Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Advances in Anti-metabolic Disease Treatments Targeting CD47

Author(s): Li Gao, Zhe He and Yonggui Wu*

Volume 28, Issue 46, 2022

Published on: 13 December, 2022

Page: [3720 - 3728] Pages: 9

DOI: 10.2174/1381612828666221006123144

Price: $65

conference banner
Abstract

Metabolic disorders include a cluster of conditions that result from hyperglycemia, hyperlipidemia, insulin resistance, obesity, and hepatic steatosis, which cause the dysfunction of immune cells and innate cells, such as macrophages, natural killer cells, vascular endothelial cells, hepatocytes, and human kidney tubular epithelial cells. Besides targeting the derangements in lipid metabolism, therapeutic modulations to regulate abnormal responses in the immune system and innate cell dysfunctions may prove to be promising strategies in the management of metabolic diseases. In recent years, several targets have been explored for the CD47 molecule (CD47), a glycosylated protein, which was originally reported to transmit an anti-phagocytic signal known as “don’t eat me” in the atherosclerotic environment, hindering the efferocytosis of immune cells and promoting arterial plaque accumulation. Subsequently, the role of CD47 has been explored in obesity, fatty liver, and lipotoxic nephropathy, and its utility as a therapeutic target has been investigated using anti-CD47 antibodies or inhibitors of the THBS1/CD47 axis and the CD47/SIRPα signaling pathway. This review summarizes the mechanisms of action of CD47 in different cell types during metabolic diseases and the clinical research progress to date, providing a reference for the comprehensive targeting of CD47 to treat metabolic diseases and the devising of potential improvements to possible side effects.

Keywords: Metabolic disease, atherosclerosis, hepatic steatosis, lipotoxic nephropathy, obesity, CD47 molecule.

[1]
Wright AK, Suarez-Ortegon MF, Read SH, et al. Risk factor control and cardiovascular event risk in people with type 2 diabetes in primary and secondary prevention settings. Circulation 2020; 142(20): 1925-36.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.046783] [PMID: 33196309]
[2]
Kasper P, Martin A, Lang S, et al. NAFLD and cardiovascular diseases: A clinical review. Clin Res Cardiol 2021; 110(7): 921-37.
[http://dx.doi.org/10.1007/s00392-020-01709-7] [PMID: 32696080]
[3]
Lavie CJ, Milani RV, Ventura HO. Obesity and cardiovascular disease: Risk factor, paradox, and impact of weight loss. J Am Coll Cardiol 2009; 53(21): 1925-32.
[http://dx.doi.org/10.1016/j.jacc.2008.12.068] [PMID: 19460605]
[4]
Abe H, Semba H, Takeda N. The roles of hypoxia signaling in the pathogenesis of cardiovascular diseases. J Atheroscler Thromb 2017; 24(9): 884-94.
[http://dx.doi.org/10.5551/jat.RV17009] [PMID: 28757538]
[5]
Lind L, Sundström J, Ärnlöv J, Lampa E. Impact of aging on the strength of cardiovascular risk factors: A longitudinal study over 40 years. J Am Heart Assoc 2018; 7(1): e007061.
[http://dx.doi.org/10.1161/JAHA.117.007061] [PMID: 29306895]
[6]
Russ A, Hua AB, Montfort WR, et al. Blocking “don’t eat me” signal of CD47-SIRPα in hematological malignancies, an in-depth review. Blood Rev 2018; 32(6): 480-9.
[http://dx.doi.org/10.1016/j.blre.2018.04.005] [PMID: 29709247]
[7]
Lindberg FP, Gresham HD, Schwarz E, Brown EJ. Molecular cloning of integrin-associated protein: An immunoglobulin family member with multiple membrane-spanning domains implicated in alpha v beta 3-dependent ligand binding. J Cell Biol 1993; 123(2): 485-96.
