Abstract
The research on high hydrostatic pressure in medicine and life sciences is multifaceted. According to the used pressure head the research has to be divided into two different parts. To study physiological aspects of pressure on eukaryotic cells physiological pressure (pHHP; < 100 MPa) is used. pHHP induces morphological alterations in the cellular organelles and evokes a reversible stress response similar to the well known heat shock response. pHHP induces highly reversible alterations and normally does not affect cellular viability. The treatment of eukaryotic cells with nonphysiological pressure (HHP; ≥ 100 MPa) reveals different outcomes. Treatment with HHP < 150 MPa does not markedly affect viability of human cells, but induces apoptosis in murine cells. In human cells apoptosis is observed after treatment with ≥ 200 MPa. Moreover, HHP treatment with > 300 MPa leads to necrosis. Therefore, HHP plays a role for the sterilisation of human transplants, of food stuff, and pharmaceuticals. Human tumour cells subjected to HHP > 300 MPa display a necrotic phenotype along with a gelificated cytoplasm, preserve their shape, and retain their immunogenicity. These observations favour the use of HHP to produce whole cell based tumour vaccines. Further experiments revealed that the increment of pressure as well as the pressure holding time influences the cell death of tumour cells. We conclude that high hydrostatic pressure offers both, an economic, easy to apply, clean, and fast technique for the generation of vaccines, and a promising tool to study physiological aspects.
Keywords: High hydrostatic pressure, stress response, cell death, apoptosis, necrosis, immunogenicity, tumour vaccine, transplants
Current Medicinal Chemistry
Title: Cells Under Pressure – Treatment of Eukaryotic Cells with High Hydrostatic Pressure, from Physiologic Aspects to Pressure Induced Cell Death
Volume: 15 Issue: 23
Author(s): Benjamin Frey, Christina Janko, Nina Ebel, Silke Meister, Eberhard Schlucker, Roland Meyer-Pittroff, Rainer Fietkau, Martin Herrmann and Udo S. Gaipl
Affiliation:
Keywords: High hydrostatic pressure, stress response, cell death, apoptosis, necrosis, immunogenicity, tumour vaccine, transplants
Abstract: The research on high hydrostatic pressure in medicine and life sciences is multifaceted. According to the used pressure head the research has to be divided into two different parts. To study physiological aspects of pressure on eukaryotic cells physiological pressure (pHHP; < 100 MPa) is used. pHHP induces morphological alterations in the cellular organelles and evokes a reversible stress response similar to the well known heat shock response. pHHP induces highly reversible alterations and normally does not affect cellular viability. The treatment of eukaryotic cells with nonphysiological pressure (HHP; ≥ 100 MPa) reveals different outcomes. Treatment with HHP < 150 MPa does not markedly affect viability of human cells, but induces apoptosis in murine cells. In human cells apoptosis is observed after treatment with ≥ 200 MPa. Moreover, HHP treatment with > 300 MPa leads to necrosis. Therefore, HHP plays a role for the sterilisation of human transplants, of food stuff, and pharmaceuticals. Human tumour cells subjected to HHP > 300 MPa display a necrotic phenotype along with a gelificated cytoplasm, preserve their shape, and retain their immunogenicity. These observations favour the use of HHP to produce whole cell based tumour vaccines. Further experiments revealed that the increment of pressure as well as the pressure holding time influences the cell death of tumour cells. We conclude that high hydrostatic pressure offers both, an economic, easy to apply, clean, and fast technique for the generation of vaccines, and a promising tool to study physiological aspects.
Export Options
About this article
Cite this article as:
Frey Benjamin, Janko Christina, Ebel Nina, Meister Silke, Schlucker Eberhard, Meyer-Pittroff Roland, Fietkau Rainer, Herrmann Martin and Gaipl S. Udo, Cells Under Pressure – Treatment of Eukaryotic Cells with High Hydrostatic Pressure, from Physiologic Aspects to Pressure Induced Cell Death, Current Medicinal Chemistry 2008; 15 (23) . https://dx.doi.org/10.2174/092986708785909166
DOI https://dx.doi.org/10.2174/092986708785909166 |
Print ISSN 0929-8673 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-533X |
Call for Papers in Thematic Issues
Advances in Medicinal Chemistry: From Cancer to Chronic Diseases.
The broad spectrum of the issue will provide a comprehensive overview of emerging trends, novel therapeutic interventions, and translational insights that impact modern medicine. The primary focus will be diseases of global concern, including cancer, chronic pain, metabolic disorders, and autoimmune conditions, providing a broad overview of the advancements in ...read more
Approaches to the Treatment of Chronic Inflammation
Chronic inflammation is a hallmark of numerous diseases, significantly impacting global health. Although chronic inflammation is a hot topic, not much has been written about approaches to its treatment. This thematic issue aims to showcase the latest advancements in chronic inflammation treatment and foster discussion on future directions in this ...read more
Cellular and Molecular Mechanisms of Non-Infectious Inflammatory Diseases: Focus on Clinical Implications
The Special Issue covers the results of the studies on cellular and molecular mechanisms of non-infectious inflammatory diseases, in particular, autoimmune rheumatic diseases, atherosclerotic cardiovascular disease and other age-related disorders such as type II diabetes, cancer, neurodegenerative disorders, etc. Review and research articles as well as methodology papers that summarize ...read more
Chalcogen-modified nucleic acid analogues
Chalcogen-modified nucleosides, nucleotides and oligonucleotides have been of great interest to scientific research for many years. The replacement of oxygen in the nucleobase, sugar or phosphate backbone by chalcogen atoms (sulfur, selenium, tellurium) gives these biomolecules unique properties resulting from their altered physical and chemical properties. The continuing interest in ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Prostaglandin J2 Family and the Cardiovascular System
Current Vascular Pharmacology Paeonol, a Powerful Natural Product with Broad Biological Spectra by Inhibiting Inflammatory Pathway
Current Traditional Medicine The Transcription Factor ETS-1: Its Role in Tumour Development and Strategies for its Inhibition
Mini-Reviews in Medicinal Chemistry Editorial [Hot topic: Bisphosphonates and Bone Diseases: Past, Present and Future (Guest Editor: Dominique HEYMANN)]
Current Pharmaceutical Design Clinical and Imaging Features of Tumors in the Scapula
Current Medical Imaging The Roles of Sox Family Genes in Sarcoma
Current Drug Targets Berberine Exerts Anti-cancer Activity by Modulating Adenosine Monophosphate- Activated Protein Kinase (AMPK) and the Phosphatidylinositol 3-Kinase/ Protein Kinase B (PI3K/AKT) Signaling Pathways
Current Pharmaceutical Design Writers and Erasers of Histone Lysine methylation with Clinically Applied Modulators: Promising Target for Cancer Therapy
Current Pharmaceutical Design Dose-Intensive Chemotherapy with Stem Cell Support as a Treatment Strategy for Bone and Soft-Tissue Sarcomas
Current Stem Cell Research & Therapy Case Report of a Large Rhinolith Cast – A Frequently Missed Diagnosis
New Emirates Medical Journal The Role of MDCT in Craniocervical Junction Pathologies: Pictorial Review
Current Medical Imaging Development of RGD-Based Radiotracers for Tumor Imaging and Therapy: Translating from Bench to Bedside
Current Molecular Medicine Pharmacological Intervention at CCR1 and CCR5 as an Approach for Cancer: Help or Hindrance
Current Topics in Medicinal Chemistry Notochordal Nucleus Pulposus Cells: Prospective Strategies for Intervertebral Disc Repair and Regeneration
Current Tissue Engineering (Discontinued) Enhanced Free Radical Status of Cancer Cells Success and Failure of Prooxidant/Antioxidant Treatment
Current Signal Transduction Therapy Tumor Stroma Manipulation By MSC
Current Drug Targets Pathology and Development - Developmental Systems for Target Validation and Drug Screening in Osteoarthritis
Drug Design Reviews - Online (Discontinued) Mammalian Target of Rapamycin (mTOR) Inhibitors as Anti-Cancer Agents
Current Cancer Drug Targets One Hundred Faces of Cyclopamine
Current Pharmaceutical Design The Role of Imaging in Computer-Assisted Tumor Surgery of the Sacrum and Pelvis
Current Medical Imaging