Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Responsive Role of Nanomedicine in the Tumor Microenvironment and Cancer Drug Resistance

Author(s): Pratikshya Sa, Sanjeeb K. Sahoo* and Fahima Dilnawaz*

Volume 30, Issue 29, 2023

Published on: 16 November, 2022

Page: [3335 - 3355] Pages: 21

DOI: 10.2174/0929867329666220922111336

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Cancer remains a major worldwide health challenge. Current studies emphasize the tumor microenvironment that plays a vital role in tumor proliferation, invasion, metastasis, and drug resistance. The tumor microenvironment (TME) supports the cancer cell to evade conventional treatment such as surgery, radiotherapy, and chemotherapy. Moreover, the components of tumor microenvironments have a major contribution towards developing therapy resistance in solid tumors. Therefore, targeting the tumor microenvironment can be a novel approach for achieving advancement in cancer nanomedicine. The recent progress in understanding TME and developing TME-responsive nanoparticles offers a great advantage in treating cancer drug resistance. These nanoparticles are developed in response to TME stimuli such as low pH, redox, and hypoxia improve nanomedicine's pharmacokinetic and therapeutic efficacy. This review discusses the various components of the tumor microenvironment responsible for drug resistance and nanomedicine's role in overcoming it.

Keywords: Cancer drug resistance, tumor microenvironment, nanomedicine, drug, delivery systems, pharmacokinetics.

[1]
WHO. Cancer: Keyfacts.. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Wang, X.; Zhang, H.; Chen, X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist., 2019, 2, 141-160.
[http://dx.doi.org/10.20517/cdr.2019.10] [PMID: 34322663]
[4]
Song, Y.; Zhou, B.; Du, X.; Wang, Y.; Zhang, J.; Ai, Y.; Xia, Z.; Zhao, G. Folic acid (FA)-conjugated mesoporous silica nanoparticles combined with MRP-1 siRNA improves the suppressive effects of myricetin on non-small cell lung cancer (NSCLC). Biomed. Pharmacother., 2020, 125(109561), 109561.
[http://dx.doi.org/10.1016/j.biopha.2019.109561] [PMID: 32106385]
[5]
Neophytou, C.M.; Panagi, M.; Stylianopoulos, T.; Papageorgis, P. The role of tumor microenvironment in cancer metastasis: Molecular mechanisms and therapeutic opportunities. Cancers (Basel), 2021, 13(9), 2053.
[http://dx.doi.org/10.3390/cancers13092053] [PMID: 33922795]
[6]
Baghban, R.; Roshangar, L.; Jahanban-Esfahlan, R.; Seidi, K.; Ebrahimi-Kalan, A.; Jaymand, M.; Kolahian, S.; Javaheri, T.; Zare, P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun. Signal., 2020, 18(1), 59.
[http://dx.doi.org/10.1186/s12964-020-0530-4] [PMID: 32264958]
[7]
Hanahan, D.; Coussens, L.M. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell, 2012, 21(3), 309-322.
[http://dx.doi.org/10.1016/j.ccr.2012.02.022] [PMID: 22439926]
[8]
Son, B.; Lee, S.; Youn, H.; Kim, E.; Kim, W.; Youn, B. The role of tumor microenvironment in therapeutic resistance. Oncotarget, 2017, 8(3), 3933-3945.
[http://dx.doi.org/10.18632/oncotarget.13907] [PMID: 27965469]
[9]
Dudley, A.C. Tumor endothelial cells. Cold Spring Harb. Perspect. Med., 2012, 2(3), a006536.
[http://dx.doi.org/10.1101/cshperspect.a006536] [PMID: 22393533]
[10]
Larionova, I.; Tuguzbaeva, G.; Ponomaryova, A.; Stakheyeva, M.; Cherdyntseva, N.; Pavlov, V.; Choinzonov, E.; Kzhyshkowska, J. Tumor-associated macrophages in human breast, colorectal, lung, ovarian and prostate cancers. Front. Oncol., 2020, 10, 566511.
[http://dx.doi.org/10.3389/fonc.2020.566511] [PMID: 33194645]
[11]
Lee, S.W.; Kwak, H.S.; Kang, M-H.; Park, Y-Y.; Jeong, G.S. Fibroblast-associated tumour microenvironment induces vascular structure-networked tumouroid. Sci. Rep., 2018, 8(1), 2365.
[http://dx.doi.org/10.1038/s41598-018-20886-0] [PMID: 29403007]
[12]
Shishido, S.N.; Carlsson, A.; Nieva, J.; Bethel, K.; Hicks, J.B.; Bazhenova, L.; Kuhn, P. Circulating tumor cells as a response monitor in stage IV non-small cell lung cancer. J. Transl. Med., 2019, 17(1), 294.
[http://dx.doi.org/10.1186/s12967-019-2035-8] [PMID: 31462312]
[13]
Dilnawaz, F.; Acharya, S.; Sahoo, S.K. Recent trends of nanomedicinal approaches in clinics. Int. J. Pharm., 2018, 538(1-2), 263-278.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.016] [PMID: 29339248]
[14]
Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Nanomedicine: Current status and future prospects. FASEB J., 2005, 19(3), 311-330.
[http://dx.doi.org/10.1096/fj.04-2747rev] [PMID: 15746175]
[15]
Sahoo, S.K.; Labhasetwar, V. Nanotech approaches to drug delivery and imaging. Drug Discov. Today, 2003, 8(24), 1112-1120.
[http://dx.doi.org/10.1016/S1359-6446(03)02903-9] [PMID: 14678737]
[16]
Trédan, O.; Galmarini, C.M.; Patel, K.; Tannock, I.F. Drug resistance and the solid tumor microenvironment. J. Natl. Cancer Inst., 2007, 99(19), 1441-1454.
[http://dx.doi.org/10.1093/jnci/djm135] [PMID: 17895480]
[17]
Uthaman, S.; Huh, K.M.; Park, I.K. Tumor microenvironment-responsive nanoparticles for cancer theragnostic applications. Biomater. Res., 2018, 22(22), 22.