[http://dx.doi.org/10.1083/jcb.123.2.485] [PMID: 7691831]
[8]
Mawby WJ, Holmes CH, Anstee DJ, Spring FA, Tanner MJA. Isolation and characterization of CD47 glycoprotein: A multispanning membrane protein which is the same as integrin-associated protein (IAP) and the ovarian tumour marker OA3. Biochem J 1994; 304(2): 525-30.
[http://dx.doi.org/10.1042/bj3040525] [PMID: 7998989]
[9]
Soto-Pantoja DR, Stein EV, Rogers NM, Sharifi-Sanjani M, Isenberg JS, Roberts DD. Therapeutic opportunities for targeting the ubiquitous cell surface receptor CD47. Expert Opin Ther Targets 2013; 17(1): 89-103.
[http://dx.doi.org/10.1517/14728222.2013.733699] [PMID: 23101472]
[10]
Soto-Pantoja DR, Ridnour LA, Wink DA, Roberts DD. Blockade of CD47 increases survival of mice exposed to lethal total body irradiation. Sci Rep 2013; 3(1): 1038.
[http://dx.doi.org/10.1038/srep01038] [PMID: 23301159]
[11]
Nishiyama S. Hypercalcemia in children: An overview. Pediatr Int 1997; 39(4): 479-84.
[http://dx.doi.org/10.1111/j.1442-200X.1997.tb03624.x] [PMID: 9316297]
[12]
Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD, Lindberg FP. Role of CD47 as a marker of self on red blood cells. Science 2000; 288(5473): 2051-4.
[http://dx.doi.org/10.1126/science.288.5473.2051] [PMID: 10856220]
[13]
Kojima Y, Weissman IL, Leeper NJ. The role of efferocytosis in atherosclerosis. Circulation 2017; 135(5): 476-89.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.025684] [PMID: 28137963]
[14]
Majeti R, Chao MP, Alizadeh AA, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 2009; 138(2): 286-99.
[http://dx.doi.org/10.1016/j.cell.2009.05.045] [PMID: 19632179]
[15]
Gardai SJ, McPhillips KA, Frasch SC, et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 2005; 123(2): 321-34.
[http://dx.doi.org/10.1016/j.cell.2005.08.032] [PMID: 16239148]
[16]
Cheng Q, Gu J, Adhikari BK, Sun L, Sun J. Is CD47 a potentially promising therapeutic target in cardiovascular diseases? — Role of CD47 in cardiovascular diseases. Life Sci 2020; 247: 117426.
[http://dx.doi.org/10.1016/j.lfs.2020.117426] [PMID: 32061866]
[17]
Herrington W, Lacey B, Sherliker P, Armitage J, Lewington S. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ Res 2016; 118(4): 535-46.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.307611] [PMID: 26892956]
[18]
Solanki A, Bhatt LK, Johnston TP. Evolving targets for the treatment of atherosclerosis. Pharmacol Ther 2018; 187: 1-12.
[http://dx.doi.org/10.1016/j.pharmthera.2018.02.002] [PMID: 29414673]
[19]
Reith C, Armitage J. Management of residual risk after statin therapy. Atherosclerosis 2016; 245: 161-70.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.12.018] [PMID: 26722833]
[20]
Auer J, Sinzinger H, Franklin B, Berent R. Muscle- and skeletal-related side-effects of statins: Tip of the iceberg? Eur J Prev Cardiol 2016; 23(1): 88-110.
[http://dx.doi.org/10.1177/2047487314550804] [PMID: 25230981]
[21]
Moriya J. Critical roles of inflammation in atherosclerosis. J Cardiol 2019; 73(1): 22-7.
[http://dx.doi.org/10.1016/j.jjcc.2018.05.010] [PMID: 29907363]
[22]
Kinchen JM, Ravichandran KS. Phagocytic signaling: You can touch, but you can’t eat. Curr Biol 2008; 18(12): R521-4.
[http://dx.doi.org/10.1016/j.cub.2008.04.058] [PMID: 18579095]
[23]
Thorp EB. Mechanisms of failed apoptotic cell clearance by phagocyte subsets in cardiovascular disease. Apoptosis 2010; 15(9): 1124-36.
[http://dx.doi.org/10.1007/s10495-010-0516-6] [PMID: 20552278]
[24]
Ravichandran KS. Beginnings of a good apoptotic meal: The find-me and eat-me signaling pathways. Immunity 2011; 35(4): 445-55.
[http://dx.doi.org/10.1016/j.immuni.2011.09.004] [PMID: 22035837]
[25]
Martinet W, Coornaert I, Puylaert P, De Meyer GRY. Macrophage death as a pharmacological target in atherosclerosis. Front Pharmacol 2019; 10: 306.
[http://dx.doi.org/10.3389/fphar.2019.00306] [PMID: 31019462]
[26]
Kojima Y, Volkmer JP, McKenna K, et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature 2016; 536(7614): 86-90.
[http://dx.doi.org/10.1038/nature18935] [PMID: 27437576]
[27]
Van Vré EA, Ait-Oufella H, Tedgui A, Mallat Z. Apoptotic cell death and efferocytosis in atherosclerosis. Arterioscler Thromb Vasc Biol 2012; 32(4): 887-93.
[http://dx.doi.org/10.1161/ATVBAHA.111.224873] [PMID: 22328779]
[28]
Chen W, Li X, Wang J, Song N, Zhu A, Jia L. miR‐378a modulates macrophage phagocytosis and differentiation through targeting CD47‐SIRPα axis in atherosclerosis. Scand J Immunol 2019; 90(1): e12766.
[http://dx.doi.org/10.1111/sji.12766] [PMID: 30929259]
[29]
Ye Z, Yang S, Xia Y, et al. LncRNA MIAT sponges miR-149-5p to inhibit efferocytosis in advanced atherosclerosis through CD47 upregulation. Cell Death Dis 2019; 10(2): 138.
[http://dx.doi.org/10.1038/s41419-019-1409-4] [PMID: 30755588]
[30]
Hoffmann PR, deCathelineau AM, Ogden CA, et al. Phosphatidylserine (PS) induces PS receptor-mediated macropinocytosis and promotes clearance of apoptotic cells. J Cell Biol 2001; 155(4): 649-60.
[http://dx.doi.org/10.1083/jcb.200108080] [PMID: 11706053]
[31]
Nilsson A, Oldenborg PA. CD47 promotes both phosphatidylserine-independent and phosphatidylserine-dependent phagocytosis of apoptotic murine thymocytes by non-activated macrophages. Biochem Biophys Res Commun 2009; 387(1): 58-63.
[http://dx.doi.org/10.1016/j.bbrc.2009.06.121] [PMID: 19559673]
[32]
Gerlach BD, Marinello M, Heinz J, et al. Resolvin D1 promotes the targeting and clearance of necroptotic cells. Cell Death Differ 2020; 27(2): 525-39.
[http://dx.doi.org/10.1038/s41418-019-0370-1] [PMID: 31222041]
[33]
Lawler JW, Slayter HS, Coligan JE. Isolation and characterization of a high molecular weight glycoprotein from human blood platelets. J Biol Chem 1978; 253(23): 8609-16.
[http://dx.doi.org/10.1016/S0021-9258(17)34336-3] [PMID: 101549]
[34]
Zaslavsky A, Chen C, Grillo J, et al. Regional control of tumor growth. Mol Cancer Res 2010; 8(9): 1198-206.
[http://dx.doi.org/10.1158/1541-7786.MCR-10-0047] [PMID: 20736295]
[35]
Dou M, Chen Y, Hu J, Ma D, Xing Y. Recent advancements in CD47 signal transduction pathways involved in vascular diseases. BioMed Res Int 2020; 2020: 1-11.
[http://dx.doi.org/10.1155/2020/4749135] [PMID: 32733941]
[36]
Bein K, Simons M. Thrombospondin type 1 repeats interact with matrix metalloproteinase 2. Regulation of metalloproteinase activity. J Biol Chem 2000; 275(41): 32167-73.
[http://dx.doi.org/10.1074/jbc.M003834200] [PMID: 10900205]
[37]
Colombo G, Margosio B, Ragona L, et al. Non-peptidic thrombospondin-1 mimics as fibroblast growth factor-2 inhibitors: An integrated strategy for the development of new antiangiogenic compounds. J Biol Chem 2010; 285(12): 8733-42.
[http://dx.doi.org/10.1074/jbc.M109.085605] [PMID: 20056600]
[38]
Oganesian A, Armstrong LC, Migliorini MM, Strickland DK, Bornstein P. Thrombospondins use the VLDL receptor and a nonapoptotic pathway to inhibit cell division in microvascular endothelial cells. Mol Biol Cell 2008; 19(2): 563-71.
[http://dx.doi.org/10.1091/mbc.e07-07-0649] [PMID: 18032585]
[39]
Bazzazi H, Isenberg JS, Popel AS. Inhibition of VEGFR2 activation and its downstream signaling to ERK1/2 and calcium by thrombospondin-1 (TSP1): In silico investigation. Front Physiol 2017; 8: 48.
[PMID: 28220078]
[40]
Foulsham W, Dohlman TH, Mittal SK, et al. Thrombospondin-1 in ocular surface health and disease. Ocul Surf 2019; 17(3): 374-83.
[http://dx.doi.org/10.1016/j.jtos.2019.06.001] [PMID: 31173926]
[41]
Bazzazi H, Zhang Y, Jafarnejad M, Isenberg JS, Annex BH, Popel AS. Computer simulation of TSP1 inhibition of VEGF-Akt-eNOS: An angiogenesis triple threat. Front Physiol 2018; 9: 644.
[http://dx.doi.org/10.3389/fphys.2018.00644] [PMID: 29899706]
[42]
Benjannet S, Rhainds D, Essalmani R, et al. NARC-1/PCSK9 and its natural mutants: Zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J Biol Chem 2004; 279(47): 48865-75.
[http://dx.doi.org/10.1074/jbc.M409699200] [PMID: 15358785]
[43]
Yuan F, Guo L, Park KH, et al. Ossabaw pigs With a PCSK9 gain‐of‐function mutation develop accelerated coronary atherosclerotic lesions: A novel model for preclinical studies. J Am Heart Assoc 2018; 7(6): e006207.
[http://dx.doi.org/10.1161/JAHA.117.006207] [PMID: 29572319]
[44]
Hedayat AF, Park KH, Kwon TG, et al. Peripheral vascular atherosclerosis in a novel PCSK9 gain-of-function mutant Ossabaw miniature pig model. Transl Res 2018; 192: 30-45.
[http://dx.doi.org/10.1016/j.trsl.2017.10.007] [PMID: 29175268]
[45]
Nath PR, Gangaplara A, Pal-Nath D, et al. CD47 expression in natural killer cells regulates homeostasis and modulates immune response to lymphocytic choriomeningitis virus. Front Immunol 2018; 9: 2985.
[http://dx.doi.org/10.3389/fimmu.2018.02985] [PMID: 30643501]
[46]
Parks BW, Nam E, Org E, et al. Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab 2013; 17(1): 141-52.
[http://dx.doi.org/10.1016/j.cmet.2012.12.007] [PMID: 23312289]
[47]
Vamanu E, Rai SN. The link between obesity, microbiota dysbiosis, and neurodegenerative pathogenesis. Diseases 2021; 9(3): 45.
[http://dx.doi.org/10.3390/diseases9030045] [PMID: 34201465]
[48]
Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006; 444(7121): 840-6.
[http://dx.doi.org/10.1038/nature05482] [PMID: 17167471]
[49]
Maimaitiyiming H, Norman H, Zhou Q, Wang S. CD47 deficiency protects mice from diet-induced obesity and improves whole body glucose tolerance and insulin sensitivity. Sci Rep 2015; 5(1): 8846.
[http://dx.doi.org/10.1038/srep08846] [PMID: 25747123]
[50]
Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2018; 15(1): 11-20.
[http://dx.doi.org/10.1038/nrgastro.2017.109] [PMID: 28930295]
[51]
Tana C, Ballestri S, Ricci F, et al. Cardiovascular risk in non-alcoholic fatty liver disease: Mechanisms and therapeutic implications. Int J Environ Res Public Health 2019; 16(17): 3104.
[http://dx.doi.org/10.3390/ijerph16173104] [PMID: 31455011]
[52]
Ballestri S, Zona S, Targher G, et al. Nonalcoholic fatty liver disease is associated with an almost twofold increased risk of incident type 2 diabetes and metabolic syndrome. Evidence from a systematic review and meta-analysis. J Gastroenterol Hepatol 2016; 31(5): 936-44.
[http://dx.doi.org/10.1111/jgh.13264] [PMID: 26667191]
[53]
Bellentani S. The epidemiology of non-alcoholic fatty liver disease. Liver Int 2017; 37 (Suppl. 1): 81-4.
[http://dx.doi.org/10.1111/liv.13299] [PMID: 28052624]
[54]
Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: Old questions and new insights. Science 2011; 332(6037): 1519-23.
[http://dx.doi.org/10.1126/science.1204265] [PMID: 21700865]
[55]
Di Filippo M, Moulin P, Roy P, et al. Homozygous MTTP and APOB mutations may lead to hepatic steatosis and fibrosis despite metabolic differences in congenital hypocholesterolemia. J Hepatol 2014; 61(4): 891-902.
[http://dx.doi.org/10.1016/j.jhep.2014.05.023] [PMID: 24842304]
[56]
You M, Jogasuria A, Taylor C, Wu J. Sirtuin 1 signaling and alcoholic fatty liver disease. Hepatobiliary Surg Nutr 2015; 4(2): 88-100.
[PMID: 26005675]
[57]
Min-DeBartolo J, Schlerman F, Akare S, et al. Thrombospondin-I is a critical modulator in non-alcoholic steatohepatitis (NASH). PLoS One 2019; 14(12): e0226854.
[http://dx.doi.org/10.1371/journal.pone.0226854] [PMID: 31891606]
[58]
Bai J, Xia M, Xue Y, et al. Thrombospondin 1 improves hepatic steatosis in diet-induced insulin-resistant mice and is associated with hepatic fat content in humans. EBioMedicine 2020; 57: 102849.
[http://dx.doi.org/10.1016/j.ebiom.2020.102849] [PMID: 32580141]
[59]
Venkatraman L, Tucker-Kellogg L. The CD 47‐binding peptide of thrombospondin‐1 induces defenestration of liver sinusoidal endothelial cells. Liver Int 2013; 33(9): 1386-97.
[http://dx.doi.org/10.1111/liv.12231] [PMID: 23799952]
[60]
Tao HC, Chen KX, Wang X, et al. CD47 deficiency in mice exacerbates chronic fatty diet-induced steatohepatitis through its role in regulating hepatic inflammation and lipid metabolism. Front Immunol 2020; 11: 148.
[http://dx.doi.org/10.3389/fimmu.2020.00148] [PMID: 32158445]
[61]
Norman-Burgdolf H, Li D, Sullivan P, Wang S. CD47 differentially regulates white and brown fat function. Biol Open 2020; 9(12): bio056747.
[http://dx.doi.org/10.1242/bio.056747] [PMID: 33328190]
[62]
Feingold KR. Introduction to lipids and lipoproteins. South Dartmouth (MA): MDText.com, Inc 2021.
[63]
Hooper AJ, Burnett JR, Watts GF. Contemporary aspects of the biology and therapeutic regulation of the microsomal triglyceride transfer protein. Circ Res 2015; 116(1): 193-205.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.304637] [PMID: 25552696]
[64]
Du XG, Ruan XZ. Lipid metabolism disorder and renal fibrosis. Adv Exp Med Biol 2019; 1165: 525-41.
[http://dx.doi.org/10.1007/978-981-13-8871-2_26] [PMID: 31399983]
[65]
Gao L, Yang T, Zhang J, et al. THBS1/CD47 modulates the interaction of γ-catenin with e-cadherin and participates in epithelial-mesenchymal transformation in lipid nephrotoxicity. Front Cell Dev Biol 2021; 8: 601521.
[http://dx.doi.org/10.3389/fcell.2020.601521] [PMID: 33681182]
[66]
Julovi SM, Sanganeria B, Minhas N, Ghimire K, Nankivell B, Rogers NM. Blocking thrombospondin-1 signaling via CD47 mitigates renal interstitial fibrosis. Lab Invest 2020; 100(9): 1184-96.
[http://dx.doi.org/10.1038/s41374-020-0434-3] [PMID: 32366943]
[67]
Isenberg JS, Roberts DD. The role of CD47 in pathogenesis and treatment of renal ischemia reperfusion injury. Pediatr Nephrol 2019; 34(12): 2479-94.
[http://dx.doi.org/10.1007/s00467-018-4123-z] [PMID: 30392076]
[68]
Engelbertsen D, Autio A, Verwilligen RAF, et al. Increased lymphocyte activation and atherosclerosis in CD47-deficient mice. Sci Rep 2019; 9(1): 10608.
[http://dx.doi.org/10.1038/s41598-019-46942-x] [PMID: 31337788]
[69]
Karkhah A, Saadi M, Nouri HR. In silico analyses of heat shock protein 60 and calreticulin to designing a novel vaccine shifting immune response toward T helper 2 in atherosclerosis. Comput Biol Chem 2017; 67: 244-54.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.01.011] [PMID: 28189968]
[70]
Kojima Y, Downing K, Kundu R, et al. Cyclin-dependent kinase inhibitor 2B regulates efferocytosis and atherosclerosis. J Clin Invest 2019; 129(5): 2164.
[http://dx.doi.org/10.1172/JCI129277] [PMID: 31042164]
[71]
Yao W, Fan W, Huang C, Zhong H, Chen X, Zhang W. Proteomic analysis for anti-atherosclerotic effect of tetrahydroxystilbene glucoside in rats. Biomed Pharmacother 2013; 67(2): 140-5.
[http://dx.doi.org/10.1016/j.biopha.2012.10.007] [PMID: 23206751]
[72]
Han X, Tao Y, Deng Y, Yu J, Sun Y, Jiang G. Metformin accelerates wound healing in type 2 diabetic db/db mice. Mol Med Rep 2017; 16(6): 8691-8.
[http://dx.doi.org/10.3892/mmr.2017.7707] [PMID: 28990070]
[73]
Demircioglu F, Hodivala-Dilke K. αvβ3 Integrin and tumour blood vessels-learning from the past to shape the future. Curr Opin Cell Biol 2016; 42: 121-7.
[http://dx.doi.org/10.1016/j.ceb.2016.07.008] [PMID: 27474973]
[74]
Caolo V, Swennen G, Chalaris A, et al. ADAM10 and ADAM17 have opposite roles during sprouting angiogenesis. Angiogenesis 2015; 18(1): 13-22.
[http://dx.doi.org/10.1007/s10456-014-9443-4] [PMID: 25218057]
[75]
Zhang W, Huang Q, Xiao W, et al. Advances in anti-tumor treatments targeting the CD47/SIRPα Axis. Front Immunol 2020; 11: 18.
[http://dx.doi.org/10.3389/fimmu.2020.00018] [PMID: 32082311]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy