Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Medicinal Prospects of Targeting Tyrosinase: A Feature Review

Author(s): Yuanyuan Wang, Baichen Xiong, Shuaishuai Xing, Ying Chen, Qinghong Liao, Jun Mo, Yao Chen, Qi Li* and Haopeng Sun*

Volume 30, Issue 23, 2023

Published on: 28 October, 2022

Page: [2638 - 2671] Pages: 34

DOI: 10.2174/0929867329666220915123714

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Tyrosinase is a bifunctional polyphenol oxidase (PPO), catalyzing two oxidative reactions: monophenols to o-quinones (monophenolase activity) and o-diphenols to oquinones (diphenolase activity). As tyrosinase is the rate-limiting enzyme for the melanogenesis process, it is an attractive target for melanogenesis inhibition. Aiming at skin whitening, anticancer, Parkinson’s disease (PD) treatment, antibacterial, fruit and vegetable preservation and other anti-pigmentation effect, medicinal chemists have exploited diverse tyrosinase inhibitors through various approaches. In addition to discovering inhibitors with novel scaffolds, good activity and high safety, researchers also focused on developing strategies for synergistic effects of multiple inhibitors and simultaneously regulating multiple targets to treat cancer or neurodegenerative diseases. This review focused on multiple natural and synthetic tyrosinase inhibitors, which could contribute to preventing fruit and vegetable browning, skin whitening, antibacterial, anticancer, Parkinson's Disease, etc.

Keywords: Tyrosinase inhibitors, fruit and vegetable preservation, skin whitening, anticancer, antibacterial, PD treatment.

[1]
Siegbahn, P.E.M. The catalytic cycle of tyrosinase: Peroxide attack on the phenolate ring followed by O-O bond cleavage. J. Biol. Inorg. Chem., 2003, 8(5), 567-576.
[http://dx.doi.org/10.1007/s00775-003-0449-4] [PMID: 12634912]
[2]
Lai, X.; Soler-Lopez, M.; Wichers, H.J.; Dijkstra, B.W. Large-scale recombinant expression and purification of human tyrosinase suitable for structural studies. PLoS One, 2016, 11(8), e0161697.
[http://dx.doi.org/10.1371/journal.pone.0161697] [PMID: 27551823]
[3]
Yuan, Y.; Jin, W.; Nazir, Y.; Fercher, C.; Blaskovich, M.A.T.; Cooper, M.A.; Barnard, R.T.; Ziora, Z.M. Tyrosinase inhibitors as potential antibacterial agents. Eur. J. Med. Chem., 2020, 187, 111892.
[http://dx.doi.org/10.1016/j.ejmech.2019.111892] [PMID: 31810785]
[4]
van Gelder, C.W.G.; Flurkey, W.H.; Wichers, H.J. Sequence and structural features of plant and fungal tyrosinases. Phytochemistry, 1997, 45(7), 1309-1323.
[http://dx.doi.org/10.1016/S0031-9422(97)00186-6] [PMID: 9237394]
[5]
Strothkamp, K.G.; Jolley, R.L.; Mason, H.S. Quaternary structure of mushroom tyrosinase. Biochem. Biophys. Res. Commun., 1976, 70(2), 519-524.
[http://dx.doi.org/10.1016/0006-291X(76)91077-9] [PMID: 820338]
[6]
Ismaya, W.T.; Rozeboom, H.J.; Weijn, A.; Mes, J.J.; Fusetti, F.; Wichers, H.J.; Dijkstra, B.W. Crystal structure of Agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone. Biochemistry, 2011, 50(24), 5477-5486.
[http://dx.doi.org/10.1021/bi200395t] [PMID: 21598903]
[7]
Seo, S.Y.; Sharma, V.K.; Sharma, N. Mushroom tyrosinase: Recent prospects. J. Agric. Food Chem., 2003, 51(10), 2837-2853.
[http://dx.doi.org/10.1021/jf020826f] [PMID: 12720364]
[8]
Lai, X.; Wichers, H.J.; Soler-Lopez, M.; Dijkstra, B.W. Structure and function of human tyrosinase and tyrosinase-related proteins. Chemistry, 2018, 24(1), 47-55.
[http://dx.doi.org/10.1002/chem.201704410] [PMID: 29052256]
[9]
Chang, T.S. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci., 2009, 10(6), 2440-2475.
[http://dx.doi.org/10.3390/ijms10062440] [PMID: 19582213]
[10]
Jackman, M.P.; Hajnal, A.; Lerch, K. Albino mutants of Streptomyces glaucescens tyrosinase. Biochem. J., 1991, 274(3), 707-713.
[http://dx.doi.org/10.1042/bj2740707] [PMID: 1901488]
[11]
Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 403-425.
[http://dx.doi.org/10.1080/14756366.2016.1256882] [PMID: 28097901]
[12]
Burke, R.; Cairney, J. Laccases and other polyphenol oxidases in ecto- and ericoid mycorrhizal fungi. Mycorrhiza, 2002, 12(3), 105-116.
[http://dx.doi.org/10.1007/s00572-002-0162-0] [PMID: 12072980]
[13]
Kampatsikas, I.; Rompel, A. Similar but still different: Which amino acid residues are responsible for varying activities in type‐III copper enzymes? ChemBioChem, 2021, 22(7), 1161-1175.
[http://dx.doi.org/10.1002/cbic.202000647] [PMID: 33108057]
[14]
Toledo, L.; Aguirre, C. Enzymatic browning in avocado (Persea americana) revisited: History, advances, and future perspectives. Crit. Rev. Food Sci. Nutr., 2017, 57(18), 3860-3872.
[http://dx.doi.org/10.1080/10408398.2016.1175416] [PMID: 27172067]
[15]
Kampatsikas, I.; Pretzler, M.; Rompel, A. Identification of amino acid residues responsible for C−H activation in type‐III copper enzymes by generating tyrosinase activity in a catechol oxidase. Angew. Chem. Int. Ed., 2020, 59(47), 20940-20945.
[http://dx.doi.org/10.1002/anie.202008859] [PMID: 32701181]
[16]
Pretzler, M.; Rompel, A. What causes the different functionality in type-III-copper enzymes? A state of the art perspective. Inorg. Chim. Acta, 2018, 481, 25-31.
[http://dx.doi.org/10.1016/j.ica.2017.04.041]
[17]
Pillaiyar, T.; Manickam, M.; Jung, S.H. Inhibitors of melanogenesis: A patent review (2009 – 2014). Expert Opin. Ther. Pat., 2015, 25(7), 775-788.
[http://dx.doi.org/10.1517/13543776.2015.1039985] [PMID: 25939410]
[18]
Schiaffino, M.V. Signaling pathways in melanosome biogenesis and pathology. Int. J. Biochem. Cell Biol., 2010, 42(7), 1094-1104.
[http://dx.doi.org/10.1016/j.biocel.2010.03.023] [PMID: 20381640]
[19]
Slominski, A.; Tobin, D.J.; Shibahara, S.; Wortsman, J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev., 2004, 84(4), 1155-1228.
[http://dx.doi.org/10.1152/physrev.00044.2003] [PMID: 15383650]
[20]
Li, H.; Cao, W.; Wei, L-F.; Xia, J-Q.; Gu, Y.; Gu, L-M.; Pan, C-Y.; Liu, Y-Q.; Tian, Y-Z.; Lu, M. Arbutin alleviates diabetic symptoms by attenuating oxidative stress in a mouse model of type 1 diabetes. Int. J. Diabetes Dev. Ctries., 2021, 41(4), 586-592.
[http://dx.doi.org/10.1007/s13410-021-00920-0]
[21]
Tsatmali, M.; Ancans, J.; Thody, A.J. Melanocyte function and its control by melanocortin peptides. J. Histochem. Cytochem., 2002, 50(2), 125-133.
[http://dx.doi.org/10.1177/002215540205000201] [PMID: 11799132]
[22]
Costin, G.E.; Hearing, V.J. Human skin pigmentation: Melanocytes modulate skin color in response to stress. FASEB J., 2007, 21(4), 976-994.
[http://dx.doi.org/10.1096/fj.06-6649rev] [PMID: 17242160]
[23]
Ma, J.Y.; Kim, A. Anti-melanogenic activity of the novel herbal medicine, MA128, through inhibition of tyrosinase activity mediated by the p38 mitogen-activated protein kinases and protein kinase signaling pathway in B16F10 cells. Pharmacogn. Mag., 2014, 10(39)(Suppl. 3), 463.
[http://dx.doi.org/10.4103/0973-1296.139774] [PMID: 25298661]
[24]
Ahn, S.J.; Koketsu, M.; Ishihara, H.; Lee, S.M.; Ha, S.K.; Lee, K.H.; Kang, T.H.; Kima, S.Y. Regulation of melanin synthesis by selenium-containing carbohydrates. Chem. Pharm. Bull. (Tokyo), 2006, 54(3), 281-286.
[http://dx.doi.org/10.1248/cpb.54.281] [PMID: 16508177]
[25]
Ünver, N.; Freyschmidt-Paul, P.; Hörster, S.; Wenck, H.; Stäb, F.; Blatt, T.; Elsässer, H-P. Alterations in the epidermal-dermal melanin axis and factor XIIIa melanophages in senile lentigo and ageing skin. Br. J. Dermatol., 2006, 155(1), 119-128.
[http://dx.doi.org/10.1111/j.1365-2133.2006.07210.x] [PMID: 16792763]
[26]
Chompoo, J.; Upadhyay, A.; Fukuta, M.; Tawata, S. Effect of Alpinia zerumbet components on antioxidant and skin diseases-related enzymes. BMC Complement. Altern. Med., 2012, 12(1), 106.
[http://dx.doi.org/10.1186/1472-6882-12-106] [PMID: 22827920]
[27]
Bose, A.; Petsko, G.A.; Eliezer, D. Parkinson’s disease and melanoma: Co-occurrence and mechanisms. J. Parkinsons Dis., 2018, 8(3), 385-398.
[http://dx.doi.org/10.3233/JPD-171263] [PMID: 29991141]
[28]
Zolghadri, S.; Bahrami, A.; Hassan Khan, M.T.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A comprehensive review on tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 279-309.
[http://dx.doi.org/10.1080/14756366.2018.1545767] [PMID: 30734608]
[29]
Loizzo, M.R.; Tundis, R.; Menichini, F. Natural and synthetic tyrosinase inhibitors as antibrowning agents: An update. Compr. Rev. Food Sci. Food Saf., 2012, 11(4), 378-398.
[http://dx.doi.org/10.1111/j.1541-4337.2012.00191.x]
[30]
Aziz, M.; Karboune, S. Natural antimicrobial/antioxidant agents in meat and poultry products as well as fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr., 2018, 58(3), 486-511.
[PMID: 27437876]
[31]
Hu, Y.H.; Chen, Q.X.; Cui, Y.; Gao, H.J.; Xu, L.; Yu, X.Y.; Wang, Y.; Yan, C.L.; Wang, Q. 4-Hydroxy cinnamic acid as mushroom preservation: Anti-tyrosinase activity kinetics and application. Int. J. Biol. Macromol., 2016, 86, 489-495.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.070] [PMID: 26812105]
[32]
Xing, R.; Zheng, A.; Wang, F.; Wang, L.; Yu, Y.; Jiang, A. Functionality study of Na6PMo11FeO40 as a mushroom tyrosinase inhibitor. Food Chem., 2015, 175, 292-299.
[http://dx.doi.org/10.1016/j.foodchem.2014.11.157] [PMID: 25577083]
[33]
Ismail, T.; Shafi, S.; Srinivas, J.; Sarkar, D.; Qurishi, Y.; Khazir, J.; Alam, M.S.; Kumar, H.M.S. Synthesis and tyrosinase inhibition activity of trans-stilbene derivatives. Bioorg. Chem., 2016, 64, 97-102.
[http://dx.doi.org/10.1016/j.bioorg.2016.01.001] [PMID: 26773755]
[34]
Bernard, P.; Berthon, J.Y. Resveratrol: An original mechanism on tyrosinase inhibition. Int. J. Cosmet. Sci., 2000, 22(3), 219-226.
[http://dx.doi.org/10.1046/j.1467-2494.2000.00019.x] [PMID: 18503477]
[35]
Caddeo, C.; Teskač, K.; Sinico, C.; Kristl, J. Effect of resveratrol incorporated in liposomes on proliferation and UV-B protection of cells. Int. J. Pharm., 2008, 363(1-2), 183-191.