[http://dx.doi.org/10.1186/s40824-018-0132-z] [PMID: 30155269]
[18]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[19]
Gerlinger, M.; McGranahan, N.; Dewhurst, S.M.; Burrell, R.A.; Tomlinson, I.; Swanton, C. Cancer: Evolution within a lifetime. Annu. Rev. Genet., 2014, 48, 215-236.
[http://dx.doi.org/10.1146/annurev-genet-120213-092314] [PMID: 25292359]
[20]
Seth, S; Li, C-Y Pre-existing functional heterogeneity of tumorigenic compartment as the origin of chemoresistance in pancreatic tumors. Cell Reports, 2019, 26(6), 1518-1532.e1519.
[21]
McGranahan, N.; Swanton, C. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell, 2015, 27(1), 15-26.
[http://dx.doi.org/10.1016/j.ccell.2014.12.001] [PMID: 25584892]
[22]
Wang, M.; Zhao, J.; Zhang, L.; Wei, F.; Lian, Y.; Wu, Y.; Gong, Z.; Zhang, S.; Zhou, J.; Cao, K.; Li, X.; Xiong, W.; Li, G.; Zeng, Z.; Guo, C. Role of tumor microenvironment in tumorigenesis. J. Cancer, 2017, 8(5), 761-773.
[http://dx.doi.org/10.7150/jca.17648] [PMID: 28382138]
[23]
Castells, M.; Thibault, B.; Delord, J.P.; Couderc, B. Implication of tumor microenvironment in chemoresistance: Tumor-associated stromal cells protect tumor cells from cell death. Int. J. Mol. Sci., 2012, 13(8), 9545-9571.
[http://dx.doi.org/10.3390/ijms13089545] [PMID: 22949815]
[24]
Velaei, K.; Samadi, N.; Barazvan, B.; Soleimani Rad, J. Tumor microenvironment-mediated chemoresistance in breast cancer. Breast, 2016, 30, 92-100.
[http://dx.doi.org/10.1016/j.breast.2016.09.002] [PMID: 27668856]
[25]
Yan, D.; Kowal, J.; Akkari, L.; Schuhmacher, A.J.; Huse, J.T.; West, B.L.; Joyce, J.A. Inhibition of colony stimulating factor-1 receptor abrogates microenvironment-mediated therapeutic resistance in gliomas. Oncogene, 2017, 36(43), 6049-6058.
[http://dx.doi.org/10.1038/onc.2017.261] [PMID: 28759044]
[26]
Shee, K.; Yang, W.; Hinds, J.W.; Hampsch, R.A.; Varn, F.S.; Traphagen, N.A.; Patel, K.; Cheng, C.; Jenkins, N.P.; Kettenbach, A.N.; Demidenko, E.; Owens, P.; Faber, A.C.; Golub, T.R.; Straussman, R.; Miller, T.W. Therapeutically targeting tumor microenvironment-mediated drug resistance in estrogen receptor-positive breast cancer. J. Exp. Med., 2018, 215(3), 895-910.
[http://dx.doi.org/10.1084/jem.20171818] [PMID: 29436393]
[27]
Schaaf, M.B.; Garg, A.D.; Agostinis, P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis., 2018, 9(2), 115.
[http://dx.doi.org/10.1038/s41419-017-0061-0] [PMID: 29371595]
[28]
Feng, L; Dong, Z; Tao, D; Zhang, Y; Liu, Z The acidic tumor microenvironment: A target for smart cancer nano-theranostics. Nat. Sci. Rev., 2018, 5(269-286), 1-8.
[http://dx.doi.org/10.1093/nsr/nwx062]
[29]
Wang, J.X.; Choi, S.Y.C.; Niu, X.; Kang, N.; Xue, H.; Killam, J.; Wang, Y. Lactic acid and an acidic tumor microenvironment suppress anticancer immunity. Int. J. Mol. Sci., 2020, 21(21), 8363.
[http://dx.doi.org/10.3390/ijms21218363] [PMID: 33171818]
[30]
Zheng, T.; Jäättelä, M.; Liu, B. pH gradient reversal fuels cancer progression. Int. J. Biochem. Cell Biol., 2020, 125, 105796.
[http://dx.doi.org/10.1016/j.biocel.2020.105796] [PMID: 32593663]
[31]
Wojtkowiak, J.W.; Verduzco, D.; Schramm, K.J.; Gillies, R.J. Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol. Pharm., 2011, 8(6), 2032-2038.
[http://dx.doi.org/10.1021/mp200292c] [PMID: 21981633]
[32]
Pilon-Thomas, S.; Kodumudi, K.N.; El-Kenawi, A.E.; Russell, S.; Weber, A.M.; Luddy, K.; Damaghi, M.; Wojtkowiak, J.W.; Mulé, J.J.; Ibrahim-Hashim, A.; Gillies, R.J. Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res., 2016, 76(6), 1381-1390.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1743] [PMID: 26719539]
[33]
Halcrow, P.W.; Geiger, J.D.; Chen, X. Overcoming chemoresistance: Altering ph of cellular compartments by chloroquine and hydroxychloroquine. Front. Cell Dev. Biol., 2021, 9, 627639.
[http://dx.doi.org/10.3389/fcell.2021.627639] [PMID: 33634129]
[34]
Pouysségur, J.; Dayan, F.; Mazure, N.M. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature, 2006, 441(7092), 437-443.
[http://dx.doi.org/10.1038/nature04871] [PMID: 16724055]
[35]
Petrova, V.; Annicchiarico-Petruzzelli, M.; Melino, G.; Amelio, I. The hypoxic tumour microenvironment. Oncogenesis, 2018, 7(1), 10.
[http://dx.doi.org/10.1038/s41389-017-0011-9] [PMID: 29362402]
[36]
Roy, S.; Kumaravel, S.; Sharma, A.; Duran, C.L.; Bayless, K.J.; Chakraborty, S. Hypoxic tumor microenvironment: Implications for cancer therapy. Exp. Biol. Med. (Maywood), 2020, 245(13), 1073-1086.
[http://dx.doi.org/10.1177/1535370220934038] [PMID: 32594767]
[37]
Sullivan, R.; Paré, G.C.; Frederiksen, L.J.; Semenza, G.L.; Graham, C.H. Hypoxia-induced resistance to anticancer drugs is associated with decreased senescence and requires hypoxia-inducible factor-1 activity. Mol. Cancer Ther., 2008, 7(7), 1961-1973.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0198] [PMID: 18645006]
[38]
Saunders, N.A.; Simpson, F.; Thompson, E.W.; Hill, M.M.; Endo-Munoz, L.; Leggatt, G.; Minchin, R.F.; Guminski, A. Role of intratumoural heterogeneity in cancer drug resistance: Molecular and clinical perspectives. EMBO Mol. Med., 2012, 4(8), 675-684.
[http://dx.doi.org/10.1002/emmm.201101131] [PMID: 22733553]
[39]
Ward, R.A.; Fawell, S.; Floc’h, N.; Flemington, V.; McKerrecher, D.; Smith, P.D. Challenges and opportunities in cancer drug resistance. Chem. Rev., 2021, 121(6), 3297-3351.
[http://dx.doi.org/10.1021/acs.chemrev.0c00383] [PMID: 32692162]
[40]
Deepak, K.G.K.; Vempati, R.; Nagaraju, G.P.; Dasari, V.R. S, N.; Rao, D.N.; Malla, R.R. Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol. Res., 2020, 153(104683), 1-13.
[41]
Becker, A.; Thakur, B.K.; Weiss, J.M.; Kim, H.S.; Peinado, H.; Lyden, D. Extracellular vesicles in cancer: Cell-to-cell mediators of metastasis. Cancer Cell, 2016, 30(6), 836-848.
[http://dx.doi.org/10.1016/j.ccell.2016.10.009] [PMID: 27960084]
[42]
Fontana, F.; Carollo, E.; Melling, G.E.; Carter, D.R.F. Extracellular vesicles: Emerging modulators of cancer drug resistance. Cancers (Basel), 2021, 13(4), 749.
[http://dx.doi.org/10.3390/cancers13040749] [PMID: 33670185]
[43]
Namee, N.M.; O’Driscoll, L. Extracellular vesicles and anti-cancer drug resistance. Biochim. Biophys. Acta Rev. Cancer, 2018, 1870(2), 123-136.
[http://dx.doi.org/10.1016/j.bbcan.2018.07.003] [PMID: 30003999]
[44]
Kuczynski, E.A.; Sargent, D.J.; Grothey, A.; Kerbel, R.S. Drug rechallenge and treatment beyond progression--implications for drug resistance. Nat. Rev. Clin. Oncol., 2013, 10(10), 571-587.
[http://dx.doi.org/10.1038/nrclinonc.2013.158] [PMID: 23999218]
[45]
Turner, N.C.; Reis-Filho, J.S. Genetic heterogeneity and cancer drug resistance. Lancet Oncol., 2012, 13(4), e178-e185.
[http://dx.doi.org/10.1016/S1470-2045(11)70335-7] [PMID: 22469128]
[46]
Di Virgilio, F.; Sarti, A.C.; Falzoni, S.; De Marchi, E.; Adinolfi, E. Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat. Rev. Cancer, 2018, 18(10), 601-618.
[http://dx.doi.org/10.1038/s41568-018-0037-0] [PMID: 30006588]
[47]
Kaiser, J. When less is more. Science, 2017, 355(6330), 1144-1146.
[http://dx.doi.org/10.1126/science.355.6330.1144] [PMID: 28302821]
[48]
Junttila, M.R.; de Sauvage, F.J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature, 2013, 501(7467), 346-354.
[http://dx.doi.org/10.1038/nature12626] [PMID: 24048067]
[49]
Hay, N. Reprogramming glucose metabolism in cancer: Can it be exploited for cancer therapy? Nat. Rev. Cancer, 2016, 16(10), 635-649.
[http://dx.doi.org/10.1038/nrc.2016.77] [PMID: 27634447]
[50]
Hayatudin, R.; Fong, Z.; Ming, L.C.; Goh, B.H.; Lee, W.L.; Kifli, N. Overcoming chemoresistance via extracellular vesicle inhibition. Front. Mol. Biosci., 2021, 8, 629874.
[http://dx.doi.org/10.3389/fmolb.2021.629874] [PMID: 33842540]
[51]
Lu, T.; Prakash, J. Nanomedicine strategies to enhance tumor drug penetration in pancreatic cancer. Int. J. Nanomedicine, 2021, 16, 6313-6328.
[http://dx.doi.org/10.2147/IJN.S279192] [PMID: 34552327]
[52]
Liu, J.; Chen, Q.; Feng, L.; Liu, Z. Nanomedicine for tumor microenvironment modulation and cancer treatment enhancement. Nano Today, 2018, 21, 55-73.
[http://dx.doi.org/10.1016/j.nantod.2018.06.008]
[53]
Miao, L.; Huang, L. Exploring the tumor microenvironment with nanoparticles. Cancer Treat. Res., 2015, 166, 193-226.
[http://dx.doi.org/10.1007/978-3-319-16555-4_9] [PMID: 25895870]
[54]
Jain, R.K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol., 2010, 7(11), 653-664.
[http://dx.doi.org/10.1038/nrclinonc.2010.139] [PMID: 20838415]
[55]
Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release, 2010, 148(2), 135-146.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[56]
Fernandes, C.; Suares, D.; Yergeri, M.C. Tumor microenvironment targeted nanotherapy. Front. Pharmacol., 2018, 9(1230), 1230.
[http://dx.doi.org/10.3389/fphar.2018.01230] [PMID: 30429787]
[57]
Ren, H.; Liu, J.; Su, F.; Ge, S.; Yuan, A.; Dai, W.; Wu, J.; Hu, Y. Relighting photosensitizers by synergistic integration of albumin and perfluorocarbon for enhanced photodynamic therapy. ACS Appl. Mater. Interfaces, 2017, 9(4), 3463-3473.
[http://dx.doi.org/10.1021/acsami.6b14885] [PMID: 28067039]
[58]
Majidinia, M.; Mirza-Aghazadeh-Attari, M.; Rahimi, M.; Mihanfar, A.; Karimian, A.; Safa, A.; Yousefi, B. Overcoming multidrug resistance in cancer: Recent progress in nanotechnology and new horizons. IUBMB Life, 2020, 72(5), 855-871.
[http://dx.doi.org/10.1002/iub.2215] [PMID: 31913572]
[59]
Grinberg, S.; Linder, C.; Heldman, E. Progress in lipid-based nanoparticles for cancer therapy. Crit. Rev. Oncog., 2014, 19(3-4), 247-260.
[http://dx.doi.org/10.1615/CritRevOncog.2014011815] [PMID: 25271433]
[60]
Dadwal, A.; Linder, C.; Kumar Narang, R. Nanoparticles as carriers for drug delivery in cancer. Artif. Cells Nanomed. Biotechnol., 2018, 46(Suppl. 2), 295-305.
[http://dx.doi.org/10.1080/21691401.2018.1457039]
[61]
Ling, G.; Zhang, P.; Zhang, W.; Sun, J.; Meng, X.; Qin, Y.; Deng, Y.; He, Z. Development of novel self-assembled DS-PLGA hybrid nanoparticles for improving oral bioavailability of vincristine sulfate by P-gp inhibition. J. Control. Release, 2010, 148(2), 241-248.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.010] [PMID: 20727928]
[62]
Guo, L.; Zhang, H.; Wang, F.; Liu, P.; Wang, Y.; Xia, G.; Liu, R.; Li, X.; Yin, H.; Jiang, H.; Chen, B. Targeted multidrug-resistance reversal in tumor based on PEG-PLL-PLGA polymer nano drug delivery system. Int. J. Nanomedicine, 2015, 10, 4535-4547.
[PMID: 26213467]
[63]
Lou, S.; Zhao, Z.; Dezort, M.; Lohneis, T.; Zhang, C. Multifunctional nanosystem for targeted and controlled delivery of multiple chemotherapeutic agents for the treatment of drug-resistant breast cancer. ACS Omega, 2018, 3(8), 9210-9219.
[http://dx.doi.org/10.1021/acsomega.8b00949] [PMID: 30197996]
[64]
Bentires-Alj, M.; Barbu, V.; Fillet, M.; Chariot, A.; Relic, B.; Jacobs, N.; Gielen, J.; Merville, M.P.; Bours, V. NF-kappaB transcription factor induces drug resistance through MDR1 expression in cancer cells. Oncogene, 2003, 22(1), 90-97.
[http://dx.doi.org/10.1038/sj.onc.1206056] [PMID: 12527911]
[65]
Godwin, P.; Baird, A.M.; Heavey, S.; Barr, M.P.; O’Byrne, K.J.; Gately, K. Targeting nuclear factor-kappa B to overcome resistance to chemotherapy. Front. Oncol., 2013, 3, 120.
[http://dx.doi.org/10.3389/fonc.2013.00120] [PMID: 23720710]
[66]
Misra, R.; Sahoo, S.K. Coformulation of doxorubicin and curcumin in poly(D,L-lactide-co-glycolide) nanoparticles suppresses the development of multidrug resistance in K562 cells. Mol. Pharm., 2011, 8(3), 852-866.
[http://dx.doi.org/10.1021/mp100455h] [PMID: 21480667]
[67]
Zhao, M.D.; Li, J.Q.; Chen, F.Y.; Dong, W.; Wen, L.J.; Fei, W.D.; Zhang, X.; Yang, P.L.; Zhang, X.M.; Zheng, C.H. Co-delivery of curcumin and paclitaxel by “core-shell” targeting amphiphilic copolymer to reverse resistance in the treatment of ovarian cancer. Int. J. Nanomedicine, 2019, 14, 9453-9467.
[http://dx.doi.org/10.2147/IJN.S224579] [PMID: 31819443]
[68]
Jiang, M.; Chu, Y.; Yang, T.; Li, W.; Zhang, Z.; Sun, H.; Liang, H.; Yang, F. Developing a novel Indium(III) agent based on liposomes to overcome cisplatin-induced resistance in breast cancer by multitargeting the tumor microenvironment components. J. Med. Chem., 2021, 64(19), 14587-14602.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01068] [PMID: 34609868]
[69]
Zhai, L.; Luo, C.; Gao, H.; Du, S.; Shi, J.; Wang, F. A dual pH-responsive DOX-encapsulated liposome combined with glucose administration enhanced therapeutic efficacy of chemotherapy for cancer. Int. J. Nanomedicine, 2021, 16, 3185-3199.
[http://dx.doi.org/10.2147/IJN.S303874] [PMID: 34007173]
[70]
Joshi, U.; Filipczak, N.; Khan, M.M.; Attia, S.A.; Torchilin, V. Hypoxia-sensitive micellar nanoparticles for co-delivery of siRNA and chemotherapeutics to overcome multi-drug resistance in tumor cells. Int. J. Pharm., 2020, 590(119915), 1-15.
[http://dx.doi.org/10.17760/D20398325]
[71]
Lo, Y.L.; Chang, C.H.; Wang, C.S.; Yang, M.H.; Lin, A.M.; Hong, C.J.; Tseng, W.H. PEG-coated nanoparticles detachable in acidic microenvironments for the tumor-directed delivery of chemo- and gene therapies for head and neck cancer. Theranostics, 2020, 10(15), 6695-6714.
[http://dx.doi.org/10.7150/thno.45164] [PMID: 32550898]
[72]
Nishiyama, N.; Matsumura, Y.; Kataoka, K. Development of polymeric micelles for targeting intractable cancers. Cancer Sci., 2016, 107(7), 867-874.
[http://dx.doi.org/10.1111/cas.12960] [PMID: 27116635]
[73]
Keskin, D.; Tezcaner, A. Micelles as delivery system for cancer treatment. Curr. Pharm. Des., 2017, 23(35), 5230-5241.
[PMID: 28552065]
[74]
Braunová, A.; Kostka, L.; Sivák, L.; Cuchalová, L.; Hvězdová, Z.; Laga, R.; Filippov, S.; Černoch, P.; Pechar, M.; Janoušková, O.; Šírová, M.; Etrych, T. Tumor-targeted micelle-forming block copolymers for overcoming of multidrug resistance. J. Control. Release, 2017, 245, 41-51.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.020] [PMID: 27871991]
[75]
Nguyen, T.T.; Duong, V.A.; Maeng, H.J. Pharmaceutical formulations with P-glycoprotein inhibitory effect as promising approaches for enhancing oral drug absorption and bioavailability. Pharmaceutics, 2021, 13(7), 1103.
[http://dx.doi.org/10.3390/pharmaceutics13071103] [PMID: 34371794]
[76]
Gote, V.; Sharma, A.D.; Pal, D. Hyaluronic acid-targeted stimuli-sensitive nanomicelles co-encapsulating paclitaxel and ritonavir to overcome multi-drug resistance in metastatic breast cancer and triple-negative breast cancer cells. Int. J. Mol. Sci., 2021, 22(3), 1257.
[http://dx.doi.org/10.3390/ijms22031257] [PMID: 33513992]
[77]
Kesharwani, S.S.; Kaur, S.; Tummala, H.; Sangamwar, A.T. Overcoming multiple drug resistance in cancer using polymeric micelles. Expert Opin. Drug Deliv., 2018, 15(11), 1127-1142.
[http://dx.doi.org/10.1080/17425247.2018.1537261] [PMID: 30324813]
[78]
Zong, L.; Wang, H.; Hou, X.; Fu, L.; Wang, P.; Xu, H.; Yu, W.; Dai, Y.; Qiao, Y.; Wang, X.; Yuan, Q.; Pang, X.; Han, G.; Pu, X. A novel GSH-triggered polymeric nanomicelles for reversing MDR and enhancing antitumor efficiency of hydroxycamptothecin. Int. J. Pharm., 2021, 600(120528), 1-12.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120528]
[79]
Augustine, R.; Kim, D.K.; Kalva, N.; Eom, K.H.; Kim, J.H.; Kim, I. Multi-stimuli-responsive nanomicelles fabricated using synthetic polymer polylysine conjugates for tumor microenvironment dependent drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(26), 5745-5755.
[http://dx.doi.org/10.1039/D0TB00721H] [PMID: 32519736]
[80]
Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18), 3995-4021.
[http://dx.doi.org/10.1016/j.biomaterials.2004.10.012] [PMID: 15626447]
[81]
Hajikarimi, Z.; Khoei, S.; Khoee, S.; Mahdavi, S.R. Evaluation of the cytotoxic effects of PLGA coated iron oxide nanoparticles as a carrier of 5- fluorouracil and mega-voltage X-ray radiation in DU145 prostate cancer cell line. IEEE Trans. Nanobiosci., 2014, 13(4), 403-408.
[http://dx.doi.org/10.1109/TNB.2014.2328868] [PMID: 25051558]
[82]
Dilnawaz, F.; Singh, A.; Mohanty, C.; Sahoo, S.K. Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials, 2010, 31(13), 3694-3706.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.057] [PMID: 20144478]
[83]
Fathi Karkan, S.; Mohammadhosseini, M.; Panahi, Y.; Milani, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, E.; Hosseini, A.; Davaran, S. Magnetic nanoparticles in cancer diagnosis and treatment: A review. Artif. Cells Nanomed. Biotechnol., 2017, 45(1), 1-5.
[http://dx.doi.org/10.3109/21691401.2016.1153483] [PMID: 27015806]
[84]
Dinali, R.; Ebrahiminezhad, A.; Manley-Harris, M.; Ghasemi, Y.; Berenjian, A. Iron oxide nanoparticles in modern microbiology and biotechnology. Crit. Rev. Microbiol., 2017, 43(4), 493-507.
[http://dx.doi.org/10.1080/1040841X.2016.1267708] [PMID: 28068855]
[85]
Tousi, M.S.; Sepehri, H.; Khoee, S.; Farimani, M.M.; Delphi, L.; Mansourizadeh, F. Evaluation of apoptotic effects of mPEG-b-PLGA coated iron oxide nanoparticles as a eupatorin carrier on DU-145 and LNCaP human prostate cancer cell lines. J. Pharm. Anal., 2021, 11(1), 108-121.
[http://dx.doi.org/10.1016/j.jpha.2020.04.002] [PMID: 33717617]
[86]
Montazerabadi, A.; Beik, J.; Irajirad, R.; Attaran, N.; Khaledi, S.; Ghaznavi, H.; Shakeri-Zadeh, A. Folate-modified and curcumin-loaded dendritic magnetite nanocarriers for the targeted thermo-chemotherapy of cancer cells. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 330-340.
[http://dx.doi.org/10.1080/21691401.2018.1557670] [PMID: 30688084]
[87]
Wang, F.; Wang, Y.C.; Dou, S.; Xiong, M.H.; Sun, T.M.; Wang, J. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano, 2011, 5(5), 3679-3692.
[http://dx.doi.org/10.1021/nn200007z] [PMID: 21462992]
[88]
Truffi, M.; Colombo, M.; Sorrentino, L.; Pandolfi, L.; Mazzucchelli, S.; Pappalardo, F.; Pacini, C.; Allevi, R.; Bonizzi, A.; Corsi, F.; Prosperi, D. Multivalent exposure of trastuzumab on iron oxide nanoparticles improves antitumor potential and reduces resistance in HER2-positive breast cancer cells. Sci. Rep., 2018, 8(1), 6563.
[http://dx.doi.org/10.1038/s41598-018-24968-x] [PMID: 29700387]
[89]
Miller-Kleinhenz, J.; Guo, X.; Qian, W.; Zhou, H.; Bozeman, E.N.; Zhu, L.; Ji, X.; Wang, Y.A.; Styblo, T.; O’Regan, R.; Mao, H.; Yang, L. Dual-targeting Wnt and uPA receptors using peptide conjugated ultra-small nanoparticle drug carriers inhibited cancer stem-cell phenotype in chemo-resistant breast cancer. Biomaterials, 2018, 152, 47-62.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.035] [PMID: 29107218]
[90]
Rastegar, R.; Akbari Javar, H.; Khoobi, M.; Dehghan Kelishadi, P.; Hossein Yousefi, G.; Doosti, M.; Hossien Ghahremani, M.; Shariftabrizi, A.; Imanparast, F.; Gholibeglu, E.; Gholami, M. Evaluation of a novel biocompatible magnetic nanomedicine based on beta-cyclodextrin, loaded doxorubicin-curcumin for overcoming chemoresistance in breast cancer. Artif. Cells Nanomed. Biotechnol., 2018, 46(Suppl. 2), 207-216.
[http://dx.doi.org/10.1080/21691401.2018.1453829] [PMID: 29688063]
[91]
Daglioglu, C. Enhancing tumor cell response to multidrug resistance with ph-sensitive quercetin and doxorubicin conjugated multifunctional nanoparticles. Colloids Surf. B Biointerfaces, 2017, 156, 175-185.
[http://dx.doi.org/10.1016/j.colsurfb.2017.05.012] [PMID: 28528134]
[92]
Wang, Y.; Zhao, R.; Wang, S.; Liu, Z.; Tang, R. In vivo dual-targeted chemotherapy of drug resistant cancer by rationally designed nanocarrier. Biomaterials, 2016, 75, 71-81.
[http://dx.doi.org/10.1016/j.biomaterials.2015.09.030] [PMID: 26491996]
[93]
Croissant, J.G.; Fatieiev, Y.; Almalik, A.; Khashab, N.M. Mesoporous silica and organosilica nanoparticles: Physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv. Healthc. Mater., 2018, 7(4), 831.
[http://dx.doi.org/10.1002/adhm.201700831] [PMID: 29193848]
[94]
Dilnawaz, F.; Sahoo, S.K. Augmented anticancer efficacy by si-rna complexed drug-loaded mesoporous silica nanoparticles in lung cancer therapy. ACS Appl. Nano Mater., 2018, 1(2), 730-740.
[http://dx.doi.org/10.1021/acsanm.7b00196]
[95]
Dilnawaz, F. Multifunctional mesoporous silica nanoparticles for cancer therapy and imaging. Curr. Med. Chem., 2019, 26(31), 5745-5763.
[http://dx.doi.org/10.2174/0929867325666180501101044] [PMID: 29714137]
[96]
Farjadian, F.; Ghasemi, S.; Heidari, R.; Mohammadi-Samani, S. In vitro and in vivo assessment of EDTA-modified silica nano-spheres with supreme capacity of iron capture as a novel antidote agent. Nanomedicine, 2017, 13(2), 745-753.
[http://dx.doi.org/10.1016/j.nano.2016.10.012] [PMID: 27793790]
[97]
Li, T.; Shi, S.; Goel, S.; Shen, X.; Xie, X.; Chen, Z.; Zhang, H.; Li, S.; Qin, X.; Yang, H.; Wu, C.; Liu, Y. Recent advancements in mesoporous silica nanoparticles towards therapeutic applications for cancer. Acta Biomater., 2019, 89, 1-13.
[http://dx.doi.org/10.1016/j.actbio.2019.02.031] [PMID: 30797106]
[98]
Wang, Y.; Huang, H.Y.; Yang, L.; Zhang, Z.; Ji, H. Cetuximab-modified mesoporous silica nano-medicine specifically targets EGFR-mutant lung cancer and overcomes drug resistance. Sci. Rep., 2016, 6, 25468.
[http://dx.doi.org/10.1038/srep25468] [PMID: 27151505]
[99]
Shen, J.; He, Q.; Gao, Y.; Shi, J.; Li, Y. Mesoporous silica nanoparticles loading doxorubicin reverse multidrug resistance: Performance and mechanism. Nanoscale, 2011, 3(10), 4314-4322.
[http://dx.doi.org/10.1039/c1nr10580a] [PMID: 21892492]
[100]
Huang, I.P.; Sun, S.P.; Cheng, S.H.; Lee, C.H.; Wu, C.Y.; Yang, C.S.; Lo, L.W.; Lai, Y.K. Enhanced chemotherapy of cancer using pH-sensitive mesoporous silica nanoparticles to antagonize P-glycoprotein-mediated drug resistance. Mol. Cancer Ther., 2011, 10(5), 761-769.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0884] [PMID: 21411714]
[101]
Vivo-Llorca, G.; Candela-Noguera, V.; Alfonso, M.; García-Fernández, A.; Orzáez, M.; Sancenón, F.; Martínez-Máñez, R. MUC1 aptamer-capped mesoporous silica nanoparticles for navitoclax resistance overcoming in triple-negative breast cancer. Chemistry, 2020, 26(69), 16318-16327.
[http://dx.doi.org/10.1002/chem.202001579] [PMID: 32735063]
[102]
Liu, M.; Fu, M.; Yang, X.; Jia, G.; Shi, X.; Ji, J.; Liu, X.; Zhai, G. Paclitaxel and quercetin co-loaded functional mesoporous silica nanoparticles overcoming multidrug resistance in breast cancer. Colloids Surf. B Biointerfaces, 2020, 196, 111284.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111284] [PMID: 32771817]
[103]
Ali, O.M.; Bekhit, A.A.; Khattab, S.N.; Helmy, M.W.; Abdel-Ghany, Y.S.; Teleb, M.; Elzoghby, A.O. Synthesis of lactoferrin mesoporous silica nanoparticles for pemetrexed/ellagic acid synergistic breast cancer therapy. Colloids Surf. B Biointerfaces, 2020, 188, 110824.
[http://dx.doi.org/10.1016/j.colsurfb.2020.110824] [PMID: 32023511]
[104]
Han, N.; Zhao, Q.; Wan, L.; Wang, Y.; Gao, Y.; Wang, P.; Wang, Z.; Zhang, J.; Jiang, T.; Wang, S. Hybrid lipid-capped mesoporous silica for stimuli-responsive drug release and overcoming multidrug resistance. ACS Appl. Mater. Interfaces, 2015, 7(5), 3342-3351.
[http://dx.doi.org/10.1021/am5082793] [PMID: 25584634]
[105]
Sun, M.; Gu, P.; Yang, Y.; Yu, L.; Jiang, Z.; Li, J.; Le, Y.; Chen, Y.; Ba, Q.; Wang, H. Mesoporous silica nanoparticles inflame tumors to overcome anti-PD-1 resistance through TLR4-NFκB axis. J. Immunother. Cancer, 2021, 9(6), 1-14.
[http://dx.doi.org/10.1136/jitc-2021-002508] [PMID: 34135106]
[106]
Millard, M.; Yakavets, I.; Zorin, V.; Kulmukhamedova, A.; Marchal, S.; Bezdetnaya, L. Drug delivery to solid tumors: The predictive value of the multicellular tumor spheroid model for nanomedicine screening. Int. J. Nanomedicine, 2017, 12, 7993-8007.
[http://dx.doi.org/10.2147/IJN.S146927] [PMID: 29184400]
[107]
Pedrosa, P.; Corvo, M.L.; Ferreira-Silva, M.; Martins, P.; Carvalheiro, M.C.; Costa, P.M.; Martins, C.; Martins, L.M.D.R.S.; Baptista, P.V.; Fernandes, A.R. Targeting cancer resistance via multifunctional gold nanoparticles. Int. J. Mol. Sci., 2019, 20(21), 5510.
[http://dx.doi.org/10.3390/ijms20215510] [PMID: 31694227]
[108]
Rathinaraj, P.; Muthusamy, G.; Prasad, N.R.; Gunaseelan, S.; Kim, B.; Zhu, S. Folate-gold-bilirubin nanoconjugate induces apoptotic death in multidrug-resistant oral carcinoma cells. Eur. J. Drug Metab. Pharmacokinet., 2020, 45(2), 285-296.
[http://dx.doi.org/10.1007/s13318-019-00600-9] [PMID: 31858458]
[109]
Deng, R.; Ji, B.; Yu, H.; Bao, W.; Yang, Z.; Yu, Y.; Cui, Y.; Du, Y.; Song, M.; Liu, S.; Meguellati, K.; Yan, F. Multifunctional gold nanoparticles overcome MicroRNA regulatory network mediated-multidrug resistant leukemia. Sci. Rep., 2019, 9(1), 5348.
[http://dx.doi.org/10.1038/s41598-019-41866-y] [PMID: 30926883]
[110]
Kumon, K.; Kubota, T.; Kuroda, S. Abstract 3617: Trastuzumab-conjugated gold nanoparticles as novel HER2-targeted therapeutics against trastuzumab-resistant gastric cancer. Cancer Res., 2019, 79, 3617.
[111]
Huai, Y.; Zhang, Y.; Xiong, X.; Das, S.; Bhattacharya, R.; Mukherjee, P. Gold Nanoparticles sensitize pancreatic cancer cells to gemcitabine. Cell Stress, 2019, 3(8), 267-279.
[http://dx.doi.org/10.15698/cst2019.08.195] [PMID: 31440741]
[112]
Talamantez-Lyburn, S.; Brown, P.; Hondrogiannis, N.; Ratliff, J.; Wicks, S.L.; Nana, N.; Zheng, Z.; Rosenzweig, Z.; Hondrogiannis, E.; Devadas, M.S.; Ehrlich, E.S. Gold nanoparticles loaded with cullin-5 DNA increase sensitivity to 17-AAG in cullin-5 deficient breast cancer cells. Int. J. Pharm., 2019, 564, 281-292.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.022] [PMID: 30999048]
[113]
Gopisetty, M.K.; Kovács, D.; Igaz, N.; Rónavári, A.; Bélteky, P.; Rázga, Z.; Venglovecz, V.; Csoboz, B.; Boros, I.M.; Kónya, Z.; Kiricsi, M. Endoplasmic reticulum stress: Major player in size-dependent inhibition of P-glycoprotein by silver nanoparticles in multidrug-resistant breast cancer cells. J. Nanobiotechnology, 2019, 17(1), 9.
[http://dx.doi.org/10.1186/s12951-019-0448-4] [PMID: 30670028]
[114]
Ramezani, T.; Nabiuni, M.; Baharara, J.; Parivar, K.; Namvar, F. Sensitization of resistance ovarian cancer cells to cisplatin by biogenic synthesized silver nanoparticles through p53 activation. Iran. J. Pharm. Res., 2019, 18(1), 222-231.
[PMID: 31089357]
[115]
Wang, F.; Huang, Q.; Wang, Y.; Shi, L.; Shen, Y.; Guo, S. NIR-light and GSH activated cytosolic p65-shRNA delivery for precise treatment of metastatic cancer. J. Control. Release, 2018, 288, 126-135.
[http://dx.doi.org/10.1016/j.jconrel.2018.09.002] [PMID: 30194946]
[116]
Maiti, D.; Tong, X.; Mou, X.; Yang, K. Carbon-based nanomaterials for biomedical applications: A recent study. Front. Pharmacol., 2019, 9(1401), 1401.
[http://dx.doi.org/10.3389/fphar.2018.01401] [PMID: 30914959]
[117]
Li, H.; Zhang, N.; Hao, Y.; Wang, Y.; Jia, S.; Zhang, H.; Zhang, Y.; Zhang, Z. Formulation of curcumin delivery with functionalized single-walled carbon nanotubes: Characteristics and anticancer effects in vitro. Drug Deliv., 2014, 21(5), 379-387.
[http://dx.doi.org/10.3109/10717544.2013.848246] [PMID: 24160816]
[118]
Kirkwood, J.M.; Butterfield, L.H.; Tarhini, A.A.; Zarour, H.; Kalinski, P.; Ferrone, S. Immunotherapy of cancer in 2012. CA Cancer J. Clin., 2012, 62(5), 309-335.
[http://dx.doi.org/10.3322/caac.20132] [PMID: 22576456]
[119]
Murata, K.; Tsukahara, T.; Torigoe, T. Cancer immunotherapy and immunological memory. Nihon Rinsho Meneki Gakkai Kaishi, 2016, 39(1), 18-22.
[http://dx.doi.org/10.2177/jsci.39.18] [PMID: 27181230]
[120]
Shi, Y.; Lammers, T. Combining nanomedicine and immunotherapy. Acc. Chem. Res., 2019, 52(6), 1543-1554.
[http://dx.doi.org/10.1021/acs.accounts.9b00148] [PMID: 31120725]
[121]
Gao, J.; Wang, W.Q.; Pei, Q.; Lord, M.S.; Yu, H.J. Engineering nanomedicines through boosting immunogenic cell death for improved cancer immunotherapy. Acta Pharmacol. Sin., 2020, 41(7), 986-994.
[http://dx.doi.org/10.1038/s41401-020-0400-z] [PMID: 32317755]
[122]
Saeed, M.; Gao, J.; Shi, Y.; Lammers, T.; Yu, H. Engineering nanoparticles to reprogram the tumor immune microenvironment for improved cancer immunotherapy. Theranostics, 2019, 9(26), 7981-8000.
[http://dx.doi.org/10.7150/thno.37568] [PMID: 31754376]
[123]
Yu, H.J.; De Geest, B.G. Nanomedicine and cancer immunotherapy. Acta Pharmacol. Sin., 2020, 41(7), 879-880.
[http://dx.doi.org/10.1038/s41401-020-0426-2] [PMID: 32467567]
[124]
Zhao, X.; Yang, K.; Zhao, R.; Ji, T.; Wang, X.; Yang, X.; Zhang, Y.; Cheng, K.; Liu, S.; Hao, J.; Ren, H.; Leong, K.W.; Nie, G. Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy. Biomaterials, 2016, 102, 187-197.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.032] [PMID: 27343466]
[125]
Boone, C.E.; Wang, L.; Gautam, A.; Newton, I.G.; Steinmetz, N.F. Combining nanomedicine and immune checkpoint therapy for cancer immunotherapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2022, 14(1), e1739.
[http://dx.doi.org/10.1002/wnan.1739] [PMID: 34296535]
[126]
Hargadon, K.M.; Johnson, C.E.; Williams, C.J. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int. Immunopharmacol., 2018, 62, 29-39.
[http://dx.doi.org/10.1016/j.intimp.2018.06.001] [PMID: 29990692]
[127]
Jiang, Y.; Li, Y.; Zhu, B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis., 2015, 6, e1792.
[http://dx.doi.org/10.1038/cddis.2015.162] [PMID: 26086965]
[128]
Alsaab, H.O.; Sau, S.; Alzhrani, R.; Tatiparti, K.; Bhise, K.; Kashaw, S.K.; Iyer, A.K. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: Mechanism, combinations, and clinical outcome. Front. Pharmacol., 2017, 8, 561.
[http://dx.doi.org/10.3389/fphar.2017.00561] [PMID: 28878676]
[129]
Lee, C.K.; Atibalentja, D.F.; Yao, L.E.; Park, J.; Kuruvilla, S.; Felsher, D.W. Anti-PD-L1 F(ab) Conjugated PEG-PLGA nanoparticle enhances immune checkpoint therapy. Nanotheranostics, 2022, 6(3), 243-255.
[http://dx.doi.org/10.7150/ntno.65544] [PMID: 35145835]
[130]
Yang, Q.; Shi, G.; Chen, X.; Lin, Y.; Cheng, L.; Jiang, Q.; Yan, X.; Jiang, M.; Li, Y.; Zhang, H.; Wang, H.; Wang, Y.; Wang, Q.; Zhang, Y.; Liu, Y.; Su, X.; Dai, L.; Tang, M.; Li, J.; Zhang, L.; Qian, Z.; Yu, D.; Deng, H. Nanomicelle protects the immune activation effects of Paclitaxel and sensitizes tumors to anti-PD-1 Immunotherapy. Theranostics, 2020, 10(18), 8382-8399.
[http://dx.doi.org/10.7150/thno.45391] [PMID: 32724476]
[131]
Mi, Y.; Smith, C.C.; Yang, F.; Qi, Y.; Roche, K.C.; Serody, J.S.; Vincent, B.G.; Wang, A.Z. A dual immunotherapy nanoparticle improves T-Cell activation and cancer immunotherapy. Adv. Mater., 2018, 30(25), e1706098.
[http://dx.doi.org/10.1002/adma.201706098] [PMID: 29691900]
[132]
Schmid, D.; Park, C.G.; Hartl, C.A.; Subedi, N.; Cartwright, A.N.; Puerto, R.B.; Zheng, Y.; Maiarana, J.; Freeman, G.J.; Wucherpfennig, K.W.; Irvine, D.J.; Goldberg, M.S. T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat. Commun., 2017, 8(1), 1747.
[http://dx.doi.org/10.1038/s41467-017-01830-8] [PMID: 29170511]
[133]
Ou, W.; Thapa, R.K.; Jiang, L.; Soe, Z.C.; Gautam, M.; Chang, J.H.; Jeong, J.H.; Ku, S.K.; Choi, H.G.; Yong, C.S.; Kim, J.O. Regulatory T cell-targeted hybrid nanoparticles combined with immuno-checkpoint blockage for cancer immunotherapy. J. Control. Release, 2018, 281, 84-96.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.018] [PMID: 29777794]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy