wolkin, A.; Rotrosen, J.P. Reduced frontal white matter integrity in cocaine dependence: A controlled diffusion tensor imaging study. Biol. Psychiatry, 2002, 51(11), 890-895.
[http://dx.doi.org/10.1016/S0006-3223(01)01355-5] [PMID: 12022962]
[http://dx.doi.org/10.1016/S0006-3223(01)01355-5] [PMID: 12022962]
[53]
Turillazzi, E.; Bello, S.; Neri, M.; Pomara, C.; Riezzo, I.; Fineschi, V. Cardiovascular effects of cocaine: Cellular, ionic and molecular mechanisms. Curr. Med. Chem., 2012, 19(33), 5664-5676.
[http://dx.doi.org/10.2174/092986712803988848] [PMID: 22856657]
[http://dx.doi.org/10.2174/092986712803988848] [PMID: 22856657]
[54]
Fineschi, V.; Silver, M.D.; Karch, S.B.; Parolini, M.; Turillazzi, E.; Pomara, C.; Baroldi, G. Myocardial disarray: An architectural disorganization linked with adrenergic stress? Int. J. Cardiol., 2005, 99(2), 277-282.
[http://dx.doi.org/10.1016/j.ijcard.2004.01.022] [PMID: 15749187]
[http://dx.doi.org/10.1016/j.ijcard.2004.01.022] [PMID: 15749187]
[55]
Esposito, M.; Liberto, A.; Zuccarello, P.; Ministeri, F.; Licciardello, G.; Barbera, N.; Sessa, F.; Salerno, M. Heart rupture as an acute complication of cocaine abuse: A case report. Leg. Med. (Tokyo), 2022, 58, 102084.
[http://dx.doi.org/10.1016/j.legalmed.2022.102084] [PMID: 35561504]
[http://dx.doi.org/10.1016/j.legalmed.2022.102084] [PMID: 35561504]
[56]
Oyesiku, N.M.; Colohan, A.R.T.; Barrow, D.L.; Reisner, A. Cocaine-induced aneurysmal rupture: An emergent negative factor in the natural history of intracranial aneurysms? Neurosurgery, 1993, 32(4), 518-526.
[http://dx.doi.org/10.1097/00006123-199304000-00005] [PMID: 8474641]
[http://dx.doi.org/10.1097/00006123-199304000-00005] [PMID: 8474641]
[57]
Nanda, A.; Vannemreddy, P.S.S.V.; Polin, R.S.; Willis, B.K. Intracranial aneurysms and cocaine abuse: Analysis of prognostic indicators. Neurosurgery, 2000, 46(5), 1063-1069.
[http://dx.doi.org/10.1097/00006123-200005000-00006] [PMID: 10807237]
[http://dx.doi.org/10.1097/00006123-200005000-00006] [PMID: 10807237]
[58]
Nanda, A.; Vannemreddy, P.; Willis, B.; Kelley, R. Stroke in the young: Relationship of active cocaine use with stroke mechanism and outcome. Acta Neurochir. Suppl. (Wien), 2006, 96, 91-96.
[http://dx.doi.org/10.1007/3-211-30714-1_22] [PMID: 16671433]
[http://dx.doi.org/10.1007/3-211-30714-1_22] [PMID: 16671433]
[59]
Frazer, K.M.; Richards, Q.; Keith, D.R. The long-term effects of cocaine use on cognitive functioning: A systematic critical review. Behav. Brain Res., 2018, 348, 241-262.
[http://dx.doi.org/10.1016/j.bbr.2018.04.005] [PMID: 29673580]
[http://dx.doi.org/10.1016/j.bbr.2018.04.005] [PMID: 29673580]
[60]
Puet, B.L.; Claussen, K.; Hild, C.; Heltsley, R.; Schwope, D.M. Presence of parent cocaine in the absence of benzoylecgonine in urine. J. Anal. Toxicol., 2018, 42(8), 512-517.
[http://dx.doi.org/10.1093/jat/bky057] [PMID: 30371845]
[http://dx.doi.org/10.1093/jat/bky057] [PMID: 30371845]
[61]
Fernández, N.; Cabanillas, L.M.; Olivera, N.M.; Quiroga, P.N. Optimization and validation of simultaneous analyses of ecgonine, cocaine, and seven metabolites in human urine by gas chromatography-mass spectrometry using a one-step solid-phase extraction. Drug Test. Anal., 2019, 11(2), 361-373.
[http://dx.doi.org/10.1002/dta.2547] [PMID: 30468698]
[http://dx.doi.org/10.1002/dta.2547] [PMID: 30468698]
[62]
Pennings, E.J.M.; Leccese, A.P.; Wolff, F.A. Effects of concurrent use of alcohol and cocaine. Addiction, 2002, 97(7), 773-783.
[http://dx.doi.org/10.1046/j.1360-0443.2002.00158.x] [PMID: 12133112]
[http://dx.doi.org/10.1046/j.1360-0443.2002.00158.x] [PMID: 12133112]
[63]
Pergolizzi, J.; Breve, F.; Magnusson, P.; LeQuang, J.A.K.; Varrassi, G. Cocaethylene: When cocaine and alcohol are taken together. Cureus, 2022, 14(2), e22498.
[http://dx.doi.org/10.7759/cureus.22498] [PMID: 35345678]
[http://dx.doi.org/10.7759/cureus.22498] [PMID: 35345678]
[64]
Sanchez-Garcia, M.; de la Rosa-Cáceres, A.; Díaz-Batanero, C.; Fernández-Calderón, F.; Lozano, O.M. Cocaine use disorder criteria in a clinical sample: An analysis using Item Response Theory, factor analysis, and network analysis. Am. J. Drug Alcohol Abuse, 2022, 48(3), 284-292.
[http://dx.doi.org/10.1080/00952990.2021.2012185] [PMID: 35100067]
[http://dx.doi.org/10.1080/00952990.2021.2012185] [PMID: 35100067]
[65]
Gili, A.; Lancia, M.; Mercurio, I.; Bacci, M.; Nicoletti, A.; Pelliccia, C.; Gambelunghe, C. Patterns of prescription medicine, illicit drugs, and alcohol misuse among high-risk population: A factor analysis to delineate profiles of polydrug users. Healthcare (Basel), 2022, 10(4), 710.
[http://dx.doi.org/10.3390/healthcare10040710] [PMID: 35455887]
[http://dx.doi.org/10.3390/healthcare10040710] [PMID: 35455887]
[66]
Jufer, R.A.; Wstadik, A.; Walsh, S.L.; Levine, B.S.; Cone, E.J. Elimination of cocaine and metabolites in plasma, saliva, and urine following repeated oral administration to human volunteers. J. Anal. Toxicol., 2000, 24(7), 467-77.
[http://dx.doi.org/10.1093/jat/24.7.467]
[http://dx.doi.org/10.1093/jat/24.7.467]
[67]
Coe, M.A.; Jufer Phipps, R.A.; Cone, E.J.; Walsh, S.L. Bioavailability and pharmacokinetics of oral cocaine in humans. J. Anal. Toxicol., 2018, 42(5), 285-292.
[http://dx.doi.org/10.1093/jat/bky007] [PMID: 29462364]
[http://dx.doi.org/10.1093/jat/bky007] [PMID: 29462364]
[68]
Zhu, J.; Beechinor, R.J.; Thompson, T.; Schorzman, A.N.; Zamboni, W.; Crona, D.J.; Weiner, D.L.; Tarantino, L.M. Pharmacokinetic and pharmacodynamic analyses of cocaine and its metabolites in behaviorally divergent inbred mouse strains. Genes Brain Behav., 2021, 20(2), e12666.
[http://dx.doi.org/10.1111/gbb.12666] [PMID: 32383297]
[http://dx.doi.org/10.1111/gbb.12666] [PMID: 32383297]
[69]
Kwiatkowska, D.; Banyte, R.; Grucza, K.; Drapała, A.; Wicka, M. Cocaine abuse out of competition: Occasional or chronic user in sport-Case report. Drug Test. Anal., 2022, 14(4), 762-767.
[http://dx.doi.org/10.1002/dta.3177] [PMID: 34697915]
[http://dx.doi.org/10.1002/dta.3177] [PMID: 34697915]
[70]
Bush, D.M. The U.S. mandatory guidelines for federal workplace drug testing programs: Current status and future considerations. Forensic Sci. Int., 2008, 174(2-3), 111-119.
[http://dx.doi.org/10.1016/j.forsciint.2007.03.008] [PMID: 17434274]
[http://dx.doi.org/10.1016/j.forsciint.2007.03.008] [PMID: 17434274]
[71]
Wagner, R.; Moses, L. Validation of two methods for the quantitative analysis of cocaine and opioids in biological matrices using LCMSMS. J. Forensic Sci., 2021, 66(3), 1124-1135.
[http://dx.doi.org/10.1111/1556-4029.14647] [PMID: 33275283]
[http://dx.doi.org/10.1111/1556-4029.14647] [PMID: 33275283]
[72]
Mata, D.C.; Davis, J.F. Simultaneous quantitative analysis of 39 common toxicological drugs for increased efficiency in an ante- and postmortem laboratory. Forensic Sci. Int., 2022, 334, 111246.
[http://dx.doi.org/10.1016/j.forsciint.2022.111246] [PMID: 35276541]
[http://dx.doi.org/10.1016/j.forsciint.2022.111246] [PMID: 35276541]
[73]
Polettini, A.; Groppi, A.; Vignali, C.; Montagna, M. Fully-automated systematic toxicological analysis of drugs, poisons, and metabolites in whole blood, urine, and plasma by gas chromatography–full scan mass spectrometry. J. Chromatogr., Biomed. Appl., 1998, 713(1), 265-279.
[http://dx.doi.org/10.1016/S0378-4347(98)00062-0] [PMID: 9700563]
[http://dx.doi.org/10.1016/S0378-4347(98)00062-0] [PMID: 9700563]
[74]
de Paula Meirelles, G.; Fabris, A.L.; Ferreira dos Santos, K.; Costa, J.L.; Yonamine, M. Green analytical toxicology for the determination of cocaine metabolites. J. Anal. Toxicol., 2022, 2022, bkac005.
[http://dx.doi.org/10.1093/jat/bkac005] [PMID: 35022727]
[http://dx.doi.org/10.1093/jat/bkac005] [PMID: 35022727]
[75]
Gaillard, Y.; Pépin, G. Use of high-performance liquid chromatography with photodiode-array UV detection for the creation of a 600-compound library application to forensic toxicology. J. Chromatogr. A, 1997, 763(1-2), 149-163.
[http://dx.doi.org/10.1016/S0021-9673(96)00706-6] [PMID: 9129320]
[http://dx.doi.org/10.1016/S0021-9673(96)00706-6] [PMID: 9129320]
[76]
Pragst, F.; Herzler, M.; Erxleben, B.T. Systematic toxicological analysis by high-performance liquid chromatography with diode array detection (HPLC-DAD). Clin. Chem. Laboratory Med. (CCLM), 2004, 42(11), 1325-1340.
[http://dx.doi.org/10.1515/CCLM.2004.251] [PMID: 15576293]
[http://dx.doi.org/10.1515/CCLM.2004.251] [PMID: 15576293]
[77]
Miller, E.I.; Wylie, F.M.; Oliver, J.S. Simultaneous detection and quantification of amphetamines, diazepam and its metabolites, cocaine and its metabolites, and opiates in hair by LC-ESI-MS-MS using a single extraction method. J. Anal. Toxicol., 2008, 32(7), 457-469.
[http://dx.doi.org/10.1093/jat/32.7.457] [PMID: 18713513]
[http://dx.doi.org/10.1093/jat/32.7.457] [PMID: 18713513]
[78]
Hoffmann, W.D.; Jackson, G.P. Forensic mass spectrometry. Annu. Rev. Anal. Chem., 2015, 8(1), 419-440.
[http://dx.doi.org/10.1146/annurev-anchem-071114-040335] [PMID: 26070716]
[http://dx.doi.org/10.1146/annurev-anchem-071114-040335] [PMID: 26070716]
[79]
Gupta, S.; Samal, N. Application of direct analysis in real- time mass spectrometry (DART-MS) in forensic science: A comprehensive review. Egypt. J. Forensic Sci., 2022, 12(1), 17.
[http://dx.doi.org/10.1186/s41935-022-00276-4]
[http://dx.doi.org/10.1186/s41935-022-00276-4]
[80]
Johansen, S.S.; Bhatia, H.M. Quantitative analysis of cocaine and its metabolites in whole blood and urine by high-performance liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 852(1-2), 338-344.
[http://dx.doi.org/10.1016/j.jchromb.2007.01.033] [PMID: 17301000]
[http://dx.doi.org/10.1016/j.jchromb.2007.01.033] [PMID: 17301000]
[81]
Zheng, Z.J.; Croft, J.B.; Giles, W.H.; Mensah, G.A. Sudden cardiac death in the United States, 1989 to 1998. Circulation, 2001, 104(18), 2158-2163.
[http://dx.doi.org/10.1161/hc4301.098254] [PMID: 11684624]
[http://dx.doi.org/10.1161/hc4301.098254] [PMID: 11684624]
[82]
Alsaif, D.; Almoghannam, S.A.; Almadani, O.M.; Kharoshah, M. Fatality in a body packer: The first reported case in Saudi Arabia. Egypt. J. Forensic Sci., 2021, 11(1), 43.
[http://dx.doi.org/10.1186/s41935-021-00257-z]
[http://dx.doi.org/10.1186/s41935-021-00257-z]
[83]
Nunno, N.; Di; Esposito, M.; Argo, A.; Salerno, M.; Sessa, F. Pharmacogenetics and forensic toxicology: A new step towards a multidisciplinary approach. Toxics, 2021, 9(11), 292.
[http://dx.doi.org/10.3390/toxics9110292]
[http://dx.doi.org/10.3390/toxics9110292]
[84]
Havakuk, O.; Rezkalla, S.H.; Kloner, R.A. The cardiovascular effects of cocaine. J. Am. Coll. Cardiol., 2017, 70(1), 101-113.
[http://dx.doi.org/10.1016/j.jacc.2017.05.014] [PMID: 28662796]
[http://dx.doi.org/10.1016/j.jacc.2017.05.014] [PMID: 28662796]
[85]
Fernàndez-Castillo, N.; Cabana-Domínguez, J.; Corominas, R.; Cormand, B. Molecular genetics of cocaine use disorders in humans. Mol. Psychiatry, 2022, 27(1), 624-639.
[http://dx.doi.org/10.1038/s41380-021-01256-1] [PMID: 34453125]
[http://dx.doi.org/10.1038/s41380-021-01256-1] [PMID: 34453125]
[86]
Tomasetti, C.; Iasevoli, F.; Buonaguro, E.; De Berardis, D.; Fornaro, M.; Fiengo, A.; Martinotti, G.; Orsolini, L.; Valchera, A.; Di Giannantonio, M.; de Bartolomeis, A. Treating the synapse in major psychiatric disorders: The role of postsynaptic density network in dopamine-glutamate interplay and psychopharmacologic drugs molecular actions. Int. J. Mol. Sci., 2017, 18(1), 135.
[http://dx.doi.org/10.3390/ijms18010135] [PMID: 28085108]
[http://dx.doi.org/10.3390/ijms18010135] [PMID: 28085108]
[87]
Johnson, M.M.; David, J.A.; Michelhaugh, S.K.; Schmidt, C.J.; Bannon, M.J. Increased heat shock protein 70 gene expression in the brains of cocaine-related fatalities may be reflective of postdrug survival and intervention rather than excited delirium. J. Forensic Sci., 2012, 57(6), 1519-1523.
[http://dx.doi.org/10.1111/j.1556-4029.2012.02212.x] [PMID: 22803793]
[http://dx.doi.org/10.1111/j.1556-4029.2012.02212.x] [PMID: 22803793]
[88]
Esposito, M.; Cocimano, G.; Ministrieri, F.; Rosi, G.L.; Nunno, N.D.; Messina, G.; Sessa, F.; Salerno, M. Smart drugs and neuroenhancement: What do we know? Front. Biosci.-Landmark, 2021, 26(8), 347-359.
[http://dx.doi.org/10.52586/4948] [PMID: 34455764]
[http://dx.doi.org/10.52586/4948] [PMID: 34455764]
[89]
Siniscalchi, A.; Bonci, A.; Mercuri, N.; Siena, A.; Sarro, G.; Malferrari, G.; Diana, M.; Gallelli, L. Cocaine dependence and stroke: Pathogenesis and management. Curr. Neurovasc. Res., 2015, 12(2), 163-172.
[http://dx.doi.org/10.2174/1567202612666150305110144] [PMID: 25742568]
[http://dx.doi.org/10.2174/1567202612666150305110144] [PMID: 25742568]
[90]
Toossi, S.; Hess, C.P.; Hills, N.K.; Josephson, S.A. Neurovascular complications of cocaine use at a tertiary stroke center. J. Stroke Cerebrovasc. Dis., 2010, 19(4), 273-278.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2009.05.002] [PMID: 20444626]
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2009.05.002] [PMID: 20444626]
[91]
Plush, T.; Shakespeare, W.; Jacobs, D.; Ladi, L.; Sethi, S.; Gasperino, J. Cocaine-induced agitated delirium: A case report and review. J. Intensive Care Med., 2015, 30(1), 49-57.
[http://dx.doi.org/10.1177/0885066613507420] [PMID: 24212597]
[http://dx.doi.org/10.1177/0885066613507420] [PMID: 24212597]
[92]
Schiavone, S.; Neri, M.; Mhillaj, E.; Pomara, C.; Trabace, L.; Turillazzi, E. The role of the NADPH oxidase derived brain oxidative stress in the cocaine-related death associated with excited delirium: A literature review. Toxicol. Lett., 2016, 258, 29-35.
[http://dx.doi.org/10.1016/j.toxlet.2016.06.002] [PMID: 27265246]
[http://dx.doi.org/10.1016/j.toxlet.2016.06.002] [PMID: 27265246]
[93]
Zhong, S.; Yu, R.; Fazel, S. Drug use disorders and violence: Associations with individual drug categories. Epidemiol. Rev., 2020, 42(1), 103-116.
[http://dx.doi.org/10.1093/epirev/mxaa006] [PMID: 33005950]
[http://dx.doi.org/10.1093/epirev/mxaa006] [PMID: 33005950]
[94]
Zhang, A.; Balles, J.A.; Nyland, J.E.; Nguyen, T.H.; White, V.M.; Zgierska, A.E. The relationship between police contacts for drug use-related crime and future arrests, incarceration, and overdoses: A retrospective observational study highlighting the need to break the vicious cycle. Harm. Reduct. J., 2022, 19(1), 67.
[http://dx.doi.org/10.1186/s12954-022-00652-2] [PMID: 35761290]
[http://dx.doi.org/10.1186/s12954-022-00652-2] [PMID: 35761290]
[95]
Fischbach, P. The role of illicit drug use in sudden death in the young. Cardiol. Young, 2017, 27(S1), S75-S79.
[http://dx.doi.org/10.1017/S1047951116002274] [PMID: 28084963]
[http://dx.doi.org/10.1017/S1047951116002274] [PMID: 28084963]
[96]
Traub, S.J.; Hoffman, R.S.; Nelson, L.S. Body packing--the internal concealment of illicit drugs. N. Engl. J. Med., 2003, 349(26), 2519-2526.
[http://dx.doi.org/10.1056/NEJMra022719] [PMID: 14695412]
[http://dx.doi.org/10.1056/NEJMra022719] [PMID: 14695412]
[97]
de Prost, N.; Lefebvre, A.; Questel, F.; Roche, N.; Pourriat, J.L.; Huchon, G.; Rabbat, A. Prognosis of cocaine body-packers. Intensive Care Med., 2005, 31(7), 955-958.
[http://dx.doi.org/10.1007/s00134-005-2660-y] [PMID: 15909167]
[http://dx.doi.org/10.1007/s00134-005-2660-y] [PMID: 15909167]
[98]
Tanna, R.; Bostina, R.; Lloyd, G.; Patel, N.M.; Bastianpillai, J. Cocaine body packing: A new record. Cureus, 2020, 12(11), e11728.
[http://dx.doi.org/10.7759/cureus.11728] [PMID: 33269176]
[http://dx.doi.org/10.7759/cureus.11728] [PMID: 33269176]
[99]
Arora, A.; Jain, S.; Srivastava, A.; Mehta, M.; Pancholy, K. Body packer syndrome. J. Emerg. Trauma Shock, 2021, 14(1), 51-52.
[http://dx.doi.org/10.4103/JETS.JETS_41_20] [PMID: 33911438]
[http://dx.doi.org/10.4103/JETS.JETS_41_20] [PMID: 33911438]
[100]
Alvear, E.; von Baer, D.; Mardones, C.; Hitschfeld, A. Determination of cocaine and its major metabolite benzoylecgonine in several matrices obtained from deceased individuals with presumed drug consumption prior to death. J. Forensic Leg. Med., 2014, 23, 37-43.
[http://dx.doi.org/10.1016/j.jflm.2014.01.003] [PMID: 24661704]
[http://dx.doi.org/10.1016/j.jflm.2014.01.003] [PMID: 24661704]
[101]
Ceelen, M.; Dorn, T.; Buster, M.; Stomp, J.; Zweipfenning, P.; Das, K. Post-mortem toxicological urine screening in cause of death determination. Hum. Exp. Toxicol., 2011, 30(9), 1165-1173.
[http://dx.doi.org/10.1177/0960327110390063] [PMID: 21084528]
[http://dx.doi.org/10.1177/0960327110390063] [PMID: 21084528]
[102]
Iskierka, M.; Zawadzki, M.; Szpot, P.; Jurek, T. Detection of drugs in postmortem specimens of blood, vitreous humor and bone marrow aspirate. J. Anal. Toxicol., 2021, 45(4), 348-355.
[http://dx.doi.org/10.1093/jat/bkaa083] [PMID: 32672811]
[http://dx.doi.org/10.1093/jat/bkaa083] [PMID: 32672811]
[103]
Nedahl, M.; Johansen, S.S.; Linnet, K. Postmortem brain–blood ratios of amphetamine, cocaine, ephedrine, MDMA and methylphenidate. J. Anal. Toxicol., 2019, 43(5), 378-384.
[http://dx.doi.org/10.1093/jat/bky110] [PMID: 30668752]
[http://dx.doi.org/10.1093/jat/bky110] [PMID: 30668752]
[104]
Carvalho, V.M.; Fukushima, A.R.; Fontes, L.R.; Fuzinato, D.V.; Florio, J.C.; Chasin, A.A.M. Cocaine postmortem distribution in three brain structures: A comparison with whole blood and vitreous humour. J. Forensic Leg. Med., 2013, 20(3), 143-145.
[http://dx.doi.org/10.1016/j.jflm.2012.06.006] [PMID: 23472791]
[http://dx.doi.org/10.1016/j.jflm.2012.06.006] [PMID: 23472791]
[105]
Methling, M.; Krumbiegel, F.; Alameri, A.; Hartwig, S.; Parr, M.K.; Tsokos, M. Concentrations of antidepressants, antipsychotics, and benzodiazepines in hair samples from postmortem cases. SN Compr. Clin. Med., 2020, 2(3), 284-300.
[http://dx.doi.org/10.1007/s42399-020-00235-x]
[http://dx.doi.org/10.1007/s42399-020-00235-x]
[106]
Ropero-Miller, J.D.; Huestis, M.A.; Stout, P.R. Cocaine analytes in human hair: Evaluation of concentration ratios in different cocaine sources, drug-user populations and surface-contaminated specimens. J. Anal. Toxicol., 2012, 36(6), 390-398.
[http://dx.doi.org/10.1093/jat/bks050] [PMID: 22593566]
[http://dx.doi.org/10.1093/jat/bks050] [PMID: 22593566]
[107]
Cordero, R.; Lee, S.; Paterson, S. Distribution of concentrations of cocaine and its metabolites in hair collected postmortem from cases with diverse causes/circumstances of death. J. Anal. Toxicol., 2010, 34(9), 543-548.
[http://dx.doi.org/10.1093/jat/34.9.543] [PMID: 21073806]
[http://dx.doi.org/10.1093/jat/34.9.543] [PMID: 21073806]
[108]
Dana, K.; Shende, C.; Huang, H.; Farquharson, S. Rapid analysis of cocaine in saliva by surface-enhanced Raman spectroscopy. J. Anal. Bioanal. Tech., 2015, 6(6), 1-5.
[http://dx.doi.org/10.4172/2155-9872.1000289] [PMID: 26819811]
[http://dx.doi.org/10.4172/2155-9872.1000289] [PMID: 26819811]
[109]
Scherer, J.N.; Fiorentin, T.R.; Sousa, T.R.V.; Limberger, R.P.; Pechansky, F. Oral fluid testing for cocaine: Analytical evaluation of two point-of-collection drug screening devices. J. Anal. Toxicol., 2017, 41(5), 392-398.
[http://dx.doi.org/10.1093/jat/bkx018] [PMID: 28334841]
[http://dx.doi.org/10.1093/jat/bkx018] [PMID: 28334841]
[110]
Kidwell, D.A.; Kidwell, J.D.; Shinohara, F.; Harper, C.; Roarty, K.; Bernadt, K.; McCaulley, R.A.; Smith, F.P. Comparison of daily urine, sweat, and skin swabs among cocaine users. Forensic Sci. Int., 2003, 133(1-2), 63-78.
[http://dx.doi.org/10.1016/S0379-0738(03)00051-3] [PMID: 12742691]
[http://dx.doi.org/10.1016/S0379-0738(03)00051-3] [PMID: 12742691]
[111]
Luque de Castro, M.D. Sweat as a clinical sample: What is done and what should be done. Bioanalysis, 2016, 8(2), 85-88.
[http://dx.doi.org/10.4155/bio.15.229] [PMID: 26652242]
[http://dx.doi.org/10.4155/bio.15.229] [PMID: 26652242]
[112]
D’Aurelio, R.; Chianella, I.; Goode, J.A.; Tothill, I.E. Molecularly imprinted nanoparticles based sensor for cocaine detection. Biosensors (Basel), 2020, 10(3), 22.
[http://dx.doi.org/10.3390/bios10030022] [PMID: 32143406]
[http://dx.doi.org/10.3390/bios10030022] [PMID: 32143406]
[113]
Kranenburg, R.F.; Verduin, J.; Weesepoel, Y.; Alewijn, M.; Heerschop, M.; Koomen, G.; Keizers, P.; Bakker, F.; Wallace, F.; Esch, A.; Hulsbergen, A.; Asten, A.C. Rapid and robust on-scene detection of cocaine in street samples using a handheld near-infrared spectrometer and machine learning algorithms. Drug Test. Anal., 2020, 12(10), 1404-1418.
[http://dx.doi.org/10.1002/dta.2895] [PMID: 32638519]
[http://dx.doi.org/10.1002/dta.2895] [PMID: 32638519]
[114]
Kenny, P.J. Epigenetics, microRNA, and addiction. Dialogues Clin. Neurosci., 2014, 16(3), 335-344.
[http://dx.doi.org/10.31887/DCNS.2014.16.3/pkenny] [PMID: 25364284]
[http://dx.doi.org/10.31887/DCNS.2014.16.3/pkenny] [PMID: 25364284]
[115]
Cabana-Domínguez, J.; Arenas, C.; Cormand, B.; Fernàndez-Castillo, N. MiR-9, miR-153 and miR-124 are down-regulated by acute exposure to cocaine in a dopaminergic cell model and may contribute to cocaine dependence. Transl. Psychiatry, 2018, 8(1), 173.
[http://dx.doi.org/10.1038/s41398-018-0224-5] [PMID: 30166527]
[http://dx.doi.org/10.1038/s41398-018-0224-5] [PMID: 30166527]
[116]
Smith, A.C.W.; Kenny, P.J. MicroRNAs regulate synaptic plasticity underlying drug addiction. Genes Brain Behav., 2018, 17(3), e12424.
[http://dx.doi.org/10.1111/gbb.12424] [PMID: 28873276]
[http://dx.doi.org/10.1111/gbb.12424] [PMID: 28873276]
[117]
Dash, S.; Balasubramaniam, M.; Martínez-Rivera, F.J.; Godino, A.; Peck, E.G.; Patnaik, S.; Suar, M.; Calipari, E.S.; Nestler, E.J.; Villalta, F.; Dash, C.; Pandhare, J. Cocaine-regulated microRNA miR-124 controls poly (ADP-ribose) polymerase-1 expression in neuronal cells. Sci. Rep., 2020, 10(1), 11197.
[http://dx.doi.org/10.1038/s41598-020-68144-6] [PMID: 32641757]
[http://dx.doi.org/10.1038/s41598-020-68144-6] [PMID: 32641757]
[118]
Chivero, E.T.; Liao, K.; Niu, F.; Tripathi, A.; Tian, C.; Buch, S.; Hu, G. Engineered extracellular vesicles loaded with miR-124 attenuate cocaine-mediated activation of microglia. Front. Cell Dev. Biol., 2020, 8, 573.
[http://dx.doi.org/10.3389/fcell.2020.00573] [PMID: 32850781]
[http://dx.doi.org/10.3389/fcell.2020.00573] [PMID: 32850781]
[119]
Sanli, S.; Moulahoum, H.; Ghorbanizamani, F.; Celik, E.G.; Timur, S. Ultrasensitive covalently-linked Aptasensor for cocaine detection based on electrolytes-induced repulsion/attraction of colloids. Biomed. Microdevices, 2020, 22(3), 51.
[http://dx.doi.org/10.1007/s10544-020-00507-2] [PMID: 32748213]
[http://dx.doi.org/10.1007/s10544-020-00507-2] [PMID: 32748213]
[120]
Azimi, S.; Docoslis, A. Recent advances in the use of surface-enhanced raman scattering for illicit drug detection. Sensors (Basel), 2022, 22(10), 3877.
[http://dx.doi.org/10.3390/s22103877] [PMID: 35632286]
[http://dx.doi.org/10.3390/s22103877] [PMID: 35632286]
[121]
Nakao, K.; Tatara, Y.; Kibayashi, K. Detection of cocaine and metabolites from mouse femur buried in soil. Leg. Med. (Tokyo), 2019, 37, 1-6.
[http://dx.doi.org/10.1016/j.legalmed.2018.11.005] [PMID: 30502554]
[http://dx.doi.org/10.1016/j.legalmed.2018.11.005] [PMID: 30502554]
[122]
Jang, M.; Costa, C.; Bunch, J.; Gibson, B.; Ismail, M.; Palitsin, V.; Webb, R.; Hudson, M.; Bailey, M.J. On the relevance of cocaine detection in a fingerprint. Sci. Rep., 2020, 10(1), 1974.
[http://dx.doi.org/10.1038/s41598-020-58856-0] [PMID: 32029797]
[http://dx.doi.org/10.1038/s41598-020-58856-0] [PMID: 32029797]