[http://dx.doi.org/10.1016/j.ijpharm.2008.07.024] [PMID: 18718515]
[36]
Farris, P.; Krutmann, J.; Li, Y.H.; McDaniel, D.; Krol, Y. Resveratrol: A unique antioxidant offering a multi-mechanistic approach for treating aging skin. J. Drugs Dermatol., 2013, 12(12), 1389-1394.
[PMID: 24301240]
[37]
Wu, J.M.; Hsieh, T-c. Resveratrol: A cardioprotective substance. Ann. N.Y. Acad. Sci., 2011, 1215, 16-21.
[38]
Lin, C.B.; Babiarz, L.; Liebel, F.; Kizoulis, M.; Gendimenico, G.J.; Seiberg, M.; Roydon Price, E.; Fisher, D.E. Modulation of microphthalmia-associated transcription factor gene expression alters skin pigmentation. J. Invest. Dermatol., 2002, 119(6), 1330-1340.
[http://dx.doi.org/10.1046/j.1523-1747.2002.19615.x] [PMID: 12485436]
[39]
Newton, R.A.; Cook, A.L.; Roberts, D.W.; Helen Leonard, J.; Sturm, R.A. Post-transcriptional regulation of melanin biosynthetic enzymes by cAMP and resveratrol in human melanocytes. J. Invest. Dermatol., 2007, 127(9), 2216-2227.
[http://dx.doi.org/10.1038/sj.jid.5700840] [PMID: 17460731]
[40]
Park, J.; Boo, Y.C. Isolation of resveratrol from vitis viniferae caulis and its potent inhibition of human tyrosinase. Evid.-Based Complement. Altern. Med., 2013, 2013, 645257.
[http://dx.doi.org/10.1155/2013/645257]
[41]
Tanaka, Y.; Suzuki, M.; Kodachi, Y.; Nihei, K. Molecular design of potent, hydrophilic tyrosinase inhibitors based on the natural dihydrooxyresveratrol skeleton. Carbohydr. Res., 2019, 472, 42-49.
[http://dx.doi.org/10.1016/j.carres.2018.11.006] [PMID: 30471509]
[42]
Carcelli, M.; Rogolino, D.; Bartoli, J.; Pala, N.; Compari, C.; Ronda, N.; Bacciottini, F.; Incerti, M.; Fisicaro, E. Hydroxyphenyl thiosemicarbazones as inhibitors of mushroom tyrosinase and antibrowning agents. Food Chem., 2020, 303, 125310.
[http://dx.doi.org/10.1016/j.foodchem.2019.125310] [PMID: 31473456]
[43]
Ashooriha, M.; Khoshneviszadeh, M.; Khoshneviszadeh, M.; Moradi, S.E.; Rafiei, A.; Kardan, M.; Emami, S. 1,2,3-Triazole-based kojic acid analogs as potent tyrosinase inhibitors: Design, synthesis and biological evaluation. Bioorg. Chem., 2019, 82, 414-422.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.069] [PMID: 30428420]
[44]
Larik, F.A.; Saeed, A.; Channar, P.A.; Muqadar, U.; Abbas, Q.; Hassan, M.; Seo, S.Y.; Bolte, M. Design, synthesis, kinetic mechanism and molecular docking studies of novel 1-pentanoyl-3-arylthioureas as inhibitors of mushroom tyrosinase and free radical scavengers. Eur. J. Med. Chem., 2017, 141, 273-281.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.059] [PMID: 29040952]
[45]
De Luca, L.; Germanò, M.P.; Fais, A.; Pintus, F.; Buemi, M.R.; Vittorio, S.; Mirabile, S.; Rapisarda, A.; Gitto, R. Discovery of a new potent inhibitor of mushroom tyrosinase (Agaricus bisporus) containing 4-(4-hydroxyphenyl)piperazin-1-yl moiety. Bioorg. Med. Chem., 2020, 28(11), 115497.
[http://dx.doi.org/10.1016/j.bmc.2020.115497] [PMID: 32312487]
[46]
Jin, X.; Guo, J.L.; Wang, L.; Zhong, X.; Yao, W.F.; Gao, H.; Liu, M.Y. Natural products as pharmacological modulators of mitochondrial dysfunctions for the treatments of Alzheimer’s disease: A comprehensive review. Eur. J. Med. Chem., 2021, 218, 113401.
[http://dx.doi.org/10.1016/j.ejmech.2021.113401] [PMID: 33831779]
[47]
Zhao, S.; Pi, C.; Ye, Y.; Zhao, L.; Wei, Y. Recent advances of analogues of curcumin for treatment of cancer. Eur. J. Med. Chem., 2019, 180, 524-535.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.034] [PMID: 31336310]
[48]
Satooka, H.; Kubo, I. Resveratrol as a kcat type inhibitor for tyrosinase: Potentiated melanogenesis inhibitor. Bioorg. Med. Chem., 2012, 20(2), 1090-1099.
[http://dx.doi.org/10.1016/j.bmc.2011.11.030] [PMID: 22189272]
[49]
Lee, T.H.; Seo, J.O.; Baek, S.H.; Kim, S.Y. Inhibitory effects of resveratrol on melanin synthesis in ultraviolet B-induced pigmentation in Guinea pig skin. Biomol. Ther. (Seoul), 2014, 22(1), 35-40.
[http://dx.doi.org/10.4062/biomolther.2013.081] [PMID: 24596619]
[50]
Hseu, Y.C.; Ho, Y.G.; Mathew, D.C.; Yen, H.R.; Chen, X.Z.; Yang, H.L. The in vitro and in vivo depigmenting activity of Coenzyme Q10 through the down-regulation of α-MSH signaling pathways and induction of Nrf2/ARE-mediated antioxidant genes in UVA-irradiated skin keratinocytes. Biochem. Pharmacol., 2019, 164, 299-310.
[http://dx.doi.org/10.1016/j.bcp.2019.04.015] [PMID: 30991050]
[51]
Chen, W.C.; Tseng, T.S.; Hsiao, N.W.; Lin, Y.L.; Wen, Z.H.; Tsai, C.C.; Lee, Y.C.; Lin, H.H.; Tsai, K.C. Discovery of highly potent tyrosinase inhibitor, T1, with significant anti-melanogenesis ability by zebrafish in vivo assay and computational molecular modeling. Sci. Rep., 2015, 5(1), 7995.
[http://dx.doi.org/10.1038/srep07995] [PMID: 25613357]
[52]
Moon, K.M.; Hwang, Y-H.; Yang, J-H.; Ma, J.Y.; Lee, B. Spinosin is a flavonoid in the seed of Ziziphus jujuba that prevents skin pigmentation in a human skin model. J. Funct. Foods, 2019, 54, 449-456.
[http://dx.doi.org/10.1016/j.jff.2019.01.044]
[53]
Fan, M.; Zhang, G.; Hu, X.; Xu, X.; Gong, D. Quercetin as a tyrosinase inhibitor: Inhibitory activity, conformational change and mechanism. Food Res. Int., 2017, 100(Pt 1), 226-233.
[http://dx.doi.org/10.1016/j.foodres.2017.07.010] [PMID: 28873682]
[54]
Radhakrishnan, S.K.; Shimmon, R.G.; Conn, C.; Baker, A.T. Evaluation of novel chalcone oximes as inhibitors of tyrosinase and melanin formation in B16 cells. Arch. Pharm. (Weinheim), 2016, 349(1), 20-29.
[http://dx.doi.org/10.1002/ardp.201500298] [PMID: 26575580]
[55]
Park, S.; Seok, J.K.; Kwak, J.Y.; Choi, Y.H.; Hong, S.S.; Suh, H.J.; Park, W.; Boo, Y.C. Anti-melanogenic effects of resveratryl triglycolate, a novel hybrid compound derived by esterification of resveratrol with glycolic acid. Arch. Dermatol. Res., 2016, 308(5), 325-334.
[http://dx.doi.org/10.1007/s00403-016-1644-9] [PMID: 27059716]
[56]
Xie, W.; Zhang, H.; He, J.; Zhang, J.; Yu, Q.; Luo, C.; Li, S. Synthesis and biological evaluation of novel hydroxybenzaldehyde-based kojic acid analogues as inhibitors of mushroom tyrosinase. Bioorg. Med. Chem. Lett., 2017, 27(3), 530-532.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.027] [PMID: 28011217]
[57]
Chen, M.J.; Hung, C.C.; Chen, Y.R.; Lai, S.T.; Chan, C.F. Novel synthetic kojic acid-methimazole derivatives inhibit mushroom tyrosinase and melanogenesis. J. Biosci. Bioeng., 2016, 122(6), 666-672.
[http://dx.doi.org/10.1016/j.jbiosc.2016.06.002] [PMID: 27353860]
[58]
Asadzadeh, A.; Sirous, H.; Pourfarzam, M.; Yaghmaei, P.; Afshin, F. In vitro and in silico studies of the inhibitory effects of some novel kojic acid derivatives on tyrosinase enzyme. Iran. J. Basic Med. Sci., 2016, 19(2), 132-144.
[PMID: 27081457]
[59]
Choi, Y.J.; Kwon, S.S.; Rho, H.S.; Kim, Y-J.; Lee, J.H.; Oh, S-G.; Kim, J.M. Evaluation of kojyl benzoate derivatives as potential depigmenting agents in mouse B16/F1 melanoma cells. Bull. Korean Chem. Soc., 2016, 37(6), 942-945.
[http://dx.doi.org/10.1002/bkcs.10772]
[60]
Chen, Y.M.; Li, C.; Zhang, W.J.; Shi, Y.; Wen, Z.J.; Chen, Q.X.; Wang, Q. Kinetic and computational molecular docking simulation study of novel kojic acid derivatives as anti-tyrosinase and antioxidant agents. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 990-998.
[http://dx.doi.org/10.1080/14756366.2019.1609467] [PMID: 31072148]
[61]
Karakaya, G.; Türe, A.; Ercan, A.; Öncül, S.; Aytemir, M.D. Synthesis, computational molecular docking analysis and effectiveness on tyrosinase inhibition of kojic acid derivatives. Bioorg. Chem., 2019, 88, 102950.
[http://dx.doi.org/10.1016/j.bioorg.2019.102950] [PMID: 31075740]
[62]
Zhao, D.Y.; Zhang, M.X.; Dong, X.W.; Hu, Y.Z.; Dai, X.Y.; Wei, X.; Hider, R.C.; Zhang, J.C.; Zhou, T. Design and synthesis of novel hydroxypyridinone derivatives as potential tyrosinase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(13), 3103-3108.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.006] [PMID: 27185329]
[63]
Jung, H.J.; Lee, M.J.; Park, Y.J.; Noh, S.G.; Lee, A.K.; Moon, K.M.; Lee, E.K.; Bang, E.J.; Park, Y.J.; Kim, S.J.; Yang, J.; Ullah, S.; Chun, P.; Jung, Y.S.; Moon, H.R.; Chung, H.Y. A novel synthetic compound, (Z)-5-(3-hydroxy-4-methoxybenzylidene)-2-iminothiazolidin-4-one (MHY773) inhibits mushroom tyrosinase. Biosci. Biotechnol. Biochem., 2018, 82(5), 759-767.
[http://dx.doi.org/10.1080/09168451.2018.1445518] [PMID: 29521165]
[64]
Bang, E.; Lee, E.K.; Noh, S.G.; Jung, H.J.; Moon, K.M.; Park, M.H.; Park, Y.J.; Hyun, M.K.; Lee, A.K.; Kim, S.J.; Yang, J.; Park, Y.; Chun, P.; Moon, H.R.; Chung, H.Y. In vitro and in vivo evidence of tyrosinase inhibitory activity of a synthesized (Z) ‐5‐(3‐hydroxy‐4‐methoxybenzyli-dene)‐2‐thioxothiazolidin‐4‐one (5‐ HMT). Exp. Dermatol., 2019, 28(6), 734-737.
[http://dx.doi.org/10.1111/exd.13863] [PMID: 30554432]
[65]
Kim, D.H.; Kim, S.J.; Ullah, S.; Yun, H.Y.; Chun, P.; Moon, H.R. Design, synthesis, and antimelanogenic effects of (2-substituted phenyl-1,3-dithiolan-4-yl)methanol derivatives. Drug Des. Devel. Ther., 2017, 11, 827-836.
[http://dx.doi.org/10.2147/DDDT.S131538] [PMID: 28352157]
[66]
Jung, H.J.; Noh, S.G.; Park, Y.; Kang, D.; Chun, P.; Chung, H.Y.; Moon, H.R. In vitro and in silico insights into tyrosinase inhibitors with (E)-benzylidene-1-indanone derivatives. Comput. Struct. Biotechnol. J., 2019, 17, 1255-1264.
[http://dx.doi.org/10.1016/j.csbj.2019.07.017] [PMID: 31921392]
[67]
Raza, H.; Abbasi, M.A.; Aziz-ur-Rehman, ; Siddiqui, S.Z.; Hassan, M.; Abbas, Q.; Hong, H.; Shah, S.A.A.; Shahid, M.; Seo, S.Y. Synthesis, molecular docking, dynamic simulations, kinetic mechanism, cytotoxicity evaluation of N-(substituted-phenyl)-4-(4-[(E)-3-phenyl-2-propenyl]-1-pipe-razinyl butanamides as tyrosinase and melanin inhibitors: In vitro, in vivo and in silico approaches. Bioorg. Chem., 2020, 94, 103445.
[http://dx.doi.org/10.1016/j.bioorg.2019.103445] [PMID: 31826809]
[68]
Xia, L.; Idhayadhulla, A.; Lee, Y.R.; Kim, S.H.; Wee, Y-J. Antioxidant and antibacterial evaluation of synthetic furomollugin and its diverse analogs. Med. Chem. Res., 2014, 23(7), 3528-3538.
[http://dx.doi.org/10.1007/s00044-014-0929-9]
[69]
Geng, J. Protective action of bacterial melanin against spectrums by a sensitive plasmid-based DNA damage in full UV noncellular system. J. Biochem. Biophys. Methods, 2008, 70(6), 1151-1155.
[http://dx.doi.org/10.1016/j.jprot.2007.12.013] [PMID: 18272228]
[70]
García-Rivera, J.; Casadevall, A. Melanization of Cryptococcus neoformans reduces its susceptibility to the antimicrobial effects of silver nitrate. Med. Mycol., 2001, 39(4), 353-357.
[http://dx.doi.org/10.1080/mmy.39.4.353.357] [PMID: 11556765]
[71]
Nosanchuk, J.D.; Casadevall, A. The contribution of melanin to microbial pathogenesis. Cell. Microbiol., 2003, 5(4), 203-223.
[http://dx.doi.org/10.1046/j.1462-5814.2003.00268.x] [PMID: 12675679]
[72]
Lin, W.-P. Effect of melanin produced by a recombinant Escherichia coli on antibacterial activity of antibiotics. J. Microbiol. Immunol. Infect., 2005, 38(5), 320-326.
[73]
Plonka, P.M.; Grabacka, M. Melanin synthesis in microorganisms--biotechnological and medical aspects. Acta Biochim. Pol., 2006, 53(3), 429-443.
[http://dx.doi.org/10.18388/abp.2006_3314] [PMID: 16951740]
[74]
Narasimhan, B.; Belsare, D.; Pharande, D.; Mourya, V.; Dhake, A. Esters, amides and substituted derivatives of cinnamic acid: Synthesis, antimicrobial activity and QSAR investigations. Eur. J. Med. Chem., 2004, 39(10), 827-834.
[http://dx.doi.org/10.1016/j.ejmech.2004.06.013] [PMID: 15464616]
[75]
Dej-adisai, S.; Parndaeng, K.; Wattanapiromsakul, C. Determination of phytochemical compounds, and tyrosinase inhibitory and antimicrobial activities of bioactive compounds from Streblus ilicifolius (S Vidal) Corner. Trop. J. Pharm. Res., 2016, 15(3), 497-506.
[http://dx.doi.org/10.4314/tjpr.v15i3.10]
[76]
Teixeira, J. Hydroxycinnamic acid antioxidants: An electrochemical overview. Biomed. Res. Int., 2013, 2013, 251754.
[http://dx.doi.org/10.1155/2013/251754]
[77]
Neelam, A.; Khatkar, A.; Sharma, K.K. Phenylpropanoids and its derivatives: Biological activities and its role in food, pharmaceutical and cosmetic industries. Crit. Rev. Food Sci. Nutr., 2020, 60(16), 2655-2675.
[http://dx.doi.org/10.1080/10408398.2019.1653822] [PMID: 31456411]
[78]
Engels, C.; Schieber, A.; Gänzle, M.G. Sinapic acid derivatives in defatted Oriental mustard (Brassica juncea L.) seed meal extracts using UHPLC-DAD-ESI-MS n and identification of compounds with antibacterial activity. Eur. Food Res. Technol., 2012, 234(3), 535-542.
[http://dx.doi.org/10.1007/s00217-012-1669-z]
[79]
Khatkar, A.; Nanda, A.; Kumar, P.; Narasimhan, B. Synthesis and antimicrobial evaluation of ferulic acid derivatives. Res. Chem. Intermed., 2015, 41(1), 299-309.
[http://dx.doi.org/10.1007/s11164-013-1192-2]
[80]
Lima, V.N.; Oliveira-Tintino, C.D.M.; Santos, E.S.; Morais, L.P.; Tintino, S.R.; Freitas, T.S.; Geraldo, Y.S.; Pereira, R.L.S.; Cruz, R.P.; Menezes, I.R.A.; Coutinho, H.D.M. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol. Microb. Pathog., 2016, 99, 56-61.
[http://dx.doi.org/10.1016/j.micpath.2016.08.004] [PMID: 27497894]
[81]
Takahashi, T.; Miyazawa, M. Tyrosinase inhibitory activities of cinnamic acid analogues. Pharmazie, 2010, 65(12), 913-918.
[PMID: 21284262]
[82]
Gordon, R. Skin cancer: An overview of epidemiology and risk factors. Semin. Oncol. Nurs., 2013, 29(3), 160-169.
[http://dx.doi.org/10.1016/j.soncn.2013.06.002] [PMID: 23958214]
[83]
Guo, L.; Qi, J.; Wang, H.; Jiang, X.; Liu, Y. Getting under the skin: The role of CDK4/6 in melanomas. Eur. J. Med. Chem., 2020, 204, 112531.
[http://dx.doi.org/10.1016/j.ejmech.2020.112531] [PMID: 32712436]
[84]
Harris, Z.; Donovan, M.G.; Branco, G.M.; Limesand, K.H.; Burd, R. Quercetin as an emerging anti-melanoma agent: A four-focus area therapeutic development strategy. Front. Nutr., 2016, 3, 48-48.
[http://dx.doi.org/10.3389/fnut.2016.00048] [PMID: 27843913]
[85]
Espenel, S.; Vallard, A.; Rancoule, C.; Garcia, M.A.; Guy, J.B.; Chargari, C.; Deutsch, E.; Magné, N. Melanoma: Last call for radiotherapy. Crit. Rev. Oncol. Hematol., 2017, 110, 13-19.
[http://dx.doi.org/10.1016/j.critrevonc.2016.12.003] [PMID: 28109401]
[86]
Sharma, K.V.; Bowers, N.; Davids, L.M. Photodynamic therapy-induced killing is enhanced in depigmented metastatic melanoma cells. Cell Biol. Int., 2011, 35(9), 939-944.
[http://dx.doi.org/10.1042/CBI20110103] [PMID: 21542806]
[87]
Sharma, K.V.; Davids, L.M. Depigmentation in melanomas increases the efficacy of hypericin-mediated photodynamic-induced cell death. Photodiagn. Photodyn. Ther., 2012, 9(2), 156-163.
[http://dx.doi.org/10.1016/j.pdpdt.2011.09.003] [PMID: 22594986]
[88]
Gardelly, M.; Trimech, B.; Belkacem, M.A.; Harbach, M.; Abdelwahed, S.; Mosbah, A.; Bouajila, J.; Ben Jannet, H. Synthesis of novel diazaphosphinanes coumarin derivatives with promoted cytotoxic and anti-tyrosinase activities. Bioorg. Med. Chem. Lett., 2016, 26(10), 2450-2454.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.108] [PMID: 27080182]
[89]
Chung, Y.C.; Hyun, C.G. Inhibitory effects of Pinostilbene Hydrate on melanogenesis in B16F10 melanoma cells via ERK and p38 signaling pathways. Int. J. Mol. Sci., 2020, 21(13), 4732.
[http://dx.doi.org/10.3390/ijms21134732] [PMID: 32630811]
[90]
Xu, H.; Li, X.; Xin, X.; Mo, L.; Zou, Y.; Zhao, G.; Yu, Y.; Chen, K. Antityrosinase mechanism and antimelanogenic effect of arbutin esters synthesis catalyzed by whole-cell biocatalyst. J. Agric. Food Chem., 2021, 69(14), 4243-4252.
[http://dx.doi.org/10.1021/acs.jafc.0c07379] [PMID: 33821640]
[91]
Teng, H.; Fan, X.; Lv, Q.; Zhang, Q.; Xiao, J.; Qian, Y.; Zheng, B.; Gao, H.; Gao, S.; Chen, L. Folium nelumbinis (Lotus leaf) volatile-rich fraction and its mechanisms of action against melanogenesis in B16 cells. Food Chem., 2020, 330, 127030.
[http://dx.doi.org/10.1016/j.foodchem.2020.127030] [PMID: 32535311]
[92]
Barros, M.R.; Menezes, T.M.; da Silva, L.P.; Pires, D.S.; Princival, J.L.; Seabra, G.; Neves, J.L. Furan inhibitory activity against tyrosinase and impact on B16F10 cell toxicity. Int. J. Biol. Macromol., 2019, 136, 1034-1041.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.120] [PMID: 31233796]
[93]
Piechowska, K.; Świtalska, M.; Cytarska, J.; Jaroch, K.; Łuczykowski, K.; Chałupka, J.; Wietrzyk, J.; Misiura, K.; Bojko, B.; Kruszewski, S.; Łączkowski, K.Z. Discovery of tropinone-thiazole derivatives as potent caspase 3/7 activators, and noncompetitive tyrosinase inhibitors with high antiproliferative activity: Rational design, one-pot tricomponent synthesis, and lipophilicity determination. Eur. J. Med. Chem., 2019, 175, 162-171.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.006] [PMID: 31082763]
[94]
Hirsch, E.; Graybiel, A.M.; Agid, Y.A. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature, 1988, 334(6180), 345-348.
[http://dx.doi.org/10.1038/334345a0] [PMID: 2899295]
[95]
Dickson, D.W.; Braak, H.; Duda, J.E.; Duyckaerts, C.; Gasser, T.; Halliday, G.M.; Hardy, J.; Leverenz, J.B.; Del Tredici, K.; Wszolek, Z.K.; Litvan, I. Neuropathological assessment of Parkinson’s disease: Refining the diagnostic criteria. Lancet Neurol., 2009, 8(12), 1150-1157.
[http://dx.doi.org/10.1016/S1474-4422(09)70238-8] [PMID: 19909913]
[96]
Sulzer, D.; Surmeier, D.J. Neuronal vulnerability, pathogenesis, and Parkinson’s disease. Mov. Disord., 2013, 28(6), 715-724.
[http://dx.doi.org/10.1002/mds.25187] [PMID: 23589357]
[97]
Bensaid, M.; Michel, P.P.; Clark, S.D.; Hirsch, E.C.; François, C. Role of pedunculopontine cholinergic neurons in the vulnerability of nigral dopaminergic neurons in Parkinson’s disease. Exp. Neurol., 2016, 275(Pt 1), 209-219.
[http://dx.doi.org/10.1016/j.expneurol.2015.11.004] [PMID: 26571193]
[98]
Szegő, É.M.; Gerhardt, E.; Outeiro, T.F.; Kermer, P. Dopamine-depletion and increased α -synuclein load induce degeneration of cortical cholinergic fibers in mice. J. Neurol. Sci., 2011, 310(1-2), 90-95.
[http://dx.doi.org/10.1016/j.jns.2011.06.048] [PMID: 21774947]
[99]
Dong, J.; Cui, Y.; Li, S.; Le, W. Current pharmaceutical treatments and alternative therapies of Parkinson’s disease. Curr. Neuropharmacol., 2016, 14(4), 339-355.
[http://dx.doi.org/10.2174/1570159X14666151120123025] [PMID: 26585523]
[100]
Ellis, J.M.; Fell, M.J. Current approaches to the treatment of Parkinson’s disease. Bioorg. Med. Chem. Lett., 2017, 27(18), 4247-4255.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.075] [PMID: 28869077]
[101]
Carballo-Carbajal, I.; Laguna, A.; Romero-Giménez, J.; Cuadros, T.; Bové, J.; Martinez-Vicente, M.; Parent, A.; Gonzalez-Sepulveda, M.; Peñuelas, N.; Torra, A.; Rodríguez-Galván, B.; Ballabio, A.; Hasegawa, T.; Bortolozzi, A.; Gelpi, E.; Vila, M. Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson’s disease pathogenesis. Nat. Commun., 2019, 10(1), 973.
[http://dx.doi.org/10.1038/s41467-019-08858-y] [PMID: 30846695]
[102]
Hernandez, D.F. Food-derived bioactive compounds with anti-aging potential for nutricosmetic and cosmeceutical products. Crit. Rev. Food Sci. Nutr., 2021, 61(22), 3740-3755.
[PMID: 32772550]
[103]
Vila, M. Neuromelanin, aging, and neuronal vulnerability in Parkinson’s disease. Mov. Disord., 2019, 34(10), 1440-1451.
[http://dx.doi.org/10.1002/mds.27776] [PMID: 31251435]
[104]
Senol, F.; Khan, M.; Orhan, G.; Gurkas, E.; Orhan, I.; Oztekin, N.; Ak, F. In silico approach to inhibition of tyrosinase by ascorbic acid using molecular docking simulations. Curr. Top. Med. Chem., 2014, 14(12), 1469-1472.
[http://dx.doi.org/10.2174/1568026614666140610121253] [PMID: 24917394]
[105]
Matoba, Y.; Kumagai, T.; Yamamoto, A.; Yoshitsu, H.; Sugiyama, M. Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J. Biol. Chem., 2006, 281(13), 8981-8990.
[http://dx.doi.org/10.1074/jbc.M509785200] [PMID: 16436386]
[106]
Hybertson, B.M.; Gao, B.; Bose, S.K.; McCord, J.M. Oxidative stress in health and disease: The therapeutic potential of Nrf2 activation. Mol. Aspects Med., 2011, 32(4-6), 234-246.
[http://dx.doi.org/10.1016/j.mam.2011.10.006] [PMID: 22020111]
[107]
Heijnen, C.G.M.; Haenen, G.R.M.M.; Vekemans, J.A.J.M.; Bast, A. Peroxynitrite scavenging of flavonoids: Structure activity relationship. Environ. Toxicol. Pharmacol., 2001, 10(4), 199-206.
[http://dx.doi.org/10.1016/S1382-6689(01)00083-7] [PMID: 21782577]
[108]
Georgiev, L.; Chochkova, M.; Totseva, I.; Seizova, K.; Marinova, E.; Ivanova, G.; Ninova, M.; Najdenski, H.; Milkova, T. Anti-tyrosinase, antioxidant and antimicrobial activities of hydroxycinnamoylamides. Med. Chem. Res., 2013, 22(9), 4173-4182.
[http://dx.doi.org/10.1007/s00044-012-0419-x]
[109]
Feng, J.H.; Hu, X.L.; Lv, X.Y.; Wang, B.L.; Lin, J.; Zhang, X.Q.; Ye, W.C.; Xiong, F.; Wang, H. Synthesis and biological evaluation of clovamide analogues with catechol functionality as potent Parkinson’s disease agents in vitro and in vivo. Bioorg. Med. Chem. Lett., 2019, 29(2), 302-312.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.030] [PMID: 30470490]
[110]
Li, Q.; Mo, J.; Xiong, B.; Liao, Q.; Chen, Y.; Wang, Y.; Xing, S.; He, S.; Lyu, W.; Zhang, N.; Sun, H. Discovery of resorcinol-based polycyclic structures as tyrosinase inhibitors for treatment of Parkinson’s disease. ACS Chem. Neurosci., 2022, 13(1), 81-96.
[http://dx.doi.org/10.1021/acschemneuro.1c00560] [PMID: 34882402]
[111]
Lee, H.S. Tyrosinase inhibitors of Pulsatilla cernua root-derived materials. J. Agric. Food Chem., 2002, 50(6), 1400-1403.
[http://dx.doi.org/10.1021/jf011230f] [PMID: 11879010]
[112]
Oyama, T.; Takahashi, S.; Yoshimori, A.; Yamamoto, T.; Sato, A.; Kamiya, T.; Abe, H.; Abe, T.; Tanuma, S. Discovery of a new type of scaffold for the creation of novel tyrosinase inhibitors. Bioorg. Med. Chem., 2016, 24(18), 4509-4515.
[http://dx.doi.org/10.1016/j.bmc.2016.07.060] [PMID: 27507110]
[113]
Baek, H.S.; Hong, Y.D.; Lee, C.S.; Rho, H.S.; Shin, S.S.; Park, Y.H.; Joo, Y.H. Adamantyl N-benzylbenzamide: New series of depigmentation agents with tyrosinase inhibitory activity. Bioorg. Med. Chem. Lett., 2012, 22(5), 2110-2113.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.144] [PMID: 22300660]
[114]
Yoo, J.W.; Hong, Y.D.; Baek, H.S.; Choi, S.J.; Lee, C.S.; Byoun, K.H.; Rho, H.S.; Kim, Y-J.; Lee, J.H.; Joo, Y.H. Substituted N-Benzylbenzamide: A new series of depigmentation agents with tyrosinase inhibitory activity. Bull. Korean Chem. Soc., 2016, 37(10), 1736-1739.
[http://dx.doi.org/10.1002/bkcs.10931]
[115]
Cui, Y.; Hu, Y.H.; Yu, F.; Zheng, J.; Chen, L.S.; Chen, Q.X.; Wang, Q. Inhibition kinetics and molecular simulation of p-substituted cinnamic acid derivatives on tyrosinase. Int. J. Biol. Macromol., 2017, 95, 1289-1297.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.027] [PMID: 27840215]
[116]
Taofiq, O.; González-Paramás, A.; Barreiro, M.; Ferreira, I. Hydroxycinnamic acids and their derivatives: Cosmeceutical significance, challenges and future perspectives, a review. Molecules, 2017, 22(2), 281.
[http://dx.doi.org/10.3390/molecules22020281] [PMID: 28208818]
[117]
Nazir, Y.; Saeed, A.; Rafiq, M.; Afzal, S.; Ali, A.; Latif, M.; Zuegg, J.; Hussein, W.M.; Fercher, C.; Barnard, R.T.; Cooper, M.A.; Blaskovich, M.A.T.; Ashraf, Z.; Ziora, Z.M. Hydroxyl substituted benzoic acid/cinnamic acid derivatives: Tyrosinase inhibitory kinetics, anti-melanogenic activity and molecular docking studies. Bioorg. Med. Chem. Lett., 2020, 30(1), 126722.
[http://dx.doi.org/10.1016/j.bmcl.2019.126722] [PMID: 31732410]
[118]
Zhao, Z.; Liu, G.; Meng, Y.; Tian, J.; Chen, X.; Shen, M.; Li, Y.; Li, B.; Gao, C.; Wu, S.; Li, C.; He, X.; Jiang, R.; Qian, M.; Zheng, X. Synthesis and anti-tyrosinase mechanism of the substituted vanillyl cinnamate analogues. Bioorg. Chem., 2019, 93, 103316.
[http://dx.doi.org/10.1016/j.bioorg.2019.103316] [PMID: 31585271]
[119]
Ghafary, S.; Ranjbar, S.; Larijani, B.; Amini, M.; Biglar, M.; Mahdavi, M.; Bakhshaei, M.; Khoshneviszadeh, M.; Sakhteman, A.; Khoshneviszadeh, M. Novel morpholine containing cinnamoyl amides as potent tyrosinase inhibitors. Int. J. Biol. Macromol., 2019, 135, 978-985.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.201] [PMID: 31150673]
[120]
Ullah, S.; Park, Y.; Ikram, M.; Lee, S.; Park, C.; Kang, D.; Yang, J.; Akter, J.; Yoon, S.; Chun, P.; Moon, H.R. Design, synthesis and anti-melanogenic effect of cinnamamide derivatives. Bioorg. Med. Chem., 2018, 26(21), 5672-5681.
[http://dx.doi.org/10.1016/j.bmc.2018.10.014] [PMID: 30366788]
[121]
Ullah, S.; Kang, D.; Lee, S.; Ikram, M.; Park, C.; Park, Y.; Yoon, S.; Chun, P.; Moon, H.R. Synthesis of cinnamic amide derivatives and their anti-melanogenic effect in α-MSH-stimulated B16F10 melanoma cells. Eur. J. Med. Chem., 2019, 161, 78-92.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.025] [PMID: 30347330]
[122]
Ullah, S.; Park, C.; Ikram, M.; Kang, D.; Lee, S.; Yang, J.; Park, Y.; Yoon, S.; Chun, P.; Moon, H.R. Tyrosinase inhibition and anti-melanin generation effect of cinnamamide analogues. Bioorg. Chem., 2019, 87, 43-55.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.001] [PMID: 30856375]
[123]
Sheng, Z.; Ge, S.; Xu, X.; Zhang, Y.; Wu, P.; Zhang, K.; Xu, X.; Li, C.; Zhao, D.; Tang, X. Design, synthesis and evaluation of cinnamic acid ester derivatives as mushroom tyrosinase inhibitors. MedChemComm, 2018, 9(5), 853-861.
[http://dx.doi.org/10.1039/C8MD00099A] [PMID: 30108974]
[124]
Si, H.; Wang, X.; Li, L.; Song, M.; Gong, R. Inhibitory effects of 4-chlorocinnamaldehyde on the activity of mushroom tyrosinase. Med. Chem. Res., 2017, 26(7), 1377-1381.
[http://dx.doi.org/10.1007/s00044-017-1861-6]
[125]
Fylaktakidou, K.; Hadjipavlou-Litina, D.; Litinas, K.; Nicolaides, D. Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr. Pharm. Des., 2004, 10(30), 3813-3833.
[http://dx.doi.org/10.2174/1381612043382710] [PMID: 15579073]
[126]
Ghosh, S.C.; Auzenne, E.; Farquhar, D.; Klostergaard, J. N,N-dimethylsphingosine-coumarin: Synthesis, chemical characterization, and biological evaluation. Bioconjug. Chem., 2007, 18(3), 731-735.
[http://dx.doi.org/10.1021/bc060285q] [PMID: 17432826]
[127]
Pang, G.X.; Niu, C.; Mamat, N.; Aisa, H.A. Synthesis and in vitro biological evaluation of novel coumarin derivatives containing isoxazole moieties on melanin synthesis in B16 cells and inhibition on bacteria. Bioorg. Med. Chem. Lett., 2017, 27(12), 2674-2677.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.039] [PMID: 28476568]
[128]
Vilar, S.; Quezada, E.; Santana, L.; Uriarte, E.; Yánez, M.; Fraiz, N.; Alcaide, C.; Cano, E.; Orallo, F. Design, synthesis, and vasorelaxant and platelet antiaggregatory activities of coumarin–resveratrol hybrids. Bioorg. Med. Chem. Lett., 2006, 16(2), 257-261.
[http://dx.doi.org/10.1016/j.bmcl.2005.10.013] [PMID: 16275073]
[129]
Pintus, F.; Matos, M.J.; Vilar, S.; Hripcsak, G.; Varela, C.; Uriarte, E.; Santana, L.; Borges, F.; Medda, R.; Di Petrillo, A.; Era, B.; Fais, A. New insights into highly potent tyrosinase inhibitors based on 3-heteroarylcoumarins: Anti-melanogenesis and antioxidant activities, and computational molecular modeling studies. Bioorg. Med. Chem., 2017, 25(5), 1687-1695.
[http://dx.doi.org/10.1016/j.bmc.2017.01.037] [PMID: 28189394]
[130]
Saeed, A.; Mahesar, P.A.; Channar, P.A.; Abbas, Q.; Larik, F.A.; Hassan, M.; Raza, H.; Seo, S.Y. Synthesis, molecular docking studies of coumarinyl-pyrazolinyl substituted thiazoles as non-competitive inhibitors of mushroom tyrosinase. Bioorg. Chem., 2017, 74, 187-196.
[http://dx.doi.org/10.1016/j.bioorg.2017.08.002] [PMID: 28837887]
[131]
Sharma, U.; Kumar, P.; Kumar, N.; Singh, B. Recent advances in the chemistry of phthalimide analogues and their therapeutic potential. Mini Rev. Med. Chem., 2010, 10(8), 678-704.
[http://dx.doi.org/10.2174/138955710791572442] [PMID: 20402635]
[132]
Bach, D.H.; Liu, J.Y.; Kim, W.K.; Hong, J.Y.; Park, S.H.; Kim, D.; Qin, S.N.; Luu, T.T.T.; Park, H.J.; Xu, Y.N.; Lee, S.K. Synthesis and biological activity of new phthalimides as potential anti-inflammatory agents. Bioorg. Med. Chem., 2017, 25(13), 3396-3405.
[http://dx.doi.org/10.1016/j.bmc.2017.04.027] [PMID: 28478865]
[133]
Zahran, M.A.H.; El-Aarag, B.; Mehany, A.B.M.; Belal, A.; Younes, A.S. Design, synthesis, biological evaluations, molecular docking, and in vivo studies of novel phthalimide analogs. Arch. Pharm. (Weinheim), 2018, 351(5), 1700363.
[http://dx.doi.org/10.1002/ardp.201700363] [PMID: 29611624]
[134]
Keri, R.S.; Patil, S.A.; Budagumpi, S.; Nagaraja, B.M. Triazole: A promising antitubercular agent. Chem. Biol. Drug Des., 2015, 86(4), 410-423.
[http://dx.doi.org/10.1111/cbdd.12527] [PMID: 25643871]
[135]
Peyton, L.R.; Gallagher, S.; Hashemzadeh, M. Triazole antifungals: A review. Drugs Today (Barc), 2015, 51(12), 705-718.
[PMID: 26798851]
[136]
Xie, W.; Zhang, J.; Ma, X.; Yang, W.; Zhou, Y.; Tang, X.; Zou, Y.; Li, H.; He, J.; Xie, S.; Zhao, Y.; Liu, F. Synthesis and biological evaluation of kojic acid derivatives containing 1,2,4-triazole as potent tyrosinase inhibitors. Chem. Biol. Drug Des., 2015, 86(5), 1087-1092.
[http://dx.doi.org/10.1111/cbdd.12577] [PMID: 25916324]
[137]
Yu, F.; Jia, Y.L.; Wang, H.F.; Zheng, J.; Cui, Y.; Fang, X.Y.; Zhang, L.M.; Chen, Q.X. Synthesis of Triazole Schiff’s base derivatives and their inhibitory kinetics on Tyrosinase Activity. PLoS One, 2015, 10(9), e0138578.
[http://dx.doi.org/10.1371/journal.pone.0138578] [PMID: 26422245]
[138]
Tehrani, M.B.; Emani, P.; Rezaei, Z.; Khoshneviszadeh, M.; Ebrahimi, M.; Edraki, N.; Mahdavi, M.; Larijani, B.; Ranjbar, S.; Foroumadi, A.; Khoshneviszadeh, M. Phthalimide-1,2,3-triazole hybrid compounds as tyrosinase inhibitors; synthesis, biological evaluation and molecular docking analysis. J. Mol. Struct., 2019, 1176, 86-93.
[http://dx.doi.org/10.1016/j.molstruc.2018.08.033]
[139]
Li, Q.; He, S.; Chen, Y.; Feng, F.; Qu, W.; Sun, H. Donepezil-based multi-functional cholinesterase inhibitors for treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2018, 158, 463-477.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.031] [PMID: 30243151]
[140]
Ferro, S.; De Luca, L.; Germanò, M.P.; Buemi, M.R.; Ielo, L.; Certo, G.; Kanteev, M.; Fishman, A.; Rapisarda, A.; Gitto, R. Chemical exploration of 4-(4-fluorobenzyl)piperidine fragment for the development of new tyrosinase inhibitors. Eur. J. Med. Chem., 2017, 125, 992-1001.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.030] [PMID: 27810600]
[141]
Ielo, L.; Deri, B.; Germanò, M.P.; Vittorio, S.; Mirabile, S.; Gitto, R.; Rapisarda, A.; Ronsisvalle, S.; Floris, S.; Pazy, Y.; Fais, A.; Fishman, A.; De Luca, L. Exploiting the 1-(4-fluorobenzyl)piperazine fragment for the development of novel tyrosinase inhibitors as anti-melanogenic agents: Design, synthesis, structural insights and biological profile. Eur. J. Med. Chem., 2019, 178, 380-389.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.019] [PMID: 31202126]
[142]
Brasil, E.M.; Canavieira, L.M.; Cardoso, É.T.C.; Silva, E.O.; Lameira, J.; Nascimento, J.L.M.; Eifler-Lima, V.L.; Macchi, B.M.; Sriram, D.; Bernhardt, P.V.; Silva, J.R.A.; Williams, C.M.; Alves, C.N. Inhibition of tyrosinase by 4 H ‐chromene analogs: Synthesis, kinetic studies, and computational analysis. Chem. Biol. Drug Des., 2017, 90(5), 804-810.
[http://dx.doi.org/10.1111/cbdd.13001] [PMID: 28390091]
[143]
Doğan, İ.S.; Özel, A.; Birinci, Z.; Barut, B.; Sellitepe, H.E.; Kahveci, B. Synthesis of some novel 2-substitutedbenzyl-(4)7-phenyl-1 H-benzo[d]imidazoles in mild conditions as potent anti-tyrosinase and antioxidant agents. Arch. Pharm. (Weinheim), 2016, 349(11), 881-888.
[http://dx.doi.org/10.1002/ardp.201600224] [PMID: 27681014]
[144]
Wang, R.; Chai, W.M.; Yang, Q.; Wei, M.K.; Peng, Y. 2-(4-Fluorophenyl)-quinazolin-4(3H)-one as a novel tyrosinase inhibitor: Synthesis, inhibitory activity, and mechanism. Bioorg. Med. Chem., 2016, 24(19), 4620-4625.
[http://dx.doi.org/10.1016/j.bmc.2016.07.068] [PMID: 27527415]
[145]
Ubeid, A.A.; Do, S.; Nye, C.; Hantash, B.M. Potent low toxicity inhibition of human melanogenesis by novel indole-containing octapeptides. Biochim. Biophys. Acta, Gen. Subj., 2012, 1820(10), 1481-1489.
[http://dx.doi.org/10.1016/j.bbagen.2012.05.003] [PMID: 22609875]
[146]
Kaushik, N.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C.; Verma, A.; Choi, E. Biomedical importance of indoles. Molecules, 2013, 18(6), 6620-6662.
[http://dx.doi.org/10.3390/molecules18066620] [PMID: 23743888]
[147]
Franzén, R.G. Recent advances in the preparation of heterocycles on solid support: A review of the literature. J. Comb. Chem., 2000, 2(3), 195-214.
[http://dx.doi.org/10.1021/cc000002f] [PMID: 10827923]
[148]
Ferro, S.; Certo, G.; De Luca, L.; Germanò, M.P.; Rapisarda, A.; Gitto, R. Searching for indole derivatives as potential mushroom tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem., 2016, 31(3), 398-403.
[PMID: 25826148]
[149]
Chortani, S.; Nimbarte, V.D.; Horchani, M.; Ben Jannet, H.; Romdhane, A. Synthesis, biological evaluation and molecular docking analysis of novel benzopyrimidinone derivatives as potential anti-tyrosinase agents. Bioorg. Chem., 2019, 92, 103270.
[http://dx.doi.org/10.1016/j.bioorg.2019.103270] [PMID: 31539749]
[150]
Egorov, M.; Delpech, B.; Aubert, G.; Cresteil, T.; Garcia-Alvarez, M.C.; Collin, P.; Marazano, C. A concise formation of N-substituted 3,4-diarylpyrroles – synthesis and cytotoxic activity. Org. Biomol. Chem., 2014, 12(9), 1518-1524.
[http://dx.doi.org/10.1039/C3OB42309C] [PMID: 24448828]
[151]
La Regina, G.; Bai, R.; Coluccia, A.; Famiglini, V.; Pelliccia, S.; Passacantilli, S.; Mazzoccoli, C.; Ruggieri, V.; Sisinni, L.; Bolognesi, A.; Rensen, W.M.; Miele, A.; Nalli, M.; Alfonsi, R.; Di Marcotullio, L.; Gulino, A.; Brancale, A.; Novellino, E.; Dondio, G.; Vultaggio, S.; Varasi, M.; Mercurio, C.; Hamel, E.; Lavia, P.; Silvestri, R. New pyrrole derivatives with potent tubulin polymerization inhibiting activity as anticancer agents including hedgehog-dependent cancer. J. Med. Chem., 2014, 57(15), 6531-6552.
[http://dx.doi.org/10.1021/jm500561a] [PMID: 25025991]
[152]
Needham, J.; Kelly, M.T.; Ishige, M.; Andersen, R.J. Andrimid and moiramides A-C, metabolites produced in culture by a marine isolate of the bacterium Pseudomonas fluorescens: Structure elucidation and biosynthesis. J. Org. Chem., 1994, 59(8), 2058-2063.
[http://dx.doi.org/10.1021/jo00087a020]
[153]
Hwang, K.S.; Yang, J.Y.; Lee, J.; Lee, Y.R.; Kim, S.S.; Kim, G.R.; Chae, J.S.; Ahn, J.H.; Shin, D.S.; Choi, T.Y.; Bae, M.A. A novel anti-melanogenic agent, KDZ-001, inhibits tyrosinase enzymatic activity. J. Dermatol. Sci., 2018, 89(2), 165-171.
[http://dx.doi.org/10.1016/j.jdermsci.2017.11.004] [PMID: 29191393]
[154]
Knaust, J.M.; Knight, D.A.; Keller, S.W. Crystal and molecular structures of several tetrakis (nitrile) copper(I) complexes. J. Chem. Crystallogr., 2003, 33(11), 813-823.
[http://dx.doi.org/10.1023/A:1027445410426]
[155]
Nihei, K.; Kubo, I. Benzonitriles as tyrosinase inhibitors with hyperbolic inhibition manner. Int. J. Biol. Macromol., 2019, 133, 929-932.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.156] [PMID: 31026526]
[156]
Nihei, K.; Kubo, I. Tyrosinase inhibition by 4-substituted benzaldehydes with electron-withdrawing groups. Appl. Biochem. Biotechnol., 2020, 191(4), 1711-1716.
[http://dx.doi.org/10.1007/s12010-020-03295-w] [PMID: 32212107]
[157]
Mathew, B.P.; Kumar, A.; Sharma, S.; Shukla, P.K.; Nath, M. An eco-friendly synthesis and antimicrobial activities of dihydro-2H-benzo- and naphtho-1,3-oxazine derivatives. Eur. J. Med. Chem., 2010, 45(4), 1502-1507.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.058] [PMID: 20116901]
[158]
Böhme, T.M.; Augelli-Szafran, C.E.; Hallak, H.; Pugsley, T.; Serpa, K.; Schwarz, R.D. Synthesis and pharmacology of benzoxazines as highly selective antagonists at M(4) muscarinic receptors. J. Med. Chem., 2002, 45(14), 3094-3102.
[http://dx.doi.org/10.1021/jm011116o] [PMID: 12086495]
[159]
Demkowicz, S.; Rachon, J.; Daśko, M.; Kozak, W. Selected organophosphorus compounds with biological activity. Applications in medicine. RSC Advances, 2016, 6(9), 7101-7112.
[http://dx.doi.org/10.1039/C5RA25446A]
[160]
Zhang, P.; Terefenko, E.A.; Fensome, A.; Zhang, Z.; Zhu, Y.; Cohen, J.; Winneker, R.; Wrobel, J.; Yardley, J. Potent nonsteroidal progesterone receptor agonists: Synthesis and SAR study of 6-aryl benzoxazines. Bioorg. Med. Chem. Lett., 2002, 12(5), 787-790.
[http://dx.doi.org/10.1016/S0960-894X(02)00025-2] [PMID: 11859003]
[161]
Abdou, M.M.; O’Neill, P.M.; Amigues, E.; Matziari, M. Phosphinic acids: Current status and potential for drug discovery. Drug Discov. Today, 2019, 24(3), 916-929.
[http://dx.doi.org/10.1016/j.drudis.2018.11.016] [PMID: 30481556]
[162]
Metcalf, W.W.; van der Donk, W.A. Biosynthesis of phosphonic and phosphinic acid natural products. Annu. Rev. Biochem., 2009, 78(1), 65-94.
[http://dx.doi.org/10.1146/annurev.biochem.78.091707.100215] [PMID: 19489722]
[163]
Rodriguez, J.B.; Gallo-Rodriguez, C. The role of the phosphorus atom in drug design. ChemMedChem, 2019, 14(2), 190-216.
[PMID: 30536636]
[164]
Sevrain, C.M.; Berchel, M.; Couthon, H.; Jaffrès, P.A. Phosphonic acid: Preparation and applications. Beilstein J. Org. Chem., 2017, 13, 2186-2213.
[http://dx.doi.org/10.3762/bjoc.13.219] [PMID: 29114326]
[165]
Wolińska, E.; Hałdys, K.; Góra, J.; Olszewski, T.K.; Boduszek, B.; Latajka, R. Phosphonic and phosphinic acid derivatives as novel tyrosinase inhibitors: Kinetic studies and molecular docking. Chem. Biodivers., 2019, 16(7), e1900167.
[http://dx.doi.org/10.1002/cbdv.201900167] [PMID: 31145516]
[166]
Ghani, U.; Ullah, N. New potent inhibitors of tyrosinase: Novel clues to binding of 1,3,4-thiadiazole-2(3H)-thiones, 1,3,4-oxadiazole-2(3H)-thiones, 4-amino-1,2,4-triazole-5(4H)-thiones, and substituted hydrazides to the dicopper active site. Bioorg. Med. Chem., 2010, 18(11), 4042-4048.
[http://dx.doi.org/10.1016/j.bmc.2010.04.021] [PMID: 20452224]
[167]
Xie, J.; Dong, H.; Yu, Y.; Cao, S. Inhibitory effect of synthetic aromatic heterocycle thiosemicarbazone derivatives on mushroom tyrosinase: Insights from fluorescence, 1 H NMR titration and molecular docking studies. Food Chem., 2016, 190, 709-716.
[http://dx.doi.org/10.1016/j.foodchem.2015.05.124] [PMID: 26213029]
[168]
Bielenica, A.; Kędzierska, E.; Koliński, M.; Kmiecik, S.; Koliński, A.; Fiorino, F.; Severino, B.; Magli, E.; Corvino, A.; Rossi, I.; Massarelli, P.; Kozioł, A.E.; Sawczenko, A.; Struga, M. 5-HT 2 receptor affinity, docking studies and pharmacological evaluation of a series of 1,3-disubstituted thiourea derivatives. Eur. J. Med. Chem., 2016, 116, 173-186.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.073] [PMID: 27061981]
[169]
Colina-Vegas, L.; Luna-Dulcey, L.; Plutín, A.M.; Castellano, E.E.; Cominetti, M.R.; Batista, A.A. Half sandwich Ru(II)-acylthiourea complexes: DNA/HSA-binding, anti-migration and cell death in a human breast tumor cell line. Dalton Trans., 2017, 46(38), 12865-12875.
[http://dx.doi.org/10.1039/C7DT01801K] [PMID: 28920989]
[170]
Manjula, S.N.; Malleshappa Noolvi, N.; Vipan Parihar, K.; Manohara Reddy, S.A.; Ramani, V.; Gadad, A.K.; Singh, G.; Gopalan Kutty, N.; Mallikarjuna Rao, C. Synthesis and antitumor activity of optically active thiourea and their 2-aminobenzothiazole derivatives: A novel class of anticancer agents. Eur. J. Med. Chem., 2009, 44(7), 2923-2929.
[http://dx.doi.org/10.1016/j.ejmech.2008.12.002] [PMID: 19128861]
[171]
Saeed, S.; Rashid, N.; Jones, P.G.; Ali, M.; Hussain, R. Synthesis, characterization and biological evaluation of some thiourea derivatives bearing benzothiazole moiety as potential antimicrobial and anticancer agents. Eur. J. Med. Chem., 2010, 45(4), 1323-1331.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.016] [PMID: 20056520]
[172]
Xu, X.; Qian, X.; Li, Z.; Huang, Q.; Chen, G. Synthesis and insecticidal activity of new substituted N-aryl-N′-benzoylthiourea compounds. J. Fluor. Chem., 2003, 121(1), 51-54.
[http://dx.doi.org/10.1016/S0022-1139(02)00330-5]
[173]
Zhong, Z.; Xing, R.; Liu, S.; Wang, L.; Cai, S.; Li, P. Synthesis of acyl thiourea derivatives of chitosan and their antimicrobial activities in vitro. Carbohydr. Res., 2008, 343(3), 566-570.
[http://dx.doi.org/10.1016/j.carres.2007.11.024] [PMID: 18083151]
[174]
Liu, P.; Shu, C.; Liu, L.; Huang, Q.; Peng, Y. Design and synthesis of thiourea derivatives with sulfur-containing heterocyclic scaffolds as potential tyrosinase inhibitors. Bioorg. Med. Chem., 2016, 24(8), 1866-1871.
[http://dx.doi.org/10.1016/j.bmc.2016.03.013] [PMID: 26972919]
[175]
Baird, J.K.; Rieckmann, K.H. Can primaquine therapy for vivax malaria be improved? Trends Parasitol., 2003, 19(3), 115-120.
[http://dx.doi.org/10.1016/S1471-4922(03)00005-9] [PMID: 12643993]
[176]
Mustafa, M.N.; Saeed, A.; Channar, P.A.; Larik, F.A.; Zain-ul abideen, M.; Shabir, G.; Abbas, Q.; Hassan, M.; Raza, H.; Seo, S.Y. Synthesis, molecular docking and kinetic studies of novel quinolinyl based acyl thioureas as mushroom tyrosinase inhibitors and free radical scavengers. Bioorg. Chem., 2019, 90, 103063.
[http://dx.doi.org/10.1016/j.bioorg.2019.103063] [PMID: 31220666]
[177]
Arslan, H.; Duran, N.; Borekci, G.; Koray Ozer, C.; Akbay, C. Antimicrobial activity of some thiourea derivatives and their nickel and copper complexes. Molecules, 2009, 14(1), 519-527.
[http://dx.doi.org/10.3390/molecules14010519] [PMID: 19169199]
[178]
Song, S.; You, A.; Chen, Z.; Zhu, G.; Wen, H.; Song, H.; Yi, W. Study on the design, synthesis and structure-activity relationships of new thiosemicarbazone compounds as tyrosinase inhibitors. Eur. J. Med. Chem., 2017, 139, 815-825.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.033] [PMID: 28865277]
[179]
Hałdys, K.; Goldeman, W.; Jewgiński, M.; Wolińska, E.; Anger, N.; Rossowska, J.; Latajka, R. Inhibitory properties of aromatic thiosemicarbazones on mushroom tyrosinase: Synthesis, kinetic studies, molecular docking and effectiveness in melanogenesis inhibition. Bioorg. Chem., 2018, 81, 577-586.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.003] [PMID: 30248509]
[180]
Xu, J.; Liu, J.; Zhu, X.; Yu, Y.; Cao, S. Novel inhibitors of tyrosinase produced by the 4-substitution of TCT. Food Chem., 2017, 221, 1530-1538.
[http://dx.doi.org/10.1016/j.foodchem.2016.10.140] [PMID: 27979126]
[181]
Song, S.; Mai, Y.; Shi, H.; Liao, B.; Wang, F. Design, synthesis, biological evaluation and inhibition mechanism of 3-/4-alkoxy phenylethylidenethiosemicarbazides as new, potent and safe tyrosinase inhibitors. Chem. Pharm. Bull. (Tokyo), 2020, 68(4), 369-379.
[http://dx.doi.org/10.1248/cpb.c19-00949] [PMID: 32238654]
[182]
Vijesh, A.M.; Isloor, A.M.; Prabhu, V.; Ahmad, S.; Malladi, S. Synthesis, characterization and anti-microbial studies of some novel 2,4-disubstituted thiazoles. Eur. J. Med. Chem., 2010, 45(11), 5460-5464.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.048] [PMID: 20716467]
[183]
Zhang, Y.; Fu, X.; Yan, Y.; Liu, J. Microwave‐assisted synthesis and biological evaluation of new thiazolylhydrazone derivatives as tyrosinase inhibitors and antioxidants. J. Heterocycl. Chem., 2020, 57(3), 991-1002.
[http://dx.doi.org/10.1002/jhet.3760]
[184]
Albrecht, U.; Gördes, D.; Schmidt, E.; Thurow, K.; Lalk, M.; Langer, P. Synthesis and structure–activity relationships of 2-alkylidenethiazolidine-4,5-diones as antibiotic agents. Bioorg. Med. Chem., 2005, 13(14), 4402-4407.
[http://dx.doi.org/10.1016/j.bmc.2005.04.046] [PMID: 15905094]
[185]
Balzarini, J.; Orzeszko, B.; Maurin, J.K.; Orzeszko, A. Synthesis and anti-HIV studies of 2-adamantyl-substituted thiazolidin-4-ones. Eur. J. Med. Chem., 2007, 42(7), 993-1003.
[http://dx.doi.org/10.1016/j.ejmech.2007.01.003] [PMID: 17321639]
[186]
da Rocha, L.F., Junior Synthesis of a novel thiazolidinedione and evaluation of its modulatory effect on IFN-gamma, IL-6, IL-17A, and IL-22 production in PBMCs from rheumatoid arthritis patients. Biomed Res. Int., 2013, 2013, 926060.
[187]
Kaminskyy, D.; Khyluk, D.; Vasylenko, O.; Zaprutko, L.; Lesyk, R. A facile synthesis and anticancer activity evaluation of spiro[thiazolidinone-isatin] conjugates. Sci. Pharm., 2011, 79(4), 763-777.
[http://dx.doi.org/10.3797/scipharm.1109-14] [PMID: 22145104]
[188]
Kato, T.; Ozaki, T.; Tamura, K.; Suzuki, Y.; Akima, M.; Ohi, N. Novel calcium antagonists with both calcium overload inhibition and antioxidant activity. 2. Structure-activity relationships of thiazolidinone derivatives. J. Med. Chem., 1999, 42(16), 3134-3146.
[http://dx.doi.org/10.1021/jm9900927] [PMID: 10447958]
[189]
Mazzoni, O. Synthesis and pharmacological activity of 2-(substituted)-3-{2- (4-phenyl-4-cyano)piperidino ethyl}-1,3-thiazolidi n-4-ones. Chem. Biol. Drug Des., 2006, 67(6), 432-436.
[http://dx.doi.org/10.1111/j.1747-0285.2006.00399.x] [PMID: 16882318]
[190]
Ragab, F.A.; Eid, N.M.; el-Tawab, H.A. Synthesis and anticonvulsant activity of new thiazolidinone and thioxoimidazolidinone derivatives derived from furochromones. Pharmazie, 1997, 52(12), 926-929.
[PMID: 9442556]
[191]
Rollas, S.; Küçükgüzel, S. Biological activities of hydrazone derivatives. Molecules, 2007, 12(8), 1910-1939.
[http://dx.doi.org/10.3390/12081910] [PMID: 17960096]
[192]
Taranalli, A.D.; Bhat, A.R.; Srinivas, S.; Saravanan, E. Antiinflammatory, analgesic and antipyretic activity of certain thiazolidinones. Indian J. Pharm. Sci., 2008, 70(2), 159-164.
[http://dx.doi.org/10.4103/0250-474X.41448] [PMID: 20046705]
[193]
Youssef, A.M.; Sydney White, M.; Villanueva, E.B.; El-Ashmawy, I.M.; Klegeris, A. Synthesis and biological evaluation of novel pyrazolyl-2,4-thiazolidinediones as anti-inflammatory and neuroprotective agents. Bioorg. Med. Chem., 2010, 18(5), 2019-2028.
[http://dx.doi.org/10.1016/j.bmc.2010.01.021] [PMID: 20138770]
[194]
Mutahir, S.; Khan, M.A.; Khan, I.U.; Yar, M.; Ashraf, M.; Tariq, S.; Ye, R.; Zhou, B. Organocatalyzed and mechanochemical solvent-free synthesis of novel and functionalized bis-biphenyl substituted thiazolidinones as potent tyrosinase inhibitors: SAR and molecular modeling studies. Eur. J. Med. Chem., 2017, 134, 406-414.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.021] [PMID: 28433680]
[195]
Rezaei, M.; Mohammadi, H.T.; Mahdavi, A.; Shourian, M.; Ghafouri, H. Evaluation of thiazolidinone derivatives as a new class of mushroom tyrosinase inhibitors. Int. J. Biol. Macromol., 2018, 108, 205-213.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.147] [PMID: 29180052]
[196]
Channar, P.A.; Saeed, A.; Larik, F.A.; Rafiq, M.; Ashraf, Z.; Jabeen, F.; Fattah, T.A. Synthesis, computational studies and enzyme inhibitory kinetics of substituted methyl[2-(4-dimethylamino-benzylidene)-hydrazono)-4-oxo-thiazolidin-5-ylidene]acetates as mushroom tyrosinase inhibitors. Bioorg. Med. Chem., 2017, 25(21), 5929-5938.
[http://dx.doi.org/10.1016/j.bmc.2017.09.009] [PMID: 28988751]
[197]
Butt, A.R.S.; Abbasi, M.A.; Aziz-ur-Rehman, ; Siddiqui, S.Z.; Raza, H.; Hassan, M.; Shah, S.A.A.; Shahid, M.; Seo, S.Y. Synthesis and structure-activity relationship of tyrosinase inhibiting novel bi-heterocyclic acetamides: Mechanistic insights through enzyme inhibition, kinetics and computational studies. Bioorg. Chem., 2019, 86, 459-472.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.036] [PMID: 30772647]
[198]
Gujjar, R.; Marwaha, A.; El Mazouni, F.; White, J.; White, K.L.; Creason, S.; Shackleford, D.M.; Baldwin, J.; Charman, W.N.; Buckner, F.S.; Charman, S.; Rathod, P.K.; Phillips, M.A. Identification of a metabolically stable triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor with antimalarial activity in mice. J. Med. Chem., 2009, 52(7), 1864-1872.
[http://dx.doi.org/10.1021/jm801343r] [PMID: 19296651]
[199]
Johns, B.A.; Weatherhead, J.G.; Allen, S.H.; Thompson, J.B.; Garvey, E.P.; Foster, S.A.; Jeffrey, J.L.; Miller, W.H. The use of oxadiazole and triazole substituted naphthyridines as HIV-1 integrase inhibitors. Part 1: Establishing the pharmacophore. Bioorg. Med. Chem. Lett., 2009, 19(6), 1802-1806.
[http://dx.doi.org/10.1016/j.bmcl.2009.01.090] [PMID: 19217781]
[200]
Manfredini, S.; Beatrice Vicentini, C.; Manfrini, M.; Bianchi, N.; Rutigliano, C.; Mischiati, C.; Gambari, R. Pyrazolo-triazoles as light activable DNA cleaving agents. Bioorg. Med. Chem., 2000, 8(9), 2343-2346.
[http://dx.doi.org/10.1016/S0968-0896(00)00160-7] [PMID: 11026546]
[201]
Sztanke, K.; Tuzimski, T.; Rzymowska, J.; Pasternak, K.; Kandefer-Szerszeń, M. Synthesis, determination of the lipophilicity, anticancer and antimicrobial properties of some fused 1,2,4-triazole derivatives. Eur. J. Med. Chem., 2008, 43(2), 404-419.
[http://dx.doi.org/10.1016/j.ejmech.2007.03.033] [PMID: 17531354]
[202]
Grynberg, N.; Santos, A.C.; Echevarria, A. Synthesis and in vivo antitumor activity of new heterocyclic derivatives of the 1,3,4-thiadiazolium-2-aminide class. Anticancer Drugs, 1997, 8(1), 88-91.
[http://dx.doi.org/10.1097/00001813-199701000-00012] [PMID: 9147617]
[203]
Tang, J.; Liu, J.; Wu, F. Molecular docking studies and biological evaluation of 1,3,4-thiadiazole derivatives bearing Schiff base moieties as tyrosinase inhibitors. Bioorg. Chem., 2016, 69, 29-36.
[http://dx.doi.org/10.1016/j.bioorg.2016.09.007] [PMID: 27669118]
[204]
Sasaki, A.; Yamano, Y.; Sugimoto, S.; Otsuka, H.; Matsunami, K.; Shinzato, T. Phenolic compounds from the leaves of Breynia officinalis and their tyrosinase and melanogenesis inhibitory activities. J. Nat. Med., 2018, 72(2), 381-389.
[http://dx.doi.org/10.1007/s11418-017-1148-8] [PMID: 29264846]
[205]
Chung, K.W.; Park, Y.J.; Choi, Y.J.; Park, M.H.; Ha, Y.M.; Uehara, Y.; Yoon, J.H.; Chun, P.; Moon, H.R.; Chung, H.Y. Evaluation of in vitro and in vivo anti-melanogenic activity of a newly synthesized strong tyrosinase inhibitor (E)-3-(2,4dihydroxybenzylidene)pyrrolidine-2,5-dione (3-DBP). Biochim. Biophys. Acta, Gen. Subj., 2012, 1820(7), 962-969.
[http://dx.doi.org/10.1016/j.bbagen.2012.03.018] [PMID: 22498140]
[206]
Ha, Y.M.; Kim, J-A.; Park, Y.J.; Park, D.; Choi, Y.J.; Kim, J.M.; Chung, K.W.; Han, Y.K.; Park, J.Y.; Lee, J.Y.; Moon, H.R.; Chung, H.Y. Synthesis and biological activity of hydroxybenzylidenyl pyrrolidine-2,5-dione derivatives as new potent inhibitors of tyrosinase. MedChemComm, 2011, 2(6), 542-549.
[http://dx.doi.org/10.1039/c0md00234h]
[207]
Ha, Y.M.; Kim, J.A.; Park, Y.J.; Park, D.; Kim, J.M.; Chung, K.W.; Lee, E.K.; Park, J.Y.; Lee, J.Y.; Lee, H.J.; Yoon, J.H.; Moon, H.R.; Chung, H.Y. Analogs of 5-(substituted benzylidene)hydantoin as inhibitors of tyrosinase and melanin formation. Biochim. Biophys. Acta, Gen. Subj., 2011, 1810(6), 612-619.
[http://dx.doi.org/10.1016/j.bbagen.2011.03.001] [PMID: 21397665]
[208]
Ha, Y.M.; Park, Y.J.; Kim, J.A.; Park, D.; Park, J.Y.; Lee, H.J.; Lee, J.Y.; Moon, H.R.; Chung, H.Y. Design and synthesis of 5-(substituted benzylidene)thiazolidine-2,4-dione derivatives as novel tyrosinase inhibitors. Eur. J. Med. Chem., 2012, 49, 245-252.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.019] [PMID: 22301213]
[209]
Kim, H.R.; Lee, H.J.; Choi, Y.J.; Park, Y.J.; Woo, Y.; Kim, S.J.; Park, M.H.; Lee, H.W.; Chun, P.; Chung, H.Y.; Moon, H.R. Benzylidene-linked thiohydantoin derivatives as inhibitors of tyrosinase and melanogenesis: Importance of the β-phenyl-α,β-unsaturated carbonyl functionality. MedChem-Comm, 2014, 5(9), 1410-1417.
[http://dx.doi.org/10.1039/C4MD00171K]
[210]
Kim, S.H.; Ha, Y.M.; Moon, K.M.; Choi, Y.J.; Park, Y.J.; Jeong, H.O.; Chung, K.W.; Lee, H.J.; Chun, P.; Moon, H.R.; Chung, H.Y. Anti-melanogenic effect of (Z)-5-(2,4-dihydroxybenzylidene) thiazolidine-2,4-dione, a novel tyrosinase inhibitor. Arch. Pharm. Res., 2013, 36(10), 1189-1197.
[http://dx.doi.org/10.1007/s12272-013-0184-5] [PMID: 23812774]
[211]
Yun, H.Y.; Kim, D.H.; Son, S.; Ullah, S.; Kim, S.J.; Kim, Y.J.; Yoo, J.W.; Jung, Y.; Chun, P.; Moon, H.R. Design, synthesis, and anti-melanogenic effects of (E)-2-benzoyl-3-(substituted phenyl)acrylonitriles. Drug Des. Devel. Ther., 2015, 9, 4259-4268.
[PMID: 26347064]
[212]
Kim, S.J.; Yang, J.; Lee, S.; Park, C.; Kang, D.; Akter, J.; Ullah, S.; Kim, Y.J.; Chun, P.; Moon, H.R. The tyrosinase inhibitory effects of isoxazolone derivatives with a (Z)-β-phenyl-α, β -unsaturated carbonyl scaffold. Bioorg. Med. Chem., 2018, 26(14), 3882-3889.
[http://dx.doi.org/10.1016/j.bmc.2018.05.047] [PMID: 29907470]
[213]
Rafiq, M.; Nazir, Y.; Ashraf, Z.; Rafique, H.; Afzal, S.; Mumtaz, A.; Hassan, M.; Ali, A.; Afzal, K.; Yousuf, M.R.; Saleem, M.; Kotwica-Mojzych, K.; Mojzych, M. Synthesis, computational studies, tyrosinase inhibitory kinetics and antimelanogenic activity of hydroxy substituted 2-[(4-acetylphenyl)amino]-2-oxoethyl derivatives. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1562-1572.
[http://dx.doi.org/10.1080/14756366.2019.1654468] [PMID: 31456445]
[214]
Curto, E.V.; Kwong, C.; Hermersdörfer, H.; Glatt, H.; Santis, C.; Virador, V.; Hearing, V.J., Jr; Dooley, T.P. Inhibitors of mammalian melanocyte tyrosinase: In vitro comparisons of alkyl esters of gentisic acid with other putative inhibitors. Biochem. Pharmacol., 1999, 57(6), 663-672.
[http://dx.doi.org/10.1016/S0006-2952(98)00340-2] [PMID: 10037452]
[215]
Ullah, S.; Akter, J.; Kim, S.J.; Yang, J.; Park, Y.; Chun, P.; Moon, H.R. The tyrosinase-inhibitory effects of 2-phenyl-1,4-naphthoquinone analogs: Importance of the (E)-β-phenyl-α,β-unsaturated carbonyl scaffold of an endomethylene type. Med. Chem. Res., 2019, 28(1), 95-103.
[http://dx.doi.org/10.1007/s00044-018-2267-9]
[216]
Baruah, K.; Duy Phong, H.P.P.; Norouzitallab, P.; Defoirdt, T.; Bossier, P. The gnotobiotic brine shrimp (Artemia franciscana) model system reveals that the phenolic compound pyrogallol protects against infection through its prooxidant activity. Free Radic. Biol. Med., 2015, 89, 593-601.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.10.397] [PMID: 26459033]
[217]
Lim, J.Y.; Kim, C.M.; Rhee, J.H.; Kim, Y.R. Effects of Pyrogallol on growth and cytotoxicity of wild-type and katG mutant strains of Vibrio vulnificus. PLoS One, 2016, 11(12), e0167699.
[http://dx.doi.org/10.1371/journal.pone.0167699] [PMID: 27936080]
[218]
Nemec, M.J.; Kim, H.; Marciante, A.B.; Barnes, R.C.; Talcott, S.T.; Mertens-Talcott, S.U. Pyrogallol, an absorbable microbial gallotannins-metabolite and mango polyphenols (Mangifera Indica L.) suppress breast cancer ductal carcinoma in situ proliferation in vitro. Food Funct., 2016, 7(9), 3825-3833.
[http://dx.doi.org/10.1039/C6FO00636A] [PMID: 27491891]
[219]
Jing, G.; Huang, H.; Yang, B.; Li, J.; Zheng, X.; Jiang, Y. Effect of pyrogallol on the physiology and biochemistry of litchi fruit during storage. Chem. Cent. J., 2013, 7(1), 19.
[http://dx.doi.org/10.1186/1752-153X-7-19] [PMID: 23363809]
[220]
Iraji, A.; Adelpour, T.; Edraki, N.; Khoshneviszadeh, M.; Miri, R.; Khoshneviszadeh, M. Synthesis, biological evaluation and molecular docking analysis of vaniline–benzylidenehydrazine hybrids as potent tyrosinase inhibitors. BMC Chem., 2020, 14(1), 28.
[http://dx.doi.org/10.1186/s13065-020-00679-1] [PMID: 32280949]
[221]
Choi, W.S.; Shin, P.G.; Lee, J.H.; Kim, G.D. The regulatory effect of veratric acid on NO production in LPS-stimulated RAW264.7 macrophage cells. Cell. Immunol., 2012, 280(2), 164-170.
[http://dx.doi.org/10.1016/j.cellimm.2012.12.007] [PMID: 23399843]
[222]
Narasimhan, B.; Ohlan, S.; Ohlan, R.; Judge, V.; Narang, R. Hansch analysis of veratric acid derivatives as antimicrobial agents. Eur. J. Med. Chem., 2009, 44(2), 689-700.
[http://dx.doi.org/10.1016/j.ejmech.2008.05.008] [PMID: 18597896]
[223]
Saravanakumar, M.; Raja, B. Veratric acid, a phenolic acid attenuates blood pressure and oxidative stress in l-NAME induced hypertensive rats. Eur. J. Pharmacol., 2011, 671(1-3), 87-94.
[http://dx.doi.org/10.1016/j.ejphar.2011.08.052] [PMID: 21937012]
[224]
Saravanakumar, M.; Raja, B.; Manivannan, J.; Silambarasan, T.; Prahalathan, P.; Kumar, S.; Mishra, S.K. Oral administration of veratric acid, a constituent of vegetables and fruits, prevents cardiovascular remodelling in hypertensive rats: A functional evaluation. Br. J. Nutr., 2015, 114(9), 1385-1394.
[http://dx.doi.org/10.1017/S0007114515003086] [PMID: 26346559]
[225]
Wang, Q.; Sun, L.; Gong, Z.; Du, Y. Veratric Acid inhibits LPS-Induced IL-6 and IL-8 production in human gingival fibroblasts. Inflammation, 2016, 39(1), 237-242.
[http://dx.doi.org/10.1007/s10753-015-0243-9] [PMID: 26329367]
[226]
Dehghani, Z.; Khoshneviszadeh, M.; Khoshneviszadeh, M.; Ranjbar, S. Veratric acid derivatives containing benzylidene-hydrazine moieties as promising tyrosinase inhibitors and free radical scavengers. Bioorg. Med. Chem., 2019, 27(12), 2644-2651.
[http://dx.doi.org/10.1016/j.bmc.2019.04.016] [PMID: 31000406]
[227]
Uesugi, D.; Hamada, H.; Shimoda, K.; Kubota, N.; Ozaki, S.; Nagatani, N. Synthesis, oxygen radical absorbance capacity, and tyrosinase inhibitory activity of glycosides of resveratrol, pterostilbene, and pinostilbene. Biosci. Biotechnol. Biochem., 2017, 81(2), 226-230.
[http://dx.doi.org/10.1080/09168451.2016.1240606] [PMID: 27756183]
[228]
Ishioka, W.; Oonuki, S.; Iwadate, T.; Nihei, K. Resorcinol alkyl glucosides as potent tyrosinase inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(2), 313-316.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.029] [PMID: 30470492]
[229]
Chen, Y.; Xu, X.; Fu, T.; Li, W.; Liu, Z.; Sun, H. Discovery of new scaffolds from approved drugs as acetylcholinesterase inhibitors. RSC Advances, 2015, 5(110), 90288-90294.
[http://dx.doi.org/10.1039/C5RA19551A]
[230]
Chai, W.M.; Lin, M.Z.; Song, F.J.; Wang, Y.X.; Xu, K.L.; Huang, J.X.; Fu, J.P.; Peng, Y.Y. Rifampicin as a novel tyrosinase inhibitor: Inhibitory activity and mechanism. Int. J. Biol. Macromol., 2017, 102, 425-430.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.058] [PMID: 28414110]
[231]
Abu Ubeid, A.; Zhao, L.; Wang, Y.; Hantash, B.M. Short-sequence oligopeptides with inhibitory activity against mushroom and human tyrosinase. J. Invest. Dermatol., 2009, 129(9), 2242-2249.
[http://dx.doi.org/10.1038/jid.2009.124] [PMID: 19440221]
[232]
Schurink, M.; van Berkel, W.J.H.; Wichers, H.J.; Boeriu, C.G. Novel peptides with tyrosinase inhibitory activity. Peptides, 2007, 28(3), 485-495.
[http://dx.doi.org/10.1016/j.peptides.2006.11.023] [PMID: 17241698]
[233]
Hsiao, N.W.; Tseng, T.S.; Lee, Y.C.; Chen, W.C.; Lin, H.H.; Chen, Y.R.; Wang, Y.T.; Hsu, H.J.; Tsai, K.C. Serendipitous discovery of short peptides from natural products as tyrosinase inhibitors. J. Chem. Inf. Model., 2014, 54(11), 3099-3111.
[http://dx.doi.org/10.1021/ci500370x] [PMID: 25317506]
[234]
Ochiai, A.; Tanaka, S.; Imai, Y.; Yoshida, H.; Kanaoka, T.; Tanaka, T.; Taniguchi, M. New tyrosinase inhibitory decapeptide: Molecular insights into the role of tyrosine residues. J. Biosci. Bioeng., 2016, 121(6), 607-613.
[http://dx.doi.org/10.1016/j.jbiosc.2015.10.010] [PMID: 26589783]
[235]
Shen, Z.; Wang, Y.; Guo, Z.; Tan, T.; Zhang, Y. Novel tyrosinase inhibitory peptide with free radical scavenging ability. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1633-1640.
[http://dx.doi.org/10.1080/14756366.2019.1661401] [PMID: 31496313]
[236]
Feng, L.; Shi, N.; Cai, S.; Qiao, X.; Chu, P.; Wang, H.; Long, F.; Yang, H.; Yang, Y.; Wang, Y.; Yu, H. De novo molecular design of a novel octapeptide that inhibits in vivo melanogenesis and has great transdermal ability. J. Med. Chem., 2018, 61(15), 6846-6857.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00737] [PMID: 30011202]
[237]
Li, Q.; Yang, H.; Mo, J.; Chen, Y.; Wu, Y.; Kang, C.; Sun, Y.; Sun, H. Identification by shape-based virtual screening and evaluation of new tyrosinase inhibitors. PeerJ, 2018, 6, e4206.
[http://dx.doi.org/10.7717/peerj.4206] [PMID: 29383286]
[238]
Vittorio, S.; Seidel, T.; Germanò, M.P.; Gitto, R.; Ielo, L.; Garon, A.; Rapisarda, A.; Pace, V.; Langer, T.; De Luca, L. A combination of pharmacophore and docking‐based virtual screening to discover new tyrosinase inhibitors. Mol. Inform., 2020, 39(3), 1900054.
[http://dx.doi.org/10.1002/minf.201900054] [PMID: 31508903]
[239]
Chen, C.Y.; Lu, Y-H.; Lin, J-T.; Hu, C-C.; Fuh, C-B.; Tsai, H. Quick screening of true tyrosinase inhibitors from natural products using tyrosinase-immobilized magnetic nanoparticles and a magnetic microplate. J. Chin. Chem. Soc. (Taipei), 2018, 65(9), 1075-1081.
[http://dx.doi.org/10.1002/jccs.201800119]
[240]
Dong, H.; Liu, J.; Liu, X.; Yu, Y.; Cao, S. Combining molecular docking and QSAR studies for modeling the anti-tyrosinase activity of aromatic heterocycle thiosemicarbazone analogues. J. Mol. Struct., 2018, 1151, 353-365.
[http://dx.doi.org/10.1016/j.molstruc.2017.08.034]
[241]
Chen, X.; Haniu, A.; Kashiwagi, T.; Watanabe, H.; Watanabe, T.; Okamoto, Y.; Suzuki, M.; Kim, C.S. The evaluation of the synergistic effect of 3-(2,4-dihydroxyphenyl)propionic acid and l-ascorbic acid on tyrosinase inhibition. Z. Naturforsch. C J. Biosci., 2017, 72(3-4), 119-121.
[http://dx.doi.org/10.1515/znc-2016-0095] [PMID: 27442367]
[242]
Yu, Q.; Fan, L.; Duan, Z. Five individual polyphenols as tyrosinase inhibitors: Inhibitory activity, synergistic effect, action mechanism, and molecular docking. Food Chem., 2019, 297, 124910.
[http://dx.doi.org/10.1016/j.foodchem.2019.05.184] [PMID: 31253292]
[243]
Xu, Y.; Stokes, A.H.; Freeman, W.M.; Kumer, S.C.; Vogt, B.A.; Vrana, K.E. Tyrosine mRNA is expressed in human substantia nigra. Brain Res. Mol. Brain Res., 1997, 45(1), 159-162.
[http://dx.doi.org/10.1016/S0169-328X(96)00308-7] [PMID: 9105685]
[244]
Gaeta, A.; Molina-Holgado, F.; Kong, X.L.; Salvage, S.; Fakih, S.; Francis, P.T.; Williams, R.J.; Hider, R.C. Synthesis, physical–chemical characterisation and biological evaluation of novel 2-amido-3-hydroxypyridin-4(1H)-ones: Iron chelators with the potential for treating Alzheimer’s disease. Bioorg. Med. Chem., 2011, 19(3), 1285-1297.
[http://dx.doi.org/10.1016/j.bmc.2010.12.007] [PMID: 21236688]
[245]
Li, Q.; Xing, S.; Chen, Y.; Liao, Q.; Li, Q.; Liu, Y.; He, S.; Feng, F.; Chen, Y.; Zhang, J.; Liu, W.; Guo, Q.; Sun, Y.; Sun, H. Reasonably activating Nrf2: A long-term, effective and controllable strategy for neurodegenerative diseases. Eur. J. Med. Chem., 2020, 185, 111862.
[http://dx.doi.org/10.1016/j.ejmech.2019.111862] [PMID: 31735576]
[246]
Li, Q.; Yang, H.; Chen, Y.; Sun, H. Recent progress in the identification of selective butyrylcholinesterase inhibitors for Alzheimer’s disease. Eur. J. Med. Chem., 2017, 132, 294-309.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.062] [PMID: 28371641]
[247]
Lolak, N.; Boga, M.; Tuneg, M.; Karakoc, G.; Akocak, S.; Supuran, C.T. Sulphonamides incorporating 1,3,5-triazine structural motifs show antioxidant, acetylcholinesterase, butyrylcholinesterase, and tyrosinase inhibitory profile. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 424-431.
[http://dx.doi.org/10.1080/14756366.2019.1707196] [PMID: 31899985]
[248]
Supuran, C.T. Advances in structure-based drug discovery of carbonic anhydrase inhibitors. Expert Opin. Drug Discov., 2017, 12(1), 61-88.
[http://dx.doi.org/10.1080/17460441.2017.1253677] [PMID: 27783541]
[249]
Supuran, C.T. Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov., 2008, 7(2), 168-181.
[http://dx.doi.org/10.1038/nrd2467] [PMID: 18167490]
[250]
Akocak, S.; Alam, M.R.; Shabana, A.M.; Sanku, R.K.K.; Vullo, D.; Thompson, H.; Swenson, E.R.; Supuran, C.T.; Ilies, M.A. PEGylated Bis-Sulfonamide Carbonic Anhydrase inhibitors can efficiently control the growth of several Carbonic anhydrase IX-expressing carcinomas. J. Med. Chem., 2016, 59(10), 5077-5088.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00492] [PMID: 27144971]
[251]
Supuran, C.T. Exploring the multiple binding modes of inhibitors to carbonic anhydrases for novel drug discovery. Expert Opin. Drug Discov., 2020, 15(6), 671-686.
[http://dx.doi.org/10.1080/17460441.2020.1743676] [PMID: 32208982]
[252]
Supuran, C. Carbonic Anhydrases and metabolism. Metabolites, 2018, 8(2), 25.
[http://dx.doi.org/10.3390/metabo8020025] [PMID: 29561812]
[253]
Alterio, V.; Di Fiore, A.; D’Ambrosio, K.; Supuran, C.T.; De Simone, G. Multiple binding modes of inhibitors to carbonic anhydrases: How to design specific drugs targeting 15 different isoforms? Chem. Rev., 2012, 112(8), 4421-4468.
[http://dx.doi.org/10.1021/cr200176r] [PMID: 22607219]
[254]
Oguz, M.; Kalay, E.; Akocak, S.; Nocentini, A.; Lolak, N.; Boga, M.; Yilmaz, M.; Supuran, C.T. Synthesis of calix[4]azacrown substituted sulphonamides with antioxidant, acetylcholinesterase, butyrylcholinesterase, tyrosinase and carbonic anhydrase inhibitory action. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1215-1223.
[http://dx.doi.org/10.1080/14756366.2020.1765166] [PMID: 32401067]
[255]
Chekir, S.; Debbabi, M.; Regazzetti, A.; Dargère, D.; Laprévote, O.; Ben Jannet, H.; Gharbi, R. Design, synthesis and biological evaluation of novel 1,2,3-triazole linked coumarinopyrazole conjugates as potent anticholinesterase, anti-5-lipoxygenase, anti-tyrosinase and anti-cancer agents. Bioorg. Chem., 2018, 80, 189-194.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.005] [PMID: 29940340]
[256]
Mojzych, M.; Tarasiuk, P.; Kotwica-Mojzych, K.; Rafiq, M.; Seo, S.Y.; Nicewicz, M.; Fornal, E. Synthesis of chiral pyrazolo[4,3- e][1,2,4]triazine sulfonamides with tyrosinase and urease inhibitory activity. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 99-105.
[http://dx.doi.org/10.1080/14756366.2016.1238362] [PMID: 27778522]
[257]
Bagherzadeh, K.; Shirgahi Talari, F.; Sharifi, A.; Ganjali, M.R.; Saboury, A.A.; Amanlou, M. A new insight into mushroom tyrosinase inhibitors: Docking, pharmacophore-based virtual screening, and molecular modeling studies. J. Biomol. Struct. Dyn., 2015, 33(3), 487-501.
[http://dx.doi.org/10.1080/07391102.2014.893203] [PMID: 24601849]
[258]
Briganti, S.; Camera, E.; Picardo, M. Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res., 2003, 16(2), 101-110.
[http://dx.doi.org/10.1034/j.1600-0749.2003.00029.x] [PMID: 12622786]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy