Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Relationship Between Gut Bacteria and Levodopa Metabolism

Author(s): Kaifei Xu, Shuo Sheng and Feng Zhang*

Volume 21, Issue 7, 2023

Published on: 14 November, 2022

Page: [1536 - 1547] Pages: 12

DOI: 10.2174/1570159X21666221019115716

Price: $65

conference banner
Abstract

Parkinson's disease (PD) is one of the most common neurodegenerative diseases, characterized by the reduction of dopamine neurons in the substantia nigra. Levodopa, as a dopamine supplement, is the gold-standard therapeutic drug for PD. The metabolism of levodopa in the periphery not only decreases its bioavailability but also affects its efficacy. Thus, it is necessary to investigate how levodopa is metabolized. A growing number of studies have shown that intestinal bacteria, such as Enterococcus faecalis, Eggerthella lenta and Clostridium sporogenes, could metabolize levodopa in different ways. In addition, several pathways to reduce levodopa metabolism by gut microbiota were confirmed to improve levodopa efficacy. These pathways include aromatic amino acid decarboxylase (AADC) inhibitors, antibiotics, pH and (S)-α-fluoromethyltyrosine (AFMT). In this review, we have summarized the metabolic process of levodopa by intestinal bacteria and analyzed potential approaches to reduce the metabolism of levodopa by gut microbiota, thus improving the efficacy of levodopa.

Keywords: Parkinson's disease, levodopa metabolism, gut bacteria, therapeutic efficacy, Enterococcus faecalis, Eggerthella lenta, Clostridium sporogenes.

Graphical Abstract
[1]
Ahlskog, J.E.; Muenter, M.D. Frequency of levodopa‐related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov. Disord., 2001, 16(3), 448-458.
[http://dx.doi.org/10.1002/mds.1090] [PMID: 11391738]
[2]
Fahn, S. Description of Parkinson’s disease as a clinical syndrome. Ann. N. Y. Acad. Sci., 2003, 991(1), 1-14.
[http://dx.doi.org/10.1111/j.1749-6632.2003.tb07458.x] [PMID: 12846969]
[3]
Manson, A.; Stirpe, P.; Schrag, A. Levodopa-induced-dyskinesias clinical features, incidence, risk factors, management and impact on quality of life. J. Parkinsons Dis., 2012, 2(3), 189-198.
[http://dx.doi.org/10.3233/JPD-2012-120103] [PMID: 23938226]
[4]
Perez-Lloret, S.; Negre-Pages, L.; Damier, P.; Delval, A.; Derkinderen, P.; Destée, A.; Meissner, W.G.; Tison, F.; Rascol, O. LDOPA-induced dyskinesias, motor fluctuations and health-related quality of life: the COPARK survey. Eur. J. Neurol., 2017, 24(12), 1532-1538.
[http://dx.doi.org/10.1111/ene.13466] [PMID: 28940893]
[5]
Papavasiliou, P.S.; Cotzias, G.C.; Düby, S.E.; Steck, A.J.; Fehling, C.; Bell, M.A. Levodopa in Parkinsonism: potentiation of central effects with a peripheral inhibitor. N. Engl. J. Med., 1972, 286(1), 8-14.
[http://dx.doi.org/10.1056/NEJM197201062860102] [PMID: 4550085]
[6]
Fasano, A.; Bove, F.; Gabrielli, M.; Petracca, M.; Zocco, M.A.; Ragazzoni, E.; Barbaro, F.; Piano, C.; Fortuna, S.; Tortora, A.; Di Giacopo, R.; Campanale, M.; Gigante, G.; Lauritano, E.C.; Navarra, P.; Marconi, S.; Gasbarrini, A.; Bentivoglio, A.R. The role of small intestinal bacterial overgrowth in Parkinson’s disease. Mov. Disord., 2013, 28(9), 1241-1249.
[http://dx.doi.org/10.1002/mds.25522] [PMID: 23712625]
[7]
Hashim, H.; Azmin, S.; Razlan, H.; Yahya, N.W.; Tan, H.J.; Manaf, M.R.A.; Ibrahim, N.M. Eradication of Helicobacter pylori infection improves levodopa action, clinical symptoms and quality of life in patients with Parkinson’s disease. PLoS One, 2014, 9(11), e112330-e112330.
[http://dx.doi.org/10.1371/journal.pone.0112330] [PMID: 25411976]
[8]
Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; Mende, D.R.; Li, J.; Xu, J.; Li, S.; Li, D.; Cao, J.; Wang, B.; Liang, H.; Zheng, H.; Xie, Y.; Tap, J.; Lepage, P.; Bertalan, M.; Batto, J.M.; Hansen, T.; Le Paslier, D.; Linneberg, A.; Nielsen, H.B.; Pelletier, E.; Renault, P.; Sicheritz-Ponten, T.; Turner, K.; Zhu, H.; Yu, C.; Li, S.; Jian, M.; Zhou, Y.; Li, Y.; Zhang, X.; Li, S.; Qin, N.; Yang, H.; Wang, J.; Brunak, S.; Doré, J.; Guarner, F.; Kristiansen, K.; Pedersen, O.; Parkhill, J.; Weissenbach, J.; Bork, P.; Ehrlich, S.D.; Wang, J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464(7285), 59-65.
[http://dx.doi.org/10.1038/nature08821] [PMID: 20203603]
[9]
Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell, 2015, 161(2), 264-276.
[http://dx.doi.org/10.1016/j.cell.2015.02.047] [PMID: 25860609]
[10]
Mao, K.; Baptista, A.P.; Tamoutounour, S.; Zhuang, L.; Bouladoux, N.; Martins, A.J.; Huang, Y.; Gerner, M.Y.; Belkaid, Y.; Germain, R.N. Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism. Nature, 2018, 554(7691), 255-259.
[http://dx.doi.org/10.1038/nature25437] [PMID: 29364878]
[11]
Pusceddu, M.M.; El Aidy, S.; Crispie, F.; O’Sullivan, O.; Cotter, P.; Stanton, C.; Kelly, P.; Cryan, J.F.; Dinan, T.G. N-3 Polyunsaturated Fatty Acids (PUFAs) Reverse the Impact of Early-Life Stress on the Gut Microbiota. PLoS One, 2015, 10(10), e0139721-e0139721.
[http://dx.doi.org/10.1371/journal.pone.0139721] [PMID: 26426902]
[12]
El Aidy, S.; van Baarlen, P.; Derrien, M.; Lindenbergh-Kortleve, D.J.; Hooiveld, G.; Levenez, F.; Doré, J.; Dekker, J.; Samsom, J.N.; Nieuwenhuis, E.E.S.; Kleerebezem, M. Temporal and spatial interplay of microbiota and intestinal mucosa drive establishment of immune homeostasis in conventionalized mice. Mucosal Immunol., 2012, 5(5), 567-579.
[http://dx.doi.org/10.1038/mi.2012.32] [PMID: 22617837]
[13]
Kelly, J.R.; Borre, Y.; O’ Brien, C.; Patterson, E.; El Aidy, S.; Deane, J.; Kennedy, P.J.; Beers, S.; Scott, K.; Moloney, G.; Hoban, A.E.; Scott, L.; Fitzgerald, P.; Ross, P.; Stanton, C.; Clarke, G.; Cryan, J.F.; Dinan, T.G. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res., 2016, 82, 109-118.
[http://dx.doi.org/10.1016/j.jpsychires.2016.07.019] [PMID: 27491067]
[14]
Niehues, M.; Hensel, A. In-vitro interaction of L-dopa with bacterial adhesins of Helicobacter pylori: an explanation for clinicial differences in bioavailability? J. Pharm. Pharmacol., 2009, 61(10), 1303-1307.
[http://dx.doi.org/10.1211/jpp/61.10.0005] [PMID: 19814861]
[15]
Enright, E.F.; Gahan, C.G.; Joyce, S.A.; Griffin, B.T. The impact of the gut microbiota on drug metabolism and clinical outcome. Yale J. Biol. Med., 2016, 89(3), 375-382.
[PMID: 27698621]
[16]
Hsu, A.; Yao, H.M.; Gupta, S.; Modi, N.B. Comparison of the pharmacokinetics of an oral extended‐release capsule formulation of carbidopa‐levodopa (IPX066) with immediate‐release carbidopa‐levodopa (Sinemet®), sustained‐release carbidopa‐levodopa (Sinemet® CR), and carbidopa‐levodopa‐entacapone (Stalevo®). J. Clin. Pharmacol., 2015, 55(9), 995-1003.
[http://dx.doi.org/10.1002/jcph.514] [PMID: 25855267]
[17]
Longo, D.M.; Yang, Y.; Watkins, P.B.; Howell, B.A.; Siler, S.Q. Elucidating differences in the hepatotoxic potential of tolcapone and entacapone with DILIsym®, a mechanistic model of drug‐induced liver injury. CPT Pharmacometrics Syst. Pharmacol., 2016, 5(1), 31-39.
[http://dx.doi.org/10.1002/psp4.12053] [PMID: 26844013]
[18]
Gray, R.; Patel, S.; Ives, N.; Rick, C.; Woolley, R.; Muzerengi, S.; Gray, A.; Jenkinson, C.; McIntosh, E.; Wheatley, K.; Williams, A.; Clarke, C.E.; Young, K.; Price, H.; Price, J.; Lambert, A.; Reeve, R.; Sewell, M.; Broome, S.; Williams, A.; Baker, M.; Clarke, C.; Fitzpatrick, R.; Gray, A.; Greenhall, R.; Jenkinson, C.; Mant, D.; McIntosh, E.; Sandercock, P.; Baugent, C.; Crome, P.; Au, P.; Boodell, T.; Cheed, V.C.; Daniels, J.; Dowling, F.; Evans, L.; Hawker, R.; Kaur, S.; Rick, C.; Wheatley, K.; Winkles, N.; Hingley, D.; Sturdy, L.; Wooley, R.; Ottridge, R.; Peto, L.; Hilken, N.; Counsell, C.; Caie, L.; Caslake, R.; Coleman, R.; Crowley, P.; Gerrie, L.; Gordon, J.; Harris, C.; Leslie, V.; MacLeod, M.A.; Taylor, K.; Worth, P.; Barker, R.A.; Forsyth, D.; Halls, M.; Young, J.; Phillips, W.; Manford, M.; Thangarajah, N.; Blake, D.; Prescott, R.; Carr, P.; Cochrane, L.; Rose, A.; McLaren, A.; Drover, M.; Karunaratne, P.; Eady, A.; Wislocka-Kryjak, M.; Ghaus, N.; Grueger, A.; Mallinson, B.; Wihl, G.; Ballantyne, S.; Hutchinson, S.; Lewthwaite, A.; Nicholl, D.; Ritch, A.; Coyle, S.; Hornabrook, R.; Irfan, H.; Poxon, S.; Nath, U.; Davison, J.; Dodds, S.; Robinson, G.; Gray, C.; Fletcher, P.; Morrow, P.; Sliva, M.; Folkes, E.; Gilbert, A.; Hayes, H.; Burrows, E.; Donaldson, S.; Lawrence, J.; Rhind, G.; Baxter, G.; Bell, J.; Gorman, J.; Guptha, S.; Noble, C.; Hindle, J.; Jones, S.; Ohri, P.; Subashchandran, R.; Roberts, E.; Raw, J.; Wadhwa, U.; Aspden, L.; Partington, L.; Vanek, H.; Whone, A.; Barber, R.; Haywood, B.; Heywood, P.; Lewis, H.; O’Sullivan, K.; Prout, K.; Whelan, L.; Medcalf, P.; Sliva, M.; Fuller, G.; Morrish, P.; Wales, E.; Dalziel, J.; Overstall, P.; Bouifraden, K.; Evans, C.; Ward, G.; Matheson, P.; Lockington, T.; Graham, A.; Grimmer, S.F.M.; Sheehan, L.J.; Williams, H.; Hubbard, I.; Walters, R.; Glasspool, R.; Critchley, P.; Abbott, R.; Kendall, B.; Lawden, M.; Lo, N.; Rajaally, Y.; Simpson, B.; Martey, J.; Wray, L.G.; Omar, M.; Sharma, A.; Gale, A.; Phirii, D.; Sekaran, L.; Wijayasiri, S.; Silverdale, M.; Walker, D.; Fleary, H.; Monaghan, A.; Senthil, V.; Reynolds, S.; Chong, M.S.; Diem, D.; Kundu, B.; Arnold, D.; Quinn, N.; Benamer, H.; Billings, J.; Corston, R.; D’Costa, D.; Green, M.; Shuri, J.; Noble, J.M.; Cassidy, T.; Gani, A.; Lawson, R.; Nirubin, A.; Cochius, J.; Dick, D.; Lee, M.; Payne, B.; Roche, M.; Sabanathan, K.; Shields, S.; Hipperson, M.; Reading, F.; Saunders, J.; Harper, G.; Honan, W.; Gill, L.; Stanley, J.; Vernon, N.; Skinner, A.; McCann, P.; Walker, R.; Edmonds, P.; O’Hanlon, S.; Wood, B.; Hand, A.; Robinson, L.; Liddle, J.; Bolam, D.; Raha, S.; Ebebezer, L.; Thompson, S.; Pall, H.; Praamstra, P.; Crouch, R.; Healy, K.; Johnson, M.; Jenkinson, M.; Abdel-Hafiz, A.; Al-Modaris, F.; Dutta, S.; Mallik, T.; Mondal, B.; Roberts, J.; Sinha, S.; Amar, K.; Atkins, S.; Devadason, G.; Martin, A.; Cox, C.; Malone, T.; Fenwick, G.; Gormley, K.; Gutowski, N.; Harris, S.; Harrower, T.; Hemsley, A.; James, M.; Jeffreys, M.O.; Pearce, V.; Sheridan, R.; Sword, J.; Zeman, A.; Soper, C.; Vassallo, J.; Bennett, J.; Lyell, V.; Robertson, D.; Howcroft, D.; Mugweni, K.; Stephens, A.; Whelan, E.; Wright, A.; Chamberlain, J.; Padiachy, D.; Marigold, J.; Lee, J.; Roberts, H.; Adams, J.; Dulay, J.; Evans, S.; Frankel, J.; Gove, R.; Turner, G.; Mallik, N.; McElwaine, T.; Morgan, S.; Phipps, H.; Pressly, V.; Queen, V.; Tan, R.; Grossett, D.; Macphee, G.; Vennard, C.; Rektorova, I.; Dhakam, Z.; Carey, G.; Castledon, B.; Sunderland, C.; Kalcantera, E.; Long, C.; Mandal, B.; Martin, V.; Nari, R.; Nicholas, V.; Moffitt, V.; Hammans, S.; Rice-Oxley, M.; Webb, J.; Franks, S.; Cooper, S.; Hussain, M.; Solanki, T.; Darch, W.; Homan, J.; Sharratt, D.; Griggs, G.; Kendall, G.; Ford, A.; Stocker, K.; Strens, L.; Grubneac, A.; Ponsford, J.; Teare, L.; Moore, A.P.; O’Brien, I.; Watling, D.; Wyatt, L.; Rizvi, S.; Walker, E.; Berry, G.; Russell, N.; Rashed, K.; Baker, K.; Qadiri, M.R.; Buckley, C.; Bulley, S.; Gibbons, D.; Goodland, R.; Heywood, P.; Jones, L.; Martin, L.; Rowland-Axe, R.; Stone, A.; Whittuck, M.R. Long-term Effectiveness of Adjuvant Treatment With Catechol-O-Methyltransferase or Monoamine Oxidase B Inhibitors Compared With Dopamine Agonists Among Patients With Parkinson Disease Uncontrolled by Levodopa Therapy. JAMA Neurol., 2022, 79(2), 131-140.
[http://dx.doi.org/10.1001/jamaneurol.2021.4736] [PMID: 34962574]
[19]
van Kessel, S.P.; Frye, A.K.; El-Gendy, A.O.; Castejon, M.; Keshavarzian, A.; van Dijk, G.; El Aidy, S. Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease. Nat. Commun., 2019, 10(1), 310.
[http://dx.doi.org/10.1038/s41467-019-08294-y] [PMID: 30659181]
[20]
Zhang, K.; Ni, Y. Tyrosine decarboxylase from Lactobacillus brevis: Soluble expression and characterization. Protein Expr. Purif., 2014, 94, 33-39.
[http://dx.doi.org/10.1016/j.pep.2013.10.018] [PMID: 24211777]
[21]
Perez, M.; Calles-Enríquez, M.; Nes, I.; Martin, M.C.; Fernandez, M.; Ladero, V.; Alvarez, M.A. Tyramine biosynthesis is transcriptionally induced at low pH and improves the fitness of Enterococcus faecalis in acidic environments. Appl. Microbiol. Biotechnol., 2015, 99(8), 3547-3558.
[http://dx.doi.org/10.1007/s00253-014-6301-7] [PMID: 25529314]
[22]
Adibi, S.A.; Mercer, D.W. Protein digestion in human intestine as reflected in luminal, mucosal, and plasma amino acid concentrations after meals. J. Clin. Invest., 1973, 52(7), 1586-1594.
[http://dx.doi.org/10.1172/JCI107335] [PMID: 4718954]
[23]
Abrams, W.B.; Coutinho, C.B.; Leon, A.S.; Spiegel, H.E. Absorption and metabolism of levodopa. JAMA, 1971, 218(13), 1912-1914.
[http://dx.doi.org/10.1001/jama.1971.03190260028007] [PMID: 5171067]
[24]
Maini, R.V.; Bess, E.N.; Bisanz, J.E.; Turnbaugh, P.J.; Balskus, E.P. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science, 2019, 364(6445), eaau6323.
[http://dx.doi.org/10.1126/science.aau6323] [PMID: 31196984]
[25]
Whitfield, A.C.; Moore, B.T.; Daniels, R.N. Classics in chemical neuroscience: levodopa. ACS Chem. Neurosci., 2014, 5(12), 1192-1197.
[http://dx.doi.org/10.1021/cn5001759] [PMID: 25270271]
[26]
Bisanz, J.E.; Soto-Perez, P.; Lam, K.N.; Bess, E.N.; Haiser, H.J.; Allen-Vercoe, E.; Rekdal, V.M.; Balskus, E.P.; Turnbaugh, P.J. Illuminating the microbiome’s dark matter: a functional genomic toolkit for the study of human gut Actinobacteria. bioRxiv, 2018.
[http://dx.doi.org/10.1101/304840]
[27]
Martínez-del Campo, A.; Bodea, S.; Hamer, H.A.; Marks, J.A.; Haiser, H.J.; Turnbaugh, P.J.; Balskus, E.P. Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria. MBio, 2015, 6(2), e00042-15.
[http://dx.doi.org/10.1128/mBio.00042-15] [PMID: 25873372]
[28]
van Kessel, S.P.; de Jong, H.R.; Winkel, S.L.; van Leeuwen, S.S.; Nelemans, S.A.; Permentier, H.; Keshavarzian, A.; El Aidy, S. Gut bacterial deamination of residual levodopa medication for Parkinson’s disease. BMC Biol., 2020, 18(1), 137.
[http://dx.doi.org/10.1186/s12915-020-00876-3] [PMID: 33076930]
[29]
Donia, M.S.; Fischbach, M.A. Small molecules from the human microbiota. Science, 2015, 349(6246), 1254766.
[http://dx.doi.org/10.1126/science.1254766] [PMID: 26206939]
[30]
Barker, H.A. Amino acid degradation by anaerobic bacteria. Annu. Rev. Biochem., 1981, 50(1), 23-40.
[http://dx.doi.org/10.1146/annurev.bi.50.070181.000323] [PMID: 6791576]
[31]
Yvon, M.; Thirouin, S.; Rijnen, L.; Fromentier, D.; Gripon, J.C. An aminotransferase from Lactococcus lactis initiates conversion of amino acids to cheese flavor compounds. Appl. Environ. Microbiol., 1997, 63(2), 414-419.
[http://dx.doi.org/10.1128/aem.63.2.414-419.1997] [PMID: 9023921]
[32]
Nierop Groot, M.N.; de Bont, J.A.M. Conversion of phenylalanine to benzaldehyde initiated by an aminotransferase in lactobacillus plantarum. Appl. Environ. Microbiol., 1998, 64(8), 3009-3013.
[http://dx.doi.org/10.1128/AEM.64.8.3009-3013.1998] [PMID: 9687465]
[33]
Elsden, S.R.; Hilton, M.G.; Waller, J.M. The end products of the metabolism of aromatic amino acids by clostridia. Arch. Microbiol., 1976, 107(3), 283-288.
[http://dx.doi.org/10.1007/BF00425340] [PMID: 1275638]
[34]
Dodd, D.; Spitzer, M.H.; Van Treuren, W.; Merrill, B.D.; Hryckowian, A.J.; Higginbottom, S.K.; Le, A.; Cowan, T.M.; Nolan, G.P.; Fischbach, M.A.; Sonnenburg, J.L. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature, 2017, 551(7682), 648-652.
[http://dx.doi.org/10.1038/nature24661] [PMID: 29168502]
[35]
Bansal, T.; Alaniz, R.C.; Wood, T.K.; Jayaraman, A. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc. Natl. Acad. Sci. USA, 2010, 107(1), 228-233.
[http://dx.doi.org/10.1073/pnas.0906112107] [PMID: 19966295]
[36]
Schiering, C.; Wincent, E.; Metidji, A.; Iseppon, A.; Li, Y.; Potocnik, A.J.; Omenetti, S.; Henderson, C.J.; Wolf, C.R.; Nebert, D.W.; Stockinger, B. Feedback control of AHR signalling regulates intestinal immunity. Nature, 2017, 542(7640), 242-245.
[http://dx.doi.org/10.1038/nature21080] [PMID: 28146477]
[37]
Bhattarai, Y.; Williams, B.B.; Battaglioli, E.J.; Whitaker, W.R.; Till, L.; Grover, M.; Linden, D.R.; Akiba, Y.; Kandimalla, K.K.; Zachos, N.C.; Kaunitz, J.D.; Sonnenburg, J.L.; Fischbach, M.A.; Farrugia, G.; Kashyap, P.C. Gut Microbiota-Produced Tryptamine Activates an Epithelial G-Protein-Coupled Receptor to Increase Colonic Secretion. Cell Host Microbe, 2018, 23(6), 775-785.e5.
[http://dx.doi.org/10.1016/j.chom.2018.05.004] [PMID: 29902441]
[38]
Venkatesh, M.; Mukherjee, S.; Wang, H.; Li, H.; Sun, K.; Benechet, A.P.; Qiu, Z.; Maher, L.; Redinbo, M.R.; Phillips, R.S.; Fleet, J.C.; Kortagere, S.; Mukherjee, P.; Fasano, A.; Le Ven, J.; Nicholson, J.K.; Dumas, M.E.; Khanna, K.M.; Mani, S. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity, 2014, 41(2), 296-310.
[http://dx.doi.org/10.1016/j.immuni.2014.06.014] [PMID: 25065623]
[39]
Morgan, J.P.; Bianchine, J.R.; Spiegel, H.E.; Rivera-Calimlim, L.; Hersey, R.M. Metabolism of levodopa in patients with Parkinson’s disease. Radioactive and fluorometric assays. Arch. Neurol., 1971, 25(1), 39-44.
[http://dx.doi.org/10.1001/archneur.1971.00490010049007] [PMID: 5146410]
[40]
Bianchine, J.R.; Messiha, F.S.; Hsu, T.H. Peripheral aromatic L-amino acids decarboxylase inhibitor in parkinsonism. II. Effect on metabolism of L-2-14C-dopa. Clin. Pharmacol. Ther., 1972, 13(4), 584-594.
[http://dx.doi.org/10.1002/cpt1972134584] [PMID: 5042372]
[41]
Sasahara, K.; Nitanai, T.; Habara, T.; Kojima, T.; Kawahara, Y.; Morioka, T.; Nakajima, E. Dosage form design for improvement of bioavailability of levodopa IV: Possible causes of low bioavailability of oral levodopa in dogs. J. Pharm. Sci., 1981, 70(7), 730-733.
[http://dx.doi.org/10.1002/jps.2600700705] [PMID: 7264915]
[42]
Goldin, B.R.; Peppercorn, M.A.; Goldman, P. Contributions of host and intestinal microflora in the metabolism of L-dopa by the rat. J. Pharmacol. Exp. Ther., 1973, 186(1), 160-166.
[PMID: 4723308]
[43]
Dickert, S.; Pierik, A.J.; Linder, D.; Buckel, W. The involvement of coenzyme A esters in the dehydration of (R)-phenyllactate to (E)-cinnamate by Clostridium sporogenes. Eur. J. Biochem., 2000, 267(12), 3874-3884.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01427.x] [PMID: 10849007]
[44]
Dickert, S.; Pierik, A.J.; Buckel, W. Molecular characterization of phenyllactate dehydratase and its initiator from Clostridium sporogenes. Mol. Microbiol., 2002, 44(1), 49-60.
[http://dx.doi.org/10.1046/j.1365-2958.2002.02867.x] [PMID: 11967068]
[45]
Roager, H.M.; Hansen, L.B.S.; Bahl, M.I.; Frandsen, H.L.; Carvalho, V.; Gøbel, R.J.; Dalgaard, M.D.; Plichta, D.R.; Sparholt, M.H.; Vestergaard, H.; Hansen, T.; Sicheritz-Pontén, T.; Nielsen, H.B.; Pedersen, O.; Lauritzen, L.; Kristensen, M.; Gupta, R.; Licht, T.R. Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut. Nat. Microbiol., 2016, 1(9), 16093.
[http://dx.doi.org/10.1038/nmicrobiol.2016.93] [PMID: 27562254]
[46]
Jin, J.S.; Hattori, M. Isolation and characterization of a human intestinal bacterium Eggerthella sp. CAT-1 capable of cleaving the C-ring of (+)-catechin and (-)-epicatechin, followed by p-dehydroxylation of the B-ring. Biol. Pharm. Bull., 2012, 35(12), 2252-2256.
[http://dx.doi.org/10.1248/bpb.b12-00726] [PMID: 23207778]
[47]
Haiser, H.J.; Gootenberg, D.B.; Chatman, K.; Sirasani, G.; Balskus, E.P.; Turnbaugh, P.J. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science, 2013, 341(6143), 295-298.
[http://dx.doi.org/10.1126/science.1235872] [PMID: 23869020]
[48]
Fasano, A.; Visanji, N.P.; Liu, L.W.C.; Lang, A.E.; Pfeiffer, R.F. Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol., 2015, 14(6), 625-639.
[http://dx.doi.org/10.1016/S1474-4422(15)00007-1] [PMID: 25987282]
[49]
Panagamuwa, B.; Kumar, D.; Ortiz, J.; Keighley, M.R.B. Motor abnormalities in the terminal ileum of patients with chronic idiopathic constipation. Br. J. Surg., 2005, 81(11), 1685-1688.
[http://dx.doi.org/10.1002/bjs.1800811142] [PMID: 7827908]
[50]
Van Der Sijp, J.R.M.; Kamm, M.A.; Nightingale, J.M.D.; Britton, K.E.; Granowska, M.; Mather, S.J.; Akkermans, L.M.A.; Lennard-Jones, J.E. Disturbed gastric and small bowel transit in severe idiopathic constipation. Dig. Dis. Sci., 1993, 38(5), 837-844.
[http://dx.doi.org/10.1007/BF01295909] [PMID: 8482182]
[51]
Broadley, K.J. The vascular effects of trace amines and amphetamines. Pharmacol. Ther., 2010, 125(3), 363-375.
[http://dx.doi.org/10.1016/j.pharmthera.2009.11.005] [PMID: 19948186]
[52]
Lindemann, L.; Hoener, M.C. A renaissance in trace amines inspired by a novel GPCR family. Trends Pharmacol. Sci., 2005, 26(5), 274-281.
[http://dx.doi.org/10.1016/j.tips.2005.03.007] [PMID: 15860375]
[53]
Nagatsu, T.; Nakashima, A.; Ichinose, H.; Kobayashi, K. Human tyrosine hydroxylase in Parkinson’s disease and in related disorders. J. Neural Transm. (Vienna), 2019, 126(4), 397-409.
[http://dx.doi.org/10.1007/s00702-018-1903-3] [PMID: 29995172]
[54]
Hayashi, H.; Mizuguchi, H.; Kagamiyama, H. Rat liver aromatic L-amino acid decarboxylase: Spectroscopic and kinetic analysis of the coenzyme and reaction intermediates. Biochemistry, 1993, 32(3), 812-818.
[http://dx.doi.org/10.1021/bi00054a011] [PMID: 8422386]
[55]
Kim; Cho, K.H.; Shin, M.S.; Lee, J.M.; Cho, H.S.; Kim, C.J.; Shin, D.H.; Yang, H.J. Berberine prevents nigrostriatal dopaminergic neuronal loss and suppresses hippocampal apoptosis in mice with Parkinson’s disease. Int. J. Mol. Med., 2014, 33(4), 870-878.
[http://dx.doi.org/10.3892/ijmm.2014.1656] [PMID: 24535622]
[56]
Kwon, I.H.; Choi, H.S.; Shin, K.S.; Lee, B.K.; Lee, C.K.; Hwang, B.Y.; Lim, S.C.; Lee, M.K. Effects of berberine on 6-hydroxydopamine-induced neurotoxicity in PC12 cells and a rat model of Parkinson’s disease. Neurosci. Lett., 2010, 486(1), 29-33.
[http://dx.doi.org/10.1016/j.neulet.2010.09.038] [PMID: 20851167]
[57]
Wang, Y.; Tong, Q.; Ma, S.R.; Zhao, Z.X.; Pan, L.B.; Cong, L.; Han, P.; Peng, R.; Yu, H.; Lin, Y.; Gao, T.L.; Shou, J.W.; Li, X.Y.; Zhang, X.F.; Zhang, Z.W.; Fu, J.; Wen, B.Y.; Yu, J.B.; Cao, X.; Jiang, J.D. Oral berberine improves brain dopa/dopamine levels to ameliorate Parkinson’s disease by regulating gut microbiota. Signal Transduct. Target. Ther., 2021, 6(1), 77.
[http://dx.doi.org/10.1038/s41392-020-00456-5] [PMID: 33623004]
[58]
Feng, R.; Shou, J.W.; Zhao, Z.X.; He, C.Y.; Ma, C.; Huang, M.; Fu, J.; Tan, X.S.; Li, X.Y.; Wen, B.Y.; Chen, X.; Yang, X.Y.; Ren, G.; Lin, Y.; Chen, Y.; You, X.F.; Wang, Y.; Jiang, J.D. Transforming berberine into its intestine-absorbable form by the gut microbiota. Sci. Rep., 2015, 5(1), 12155.
[http://dx.doi.org/10.1038/srep12155] [PMID: 26174047]
[59]
Kim, H.L.; Park, Y.S. Maintenance of cellular tetrahydrobiopterin homeostasis. BMB Rep., 2010, 43(9), 584-592.
[http://dx.doi.org/10.5483/BMBRep.2010.43.9.584] [PMID: 20846489]
[60]
Surwase, S.N.; Jadhav, J.P. Bioconversion of l-tyrosine to l-DOPA by a novel bacterium Bacillus sp. JPJ. Amino Acids, 2011, 41(2), 495-506.
[http://dx.doi.org/10.1007/s00726-010-0768-z] [PMID: 20963458]
[61]
Houck, D.R.; Hanners, J.L.; Unkefer, C.J.; van Kleef, M.A.G.; Duine, J.A. PQQ: Biosynthetic studies inMethylobacterium AM1 andHyphomicrobium X using specific13C labeling and NMR. Antonie van Leeuwenhoek, 1989, 56(1), 93-101.
[http://dx.doi.org/10.1007/BF00822589] [PMID: 2549867]
[62]
Muñoz, A.J.; Hernández-Chávez, G.; de Anda, R.; Martínez, A.; Bolívar, F.; Gosset, G. Metabolic engineering of Escherichia coli for improving l-3,4-dihydroxyphenylalanine (l-DOPA) synthesis from glucose. J. Ind. Microbiol. Biotechnol., 2011, 38(11), 1845-1852.
[http://dx.doi.org/10.1007/s10295-011-0973-0] [PMID: 21512819]
[63]
Connolly, B.S.; Lang, A.E. Pharmacological treatment of Parkinson disease: a review. JAMA, 2014, 311(16), 1670-1683.
[http://dx.doi.org/10.1001/jama.2014.3654] [PMID: 24756517]
[64]
Gey, K.F.; Pletscher, A. Distribution and metabolism of DL -3,4-dihydroxy[2-14C]-phenylalanine in rat tissues. Biochem. J., 1964, 92(2), 300-308.
[http://dx.doi.org/10.1042/bj0920300] [PMID: 5838073]
[65]
Bergmann, S.; Curzon, G.; Friedel, J.; Godwin-Austen, R.B.; Marsden, C.D.; Parkes, J.D. The absorption and metabolism of a standard oral dose of levodopa in patients with Parkinsonism. Br. J. Clin. Pharmacol., 1974, 1(5), 417-424.
[http://dx.doi.org/10.1111/j.1365-2125.1974.tb00280.x] [PMID: 22454921]
[66]
Cotzias, G.C.; Papavasiliou, P.S.; Ginos, J.; Steck, A.; Düby, S. Metabolic modification of Parkinson’s disease and of chronic manganese poisoning. Annu. Rev. Med., 1971, 22(1), 305-326.
[http://dx.doi.org/10.1146/annurev.me.22.020171.001513] [PMID: 4944422]
[67]
Goldenberg, M.M. Medical management of Parkinson’s disease. P&T, 2008, 33(10), 590-606.
[PMID: 19750042]
[68]
Burkhard, P.; Dominici, P.; Borri-Voltattorni, C.; Jansonius, J.N.; Malashkevich, V.N. Structural insight into Parkinson’s disease treatment from drug-inhibited DOPA decarboxylase. Nat. Struct. Biol., 2001, 8(11), 963-967.
[http://dx.doi.org/10.1038/nsb1101-963] [PMID: 11685243]
[69]
Montioli, R.; Voltattorni, C.B.; Bertoldi, M. Parkinson’s Disease: Recent Updates in the Identification of Human Dopa Decarboxylase Inhibitors. Curr. Drug Metab., 2016, 17(5), 513-518.
[http://dx.doi.org/10.2174/138920021705160324170558] [PMID: 27025882]
[70]
Parkinson Disease Agents. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, 2012.
[71]
Fabbri, M.; Ferreira, J.J.; Rascol, O. COMT Inhibitors in the Management of Parkinson’s Disease. CNS Drugs, 2022, 36(3), 261-282.
[http://dx.doi.org/10.1007/s40263-021-00888-9] [PMID: 35217995]
[72]
Alonso, C.A.; Luquin, P.R.; García, Ruiz-Espiga, P.; Burguera, J.A.; Campos Arillo, V.; Castro, A.; Linazasoro, G.; López Del Val, J.; Vela, L.; Martínez Castrillo, J.C. Dopaminergic agonists in Parkinson’s disease. Neurologia, 2014, 29(4), 230-241.
[http://dx.doi.org/10.1016/j.nrl.2011.04.012] [PMID: 21724302]
[73]
Latt, M.D.; Lewis, S.; Zekry, O.; Fung, V.S.C. Factors to consider in the selection of dopamine agonists for older persons with Parkinson’s disease. Drugs Aging, 2019, 36(3), 189-202.
[http://dx.doi.org/10.1007/s40266-018-0629-0] [PMID: 30623310]
[74]
Tan, Y.Y.; Jenner, P.; Chen, S.D. Monoamine oxidase-B inhibitors for the treatment of Parkinson’s disease: Past, present, and future. J. Parkinsons Dis., 2022, 12(2), 477-493.
[http://dx.doi.org/10.3233/JPD-212976] [PMID: 34957948]
[75]
Nafisah, W.; Najman, A.H.; Hamizah, R.; Azmin, S.; Rabani, R.; Shah, S.; Norlinah, M. High prevalence of Helicobacter pylori infection in Malaysian Parkinson’s disease patients. Research and Reviews in Parkinsonism, 2013, 3, 63-67.
[76]
Pierantozzi, M.; Pietroiusti, A.; Galante, A.; Sancesario, G.; Lunardi, G.; Fedele, E.; Giacomini, P.; Stanzione, P. Helicobacter pylori-induced reduction of acute levodopa absorption in parkinson’s disease patients. Ann. Neurol., 2001, 50(5), 686-687.
[http://dx.doi.org/10.1002/ana.1267] [PMID: 11706979]
[77]
Rees, K.; Stowe, R.; Patel, S.; Ives, N.; Breen, K.; Clarke, C.E.; Ben-Shlomo, Y. Helicobacter pylori eradication for Parkinson’s disease. Cochrane Libr., 2011, (11), CD008453.
[http://dx.doi.org/10.1002/14651858.CD008453.pub2] [PMID: 22071847]
[78]
Pierantozzi, M.; Pietroiusti, A.; Brusa, L.; Galati, S.; Stefani, A.; Lunardi, G.; Fedele, E.; Sancesario, G.; Bernardi, G.; Bergamaschi, A.; Magrini, A.; Stanzione, P.; Galante, A. Helicobacter pylori eradication and l-dopa absorption in patients with PD and motor fluctuations. Neurology, 2006, 66(12), 1824-1829.
[http://dx.doi.org/10.1212/01.wnl.0000221672.01272.ba] [PMID: 16801644]
[79]
Bjarnason, I.T.; Charlett, A.; Dobbs, R.J.; Dobbs, S.M.; Ibrahim, M.A.A.; Kerwin, R.W.; Mahler, R.F.; Oxlade, N.L.; Peterson, D.W.; Plant, J.M.; Price, A.B.; Weller, C. Role of chronic infection and inflammation in the gastrointestinal tract in the etiology and pathogenesis of idiopathic parkinsonism. Part 2: response of facets of clinical idiopathic parkinsonism to Helicobacter pylori eradication. A randomized, double-blind, placebo-controlled efficacy study. Helicobacter, 2005, 10(4), 276-287.
[http://dx.doi.org/10.1111/j.1523-5378.2005.00330.x] [PMID: 16104943]
[80]
Beales, I.L.P.; Calam, J. Interleukin 1β and tumour necrosis factor α inhibit acid secretion in cultured rabbit parietal cells by multiple pathways. Gut, 1998, 42(2), 227-234.
[http://dx.doi.org/10.1136/gut.42.2.227] [PMID: 9536948]
[81]
El-Omar, E.M. The importance of interleukin 1β in Helicobacter pylori associated disease. Gut, 2001, 48(6), 743-747.
[http://dx.doi.org/10.1136/gut.48.6.743] [PMID: 11358884]
[82]
Takashima, M.; Furuta, T.; Hanai, H.; Sugimura, H.; Kaneko, E. Effects of Helicobacter pylori infection on gastric acid secretion and serum gastrin levels in Mongolian gerbils. Gut, 2001, 48(6), 765-773.
[http://dx.doi.org/10.1136/gut.48.6.765] [PMID: 11358893]
[83]
Feldman, M.; Cryer, B.; Lee, E. Effects of Helicobacter pylori gastritis on gastric secretion in healthy human beings. Am. J. Physiol. Gastrointest. Liver Physiol., 1998, 274(6), G1011-G1017.
[http://dx.doi.org/10.1152/ajpgi.1998.274.6.G1011] [PMID: 9696699]
[84]
Thor, P.; Lorens, K.; Tabor, S.; Herman, R.; Konturek, J.W.; Konturek, S.J. Dysfunction in gastric myoelectric and motor activity in Helicobacter pylori positive gastritis patients with non-ulcer dyspesia. J. Physiol. Pharmacol., 1996, 47(3), 469-476.
[PMID: 8877902]
[85]
Miyaji, H.; Azuma, T.; Ito, S.; Abe, Y.; Ono, H.; Suto, H.; Ito, Y.; Yamazaki, Y.; Kohli, Y.; Kuriyama, M. The effect of Helicobacter pylori eradication therapy on gastric antral myoelectrical activity and gastric emptying in patients with non-ulcer dyspepsia. Aliment. Pharmacol. Ther., 1999, 13(10), 1303-1309.
[http://dx.doi.org/10.1046/j.1365-2036.1999.00621.x] [PMID: 10540044]
[86]
Doherty, N.C.; Tobias, A.; Watson, S.; Atherton, J.C. The effect of the human gut-signalling hormone, norepinephrine, on the growth of the gastric pathogen Helicobacter pylori. Helicobacter, 2009, 14(3), 223-230.
[http://dx.doi.org/10.1111/j.1523-5378.2009.00682.x] [PMID: 19702852]
[87]
Yang, J.C.; Lu, C.W.; Lin, C.J. Treatment of Helicobacter pylori infection: Current status and future concepts. World J. Gastroenterol., 2014, 20(18), 5283-5293.
[http://dx.doi.org/10.3748/wjg.v20.i18.5283] [PMID: 24833858]
[88]
Gasbarrini, A.; Lauritano, E.C.; Gabrielli, M.; Scarpellini, E.; Lupascu, A.; Ojetti, V.; Gasbarrini, G. Small intestinal bacterial overgrowth: diagnosis and treatment. Dig. Dis., 2007, 25(3), 237-240.
[http://dx.doi.org/10.1159/000103892] [PMID: 17827947]
[89]
Gabrielli, M.; Bonazzi, P.; Scarpellini, E.; Bendia, E.; Lauritano, E.C.; Fasano, A.; Ceravolo, M.G.; Capecci, M.; Rita Bentivoglio, A.; Provinciali, L.; Tonali, P.A.; Gasbarrini, A. Prevalence of small intestinal bacterial overgrowth in Parkinson’s disease. Mov. Disord., 2011, 26(5), 889-892.
[http://dx.doi.org/10.1002/mds.23566] [PMID: 21520278]
[90]
Wanitschke, R.; Ammon, H.V. Effects of dihydroxy bile acids and hydroxy fatty acids on the absorption of oleic acid in the human jejunum. J. Clin. Invest., 1978, 61(1), 178-186.
[http://dx.doi.org/10.1172/JCI108916] [PMID: 338629]
[91]
Nucera, G.; Gabrielli, M.; Lupascu, A.; Lauritano, E.C.; Santoliquido, A.; Cremonini, F.; Cammarota, G.; Tondi, P.; Pola, P.; Gasbarrini, G.; Gasbarrini, A. Abnormal breath tests to lactose, fructose and sorbitol in irritable bowel syndrome may be explained by small intestinal bacterial overgrowth. Aliment. Pharmacol. Ther., 2005, 21(11), 1391-1395.
[http://dx.doi.org/10.1111/j.1365-2036.2005.02493.x] [PMID: 15932370]
[92]
Spencer, R.P. Intestinal absorption of amino acids. Current concepts. Am. J. Clin. Nutr., 1969, 22(3), 292-299.
[http://dx.doi.org/10.1093/ajcn/22.3.292] [PMID: 4237680]
[93]
Dobbs, R.J.; Charlett, A.; Dobbs, S.M.; Weller, C.; Peterson, D.W. Parkinsonism: differential age-trend in Helicobacter pylori antibody. Aliment. Pharmacol. Ther., 2000, 14(9), 1199-1205.
[http://dx.doi.org/10.1046/j.1365-2036.2000.00815.x] [PMID: 10971237]
[94]
Zimmermann, M.; Zimmermann-Kogadeeva, M.; Wegmann, R.; Goodman, A.L. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature, 2019, 570(7762), 462-467.
[http://dx.doi.org/10.1038/s41586-019-1291-3] [PMID: 31158845]
[95]
Gatto, M.; Fernandez Pardal, M.; Melero, M.; Zurru, C.; Scorticati, C.; Micheli, F. L-dopa malabsorption in a parkinsonian patient with Strongyloides stercoralis duodenitis. Clin. Neuropharmacol., 1994, 17(1), 96-98.
[http://dx.doi.org/10.1097/00002826-199402000-00012] [PMID: 8149365]
[96]
Pereira, C.I.; Matos, D.; San Romão, M.V.; Barreto Crespo, M.T. Dual role for the tyrosine decarboxylation pathway in Enterococcus faecium E17: response to an acid challenge and generation of a proton motive force. Appl. Environ. Microbiol., 2009, 75(2), 345-352.
[http://dx.doi.org/10.1128/AEM.01958-08] [PMID: 19011061]
[97]
Fallingborg, J. Intraluminal pH of the human gastrointestinal tract. Dan. Med. Bull., 1999, 46(3), 183-196.
[PMID: 10421978]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy