Review Article

核苷5'-单磷酸类似物的前药:关于其合成和应用的最新文献概述

卷 30, 期 11, 2023

发表于: 02 November, 2022

页: [1256 - 1303] 页: 48

弟呕挨: 10.2174/0929867329666220909122820

价格: $65

conference banner
摘要

核苷类似物被广泛用作抗感染和抗肿瘤剂。然而,它们的临床使用可能面临与其理化性质、药代动力学参数和/或其特殊作用机制相关的限制。事实上,一旦进入细胞,核苷类似物需要被代谢成相应的(多)磷酸化衍生物,由细胞和/或病毒激酶介导,以干扰核酸的生物合成。在这个活化过程中,第一个磷酸化步骤通常是限制步骤,为了克服这一限制,已经提出了许多前药方法。在本文中,我们将重点关注与新的前药策略、原始合成方法的发展和核苷酸前药(即原核苷酸)的新应用相关的最新文献数据(从 2015 年起),导致细胞内递送 5'-单磷酸核苷类似物。

关键词: 原核苷酸,磷酸三酯,磷酸二酯,亚磷酰胺,磷酸二酰胺,不对称合成,化疗

[1]
Geraghty, R.; Aliota, M.; Bonnac, L. Broad-spectrum antiviral strategies and nucleoside analogues. Viruses, 2021, 13(4), 667.
[http://dx.doi.org/10.3390/v13040667] [PMID: 33924302]
[2]
Seley-Radtke, K.L.; Yates, M.K. The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold. Antiviral Res., 2018, 154, 66-86.
[http://dx.doi.org/10.1016/j.antiviral.2018.04.004] [PMID: 29649496]
[3]
Yates, M.K.; Seley-Radtke, K.L. The evolution of antiviral nucleoside analogues: A review for chemists and non-chemists. Part II: Complex modifications to the nucleoside scaffold. Antiviral Res., 2019, 162, 5-21.
[http://dx.doi.org/10.1016/j.antiviral.2018.11.016] [PMID: 30529089]
[4]
Guinan, M.; Benckendorff, C.; Smith, M.; Miller, G.J. Recent advances in the chemical synthesis and evaluation of anticancer nucleoside analogues. Molecules, 2020, 25(9), 2050.
[http://dx.doi.org/10.3390/molecules25092050] [PMID: 32354007]
[5]
Jordheim, L.P.; Durantel, D.; Zoulim, F.; Dumontet, C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov., 2013, 12(6), 447-464.
[http://dx.doi.org/10.1038/nrd4010] [PMID: 23722347]
[6]
Dousson, C.B. Current and future use of nucleo(s)tide prodrugs in the treatment of hepatitis C virus infection. Antivir. Chem. Chemother., 2018, 26, 2040206618756430.
[http://dx.doi.org/10.1177/2040206618756430] [PMID: 29463095]
[7]
Klapars, A.; Chung, J.Y.L.; Limanto, J.; Calabria, R.; Campeau, L.C.; Campos, K.R.; Chen, W.; Dalby, S.M.; Davis, T.A.; DiRocco, D.A.; Hyde, A.M.; Kassim, A.M.; Larsen, M.U.; Liu, G.; Maligres, P.E.; Moment, A.; Peng, F.; Ruck, R.T.; Shevlin, M.; Simmons, B.L.; Song, Z.J.; Tan, L.; Wright, T.J.; Zultanski, S.L. Efficient synthesis of antiviral agent uprifosbuvir enabled by new synthetic methods. Chem. Sci. (Camb.), 2021, 12(26), 9031-9036.
[http://dx.doi.org/10.1039/D1SC01978C] [PMID: 34276931]
[8]
Pradere, U.; Garnier-Amblard, E.C.; Coats, S.J.; Amblard, F.; Schinazi, R.F. Synthesis of nucleoside phosphate and phosphonate prodrugs. Chem. Rev., 2014, 114(18), 9154-9218.
[http://dx.doi.org/10.1021/cr5002035] [PMID: 25144792]
[9]
Schultz, C. Prodrugs of biologically active phosphate esters. Bioorg. Med. Chem., 2003, 11(6), 885-898.
[http://dx.doi.org/10.1016/S0968-0896(02)00552-7] [PMID: 12614874]
[10]
Sinokrot, H.; Smerat, T.; Najjar, A.; Karaman, R. Advanced prodrug strategies in nucleoside and non-nucleoside antiviral agents: A review of the recent five years. Molecules, 2017, 22(10), 1736.
[http://dx.doi.org/10.3390/molecules22101736] [PMID: 29035325]
[11]
Wagner, C.R.; Iyer, V.V.; McIntee, E.J. Pronucleotides: Toward the in vivo delivery of antiviral and anticancer nucleotides. Med. Res. Rev., 2000, 20(6), 417-451.
[http://dx.doi.org/10.1002/1098-1128(200011)20:6<417:AID-MED1>3.0.CO;2-Z] [PMID: 11058891]
[12]
Zemlicka, J. Lipophilic phosphoramidates as antiviral pronucleotides. Biochim. Biophys. Acta Mol. Basis Dis., 2002, 1587(2-3), 276-286.
[http://dx.doi.org/10.1016/S0925-4439(02)00090-X] [PMID: 12084469]
[13]
Li, Y.; Yang, B.; Quan, Y.; Li, Z. Advancement of prodrug approaches for nucleotide antiviral agents. Curr. Top. Med. Chem., 2021, 21(32), 2909-2927.
[http://dx.doi.org/10.2174/1568026621666210728094019] [PMID: 34323189]
[14]
Wiemer, A.J. Metabolic efficacy of phosphate prodrugs and the remdesivir paradigm. ACS Pharmacol. Transl. Sci., 2020, 3(4), 613-626.
[http://dx.doi.org/10.1021/acsptsci.0c00076] [PMID: 32821882]
[15]
Cahard, D.; McGuigan, C.; Balzarini, J. Aryloxy phosphoramidate triesters as protides. Mini Rev. Med. Chem., 2004, 4(4), 371-381.
[http://dx.doi.org/10.2174/1389557043403936] [PMID: 15134540]
[16]
Mehellou, Y. The Protides Boom. ChemMedChem, 2016, 11(11), 1114-1116.
[http://dx.doi.org/10.1002/cmdc.201600156] [PMID: 27159529]
[17]
Mehellou, Y.; Balzarini, J.; McGuigan, C. Aryloxy phosphoramidate triesters: A technology for delivering monophosphorylated nucleosides and sugars into cells. ChemMedChem, 2009, 4(11), 1779-1791.
[http://dx.doi.org/10.1002/cmdc.200900289] [PMID: 19760699]
[18]
Mehellou, Y.; Rattan, H.S.; Balzarini, J. The ProTide prodrug technology: From the concept to the clinic. J. Med. Chem., 2018, 61(6), 2211-2226.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00734] [PMID: 28792763]
[19]
Serpi, M.; Pertusati, F. An overview of ProTide technology and its implications to drug discovery. Expert Opin. Drug Discov., 2021, 16(10), 1149-1161.
[http://dx.doi.org/10.1080/17460441.2021.1922385] [PMID: 33985395]
[20]
Slusarczyk, M.; Serpi, M.; Pertusati, F. Phosphoramidates and phosphonamidates (ProTides) with antiviral activity. Antivir. Chem. Chemother., 2018, 26, 2040206618775243.
[http://dx.doi.org/10.1177/2040206618775243] [PMID: 29792071]
[21]
Gentile, I.; Maraolo, A.E.; Buonomo, A.R.; Zappulo, E.; Borgia, G. The discovery of sofosbuvir: A revolution for therapy of chronic hepatitis C. Expert Opin. Drug Discov., 2015, 10(12), 1363-1377.
[http://dx.doi.org/10.1517/17460441.2015.1094051] [PMID: 26563720]
[22]
Sofia, M.J.; Furman, P.A. The Discovery of Sofosbuvir: A Liver-Targeted Nucleotide Prodrug for the Treatment and Cure of HCV; Springer International Publishing, 2019, pp. 141-169.
[23]
de Wit, E.; Feldmann, F.; Cronin, J.; Jordan, R.; Okumura, A.; Thomas, T.; Scott, D.; Cihlar, T.; Feldmann, H. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc. Natl. Acad. Sci. USA, 2020, 117(12), 6771-6776.
[http://dx.doi.org/10.1073/pnas.1922083117] [PMID: 32054787]
[24]
Siegel, D.; Hui, H.C.; Doerffler, E.; Clarke, M.O.; Chun, K.; Zhang, L.; Neville, S.; Carra, E.; Lew, W.; Ross, B.; Wang, Q.; Wolfe, L.; Jordan, R.; Soloveva, V.; Knox, J.; Perry, J.; Perron, M.; Stray, K.M.; Barauskas, O.; Feng, J.Y.; Xu, Y.; Lee, G.; Rheingold, A.L.; Ray, A.S.; Bannister, R.; Strickley, R.; Swaminathan, S.; Lee, W.A.; Bavari, S.; Cihlar, T.; Lo, M.K.; Warren, T.K.; Mackman, R.L. Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2,1-f][triazin-4-amino] adenine C-nucleoside (GS-5734) for the treatment of ebola and emerging viruses. J. Med. Chem., 2017, 60(5), 1648-1661.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01594] [PMID: 28124907]
[25]
Zarenezhad, E.; Behrouz, S.; Farjam, M.; Rad, M.N.S. A mini review on discovery and synthesis of remdesivir as an effective and promising drug against COVID-19. Russ. J. Bioorganic Chem., 2021, 47(3), 609-621.
[http://dx.doi.org/10.1134/S1068162021030183] [PMID: 34149273]
[26]
Camarasa, M.J. Prodrugs of nucleoside triphosphates as a sound and challenging approach: A pioneering work that opens a new era in the direct intracellular delivery of nucleoside triphosphates. ChemMedChem, 2018, 13(18), 1885-1889.
[http://dx.doi.org/10.1002/cmdc.201800454] [PMID: 30152096]
[27]
Meier, C. Nucleoside diphosphate and triphosphate prodrugs - An unsolvable task? Antivir. Chem. Chemother., 2017, 25(3), 69-82.
[http://dx.doi.org/10.1177/2040206617738656] [PMID: 29096525]
[28]
Jia, X.; Schols, D.; Meier, C. Lipophilic triphosphate prodrugs of various nucleoside analogues. J. Med. Chem., 2020, 63(13), 6991-7007.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00358] [PMID: 32515595]
[29]
Zhao, C.; Jia, X.; Schols, D.; Balzarini, J.; Meier, C. γ‐non‐symmetrically dimasked Tri PPPro prodrugs as potential antiviral agents against HIV. ChemMedChem, 2021, 16(3), 499-512.
[http://dx.doi.org/10.1002/cmdc.202000712] [PMID: 33089929]
[30]
Meier, C.; Jessen, H.; Schulz, T.; Weinschenk, L.; Pertenbreiter, F.; Balzarini, J. Rational development of nucleoside diphosphate prodrugs: DiPPro-compounds. Curr. Med. Chem., 2015, 22(34), 3933-3950.
[http://dx.doi.org/10.2174/0929867322666150825163119] [PMID: 26303175]
[31]
Groaz, E.; De Jonghe, S. Overview of biologically active nucleoside phosphonates. Front Chem., 2021, 8, 616863.
[http://dx.doi.org/10.3389/fchem.2020.616863] [PMID: 33490040]
[32]
Heidel, K.M.; Dowd, C.S. Phosphonate prodrugs: An overview and recent advances. Future Med. Chem., 2019, 11(13), 1625-1643.
[http://dx.doi.org/10.4155/fmc-2018-0591] [PMID: 31469328]
[33]
Pertusat, F.; Serpi, M.; McGuigan, C. Medicinal chemistry of nucleoside phosphonate prodrugs for antiviral therapy. Antivir. Chem. Chemother., 2012, 22(5), 181-203.
[http://dx.doi.org/10.3851/IMP2012] [PMID: 22182785]
[34]
Thornton, P.J.; Kadri, H.; Miccoli, A.; Mehellou, Y. Nucleoside phosphate and phosphonate prodrug clinical candidates. J. Med. Chem., 2016, 59(23), 10400-10410.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00523] [PMID: 27559756]
[35]
Itumoh, E.J.; Data, S.; Leitao, E.M. Opening up the toolbox: Synthesis and mechanisms of phosphoramidates. Molecules, 2020, 25(16), 3684.
[http://dx.doi.org/10.3390/molecules25163684] [PMID: 32823507]
[36]
McGuigan, C.; Pathirana, R.N.; Balzarini, J.; De Clercq, E. Intracellular delivery of bioactive AZT nucleotides by aryl phosphate derivatives of AZT. J. Med. Chem., 1993, 36(8), 1048-1052.
[http://dx.doi.org/10.1021/jm00060a013] [PMID: 8478904]
[37]
McGuigan, C.; Pathirana, R.N.; Mahmood, N.; Devine, K.G.; Hay, A.J. Aryl phosphate derivatives of AZT retain activity against HIV1 in cell lines which are resistant to the action of AZT. Antiviral Res., 1992, 17(4), 311-321.
[http://dx.doi.org/10.1016/0166-3542(92)90026-2] [PMID: 1642482]
[38]
McGuigan, C.; Pathirana, R.N.; Mahmood, N.; Hay, A.J. Aryl phosphate derivates of AZT inhibit HIV replication in cells where the nucleoside is poorly active. Bioorg. Med. Chem. Lett., 1992, 2(7), 701-704.
[http://dx.doi.org/10.1016/S0960-894X(00)80395-9]
[39]
Blagden, S.P.; Rizzuto, I.; Suppiah, P.; O’Shea, D.; Patel, M.; Spiers, L.; Sukumaran, A.; Bharwani, N.; Rockall, A.; Gabra, H.; El-Bahrawy, M.; Wasan, H.; Leonard, R.; Habib, N.; Ghazaly, E. Anti-tumour activity of a first-in-class agent NUC-1031 in patients with advanced cancer: Results of a phase I study. Br. J. Cancer, 2018, 119(7), 815-822.
[http://dx.doi.org/10.1038/s41416-018-0244-1] [PMID: 30206366]
[40]
Kazmi, F.; Nicum, S.; Roux, R.L.; Spiers, L.; Gnanaranjan, C.; Sukumaran, A.; Gabra, H.; Ghazaly, E.; McCracken, N.W.; Harrison, D.J.; Blagden, S.P. A phase Ib open-label, dose-escalation study of NUC-1031 in combination with carboplatin for recurrent ovarian cancer. Clin. Cancer Res., 2021, 27(11), 3028-3038.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-4403] [PMID: 33741651]
[41]
Knox, J.J.; McNamara, M.G.; Goyal, L.; Cosgrove, D.; Springfeld, C.; Sjoquist, K.M.; Park, J.O.; Verdaguer, H.; Braconi, C.; Ross, P.J.; De Gramont, A.; Shroff, R.T.; Zalcberg, J.R.; Palmer, D.H.; Valle, J.W. Phase III study of NUC-1031 + cisplatin vs gemcitabine + cisplatin for first-line treatment of patients with advanced biliary tract cancer (NuTide:121). J. Clin. Oncol., 2021, 39(Suppl. 3), TPS351-TPS351.
[http://dx.doi.org/10.1200/JCO.2021.39.3_suppl.TPS351]
[42]
Alanazi, A.S.; James, E.; Mehellou, Y. The ProTide prodrug technology: Where next? ACS Med. Chem. Lett., 2019, 10(1), 2-5.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00586] [PMID: 30655934]
[43]
Slusarczyk, M.; Ferrari, V.; Serpi, M.; Gönczy, B.; Balzarini, J.; McGuigan, C. Symmetrical diamidates as a class of phosphate prodrugs to deliver the 5′‐monophosphate forms of anticancer nucleoside analogues. ChemMedChem, 2018, 13(21), 2305-2316.
[http://dx.doi.org/10.1002/cmdc.201800504] [PMID: 30199147]
[44]
Siccardi, D.; Kandalaft, L.E.; Gumbleton, M.; McGuigan, C. Stereoselective and concentration-dependent polarized epithelial permeability of a series of phosphoramidate triester prodrugs of D4T: An in vitro study in Caco-2 and Madin-Darby canine kidney cell monolayers. J. Pharmacol. Exp. Ther., 2003, 307(3), 1112-1119.
[http://dx.doi.org/10.1124/jpet.103.056135] [PMID: 14557377]
[45]
Procházková, E.; Navrátil, R.; Janeba, Z.; Roithová, J.; Baszczyňski, O. Reactive cyclic intermediates in the ProTide prodrugs activation: Trapping the elusive pentavalent phosphorane. Org. Biomol. Chem., 2019, 17(2), 315-320.
[http://dx.doi.org/10.1039/C8OB02870B] [PMID: 30543240]
[46]
Sofia, M.J.; Bao, D.; Chang, W.; Du, J.; Nagarathnam, D.; Rachakonda, S.; Reddy, P.G.; Ross, B.S.; Wang, P.; Zhang, H.R.; Bansal, S.; Espiritu, C.; Keilman, M.; Lam, A.M.; Steuer, H.M.M.; Niu, C.; Otto, M.J.; Furman, P.A. Discovery of a β-d-2′-deoxy-2′-α-fluoro-2′-β-C-methyluridine nucleotide prodrug (PSI-7977) for the treatment of hepatitis C virus. J. Med. Chem., 2010, 53(19), 7202-7218.
[http://dx.doi.org/10.1021/jm100863x] [PMID: 20845908]
[47]
Bordoni, C.; Cima, C.M.; Azzali, E.; Costantino, G.; Brancale, A. Microwave-assisted organic synthesis of nucleoside ProTide analogues. RSC Advances, 2019, 9(35), 20113-20117.
[http://dx.doi.org/10.1039/C9RA01754B] [PMID: 35514718]
[48]
Gao, L.J.; Jonghe, S.D.; Herdewijn, P. Synthesis of a nucleobase-modified protide library. Org. Lett., 2016, 18(22), 5816-5819.
[http://dx.doi.org/10.1021/acs.orglett.6b02764] [PMID: 27791384]
[49]
Milisavljevic, N.; Konkolová, E.; Kozák, J.; Hodek, J.; Veselovská, L.; Sýkorová, V.; Čížek, K.; Pohl, R.; Eyer, L.; Svoboda, P.; Růžek, D.; Weber, J.; Nencka, R.; Bouřa, E.; Hocek, M. Antiviral activity of 7-substituted 7-deazapurine ribonucleosides, monophosphate prodrugs, and triphoshates against emerging RNA viruses. ACS Infect. Dis., 2021, 7(2), 471-478.
[http://dx.doi.org/10.1021/acsinfecdis.0c00829] [PMID: 33395259]
[50]
Slusarczyk, M.; Serpi, M.; Ghazaly, E.; Kariuki, B.M.; McGuigan, C.; Pepper, C. Single diastereomers of the clinical anticancer protide agents NUC-1031 and NUC-3373 preferentially target cancer stem cells in vitro. J. Med. Chem., 2021, 64(12), 8179-8193.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02194] [PMID: 34085825]
[51]
Arbelo Román, C.; Wasserthal, P.; Balzarini, J.; Meier, C. Diastereoselective synthesis of (aryloxy)phosphoramidate prodrugs. Eur. J. Org. Chem., 2011, 2011(25), 4899-4909.
[52]
Roman, C.A.; Balzarini, J.; Meier, C. Diastereoselective synthesis of aryloxy phosphoramidate prodrugs of 3′-deoxy-2′,3′-didehydrothymidine monophosphate. J. Med. Chem., 2010, 53(21), 7675-7681.
[http://dx.doi.org/10.1021/jm100817f] [PMID: 20945915]
[53]
Ross, B.S.; Ganapati Reddy, P.; Zhang, H.R.; Rachakonda, S.; Sofia, M.J. Synthesis of diastereomerically pure nucleotide phosphoramidates. J. Org. Chem., 2011, 76(20), 8311-8319.
[http://dx.doi.org/10.1021/jo201492m] [PMID: 21916475]
[54]
Warren, T.K.; Jordan, R.; Lo, M.K.; Ray, A.S.; Mackman, R.L.; Soloveva, V.; Siegel, D.; Perron, M.; Bannister, R.; Hui, H.C.; Larson, N.; Strickley, R.; Wells, J.; Stuthman, K.S.; Van Tongeren, S.A.; Garza, N.L.; Donnelly, G.; Shurtleff, A.C.; Retterer, C.J.; Gharaibeh, D.; Zamani, R.; Kenny, T.; Eaton, B.P.; Grimes, E.; Welch, L.S.; Gomba, L.; Wilhelmsen, C.L.; Nichols, D.K.; Nuss, J.E.; Nagle, E.R.; Kugelman, J.R.; Palacios, G.; Doerffler, E.; Neville, S.; Carra, E.; Clarke, M.O.; Zhang, L.; Lew, W.; Ross, B.; Wang, Q.; Chun, K.; Wolfe, L.; Babusis, D.; Park, Y.; Stray, K.M.; Trancheva, I.; Feng, J.Y.; Barauskas, O.; Xu, Y.; Wong, P.; Braun, M.R.; Flint, M.; McMullan, L.K.; Chen, S.S.; Fearns, R.; Swaminathan, S.; Mayers, D.L.; Spiropoulou, C.F.; Lee, W.A.; Nichol, S.T.; Cihlar, T.; Bavari, S. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature, 2016, 531(7594), 381-385.
[http://dx.doi.org/10.1038/nature17180] [PMID: 26934220]
[55]
Pertusati, F.; McGuigan, C. Diastereoselective synthesis of P-chirogenic phosphoramidate prodrugs of nucleoside analogues (ProTides) via copper catalysed reaction. Chem. Commun. (Camb.), 2015, 51(38), 8070-8073.
[http://dx.doi.org/10.1039/C5CC00448A] [PMID: 25867944]
[56]
Tran, K.; Beutner, G.L.; Schmidt, M.; Janey, J.; Chen, K.; Rosso, V.; Eastgate, M.D. Development of a diastereoselective phosphorylation of a complex nucleoside via dynamic kinetic resolution. J. Org. Chem., 2015, 80(10), 4994-5003.
[http://dx.doi.org/10.1021/acs.joc.5b00392] [PMID: 25840459]
[57]
Dutartre, M.; Bayardon, J.; Jugé, S. Applications and stereoselective syntheses of P-chirogenic phosphorus compounds. Chem. Soc. Rev., 2016, 45(20), 5771-5794.
[http://dx.doi.org/10.1039/C6CS00031B] [PMID: 27479243]
[58]
Simmons, B.; Liu, Z.; Klapars, A.; Bellomo, A.; Silverman, S.M. Mechanism-Based solution to the protide synthesis problem: Selective access to sofosbuvir, acelarin, and INX-08189. Org. Lett., 2017, 19(9), 2218-2221.
[http://dx.doi.org/10.1021/acs.orglett.7b00469] [PMID: 28418681]
[59]
Liu, Z.; Klapars, A.; Simmons, B.; Bellomo, A.; Kalinin, A.; Weisel, M.; Hill, J.; Silverman, S.M. Development and implementation of an aluminum-promoted phosphorylation in the uprifosbuvir manufacturing route. Org. Process Res. Dev., 2021, 25(3), 661-667.
[http://dx.doi.org/10.1021/acs.oprd.0c00487]
[60]
Chung, J.Y.L.; Kassim, A.M.; Simmons, B.; Davis, T.A.; Song, Z.J.; Limanto, J.; Dalby, S.M.; He, C.Q.; Calabria, R.; Wright, T.J.; Campeau, L.C. Kilogram-scale synthesis of 2′- C-methyl-arabino-uridine from uridine via dynamic selective dipivaloylation. Org. Process Res. Dev., 2022, 26(3), 698-709.
[http://dx.doi.org/10.1021/acs.oprd.1c00175]
[61]
DiRocco, D.A.; Ji, Y.; Sherer, E.C.; Klapars, A.; Reibarkh, M.; Dropinski, J.; Mathew, R.; Maligres, P.; Hyde, A.M.; Limanto, J.; Brunskill, A.; Ruck, R.T.; Campeau, L.C.; Davies, I.W. A multifunctional catalyst that stereoselectively assembles prodrugs. Science, 2017, 356(6336), 426-430.
[http://dx.doi.org/10.1126/science.aam7936] [PMID: 28450641]
[62]
Wang, M.; Zhang, L.; Huo, X.; Zhang, Z.; Yuan, Q.; Li, P.; Chen, J.; Zou, Y.; Wu, Z.; Zhang, W. Catalytic asymmetric synthesis of the anti‐COVID‐19 drug remdesivir. Angew. Chem. Int. Ed., 2020, 59(47), 20814-20819.
[http://dx.doi.org/10.1002/anie.202011527] [PMID: 32870563]
[63]
Xiang, D.F.; Bigley, A.N.; Desormeaux, E.; Narindoshvili, T.; Raushel, F.M. Enzyme-catalyzed kinetic resolution of chiral precursors to antiviral prodrugs. Biochemistry, 2019, 58(29), 3204-3211.
[http://dx.doi.org/10.1021/acs.biochem.9b00530] [PMID: 31268686]
[64]
Bigley, A.N.; Narindoshvili, T.; Raushel, F.M. A Chemoenzymatic synthesis of the (RP)-Isomer of the antiviral prodrug remdesivir. Biochemistry, 2020, 59(33), 3038-3043.
[http://dx.doi.org/10.1021/acs.biochem.0c00591] [PMID: 32786401]
[65]
Alexandre, F.R.; Badaroux, E.; Bilello, J.P.; Bot, S.; Bouisset, T.; Brandt, G.; Cappelle, S.; Chapron, C.; Chaves, D.; Convard, T.; Counor, C.; Da Costa, D.; Dukhan, D.; Gay, M.; Gosselin, G.; Griffon, J.F.; Gupta, K.; Hernandez-Santiago, B.; La Colla, M.; Lioure, M.P.; Milhau, J.; Paparin, J.L.; Peyronnet, J.; Parsy, C.; Pierra Rouvière, C.; Rahali, H.; Rahali, R.; Salanson, A.; Seifer, M.; Serra, I.; Standring, D.; Surleraux, D.; Dousson, C.B. The discovery of IDX21437: Design, synthesis and antiviral evaluation of 2′-α-chloro-2′-β-C-methyl branched uridine pronucleotides as potent liver-targeted HCV polymerase inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(18), 4323-4330.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.029] [PMID: 28835346]
[66]
Guo, S.; Xu, M.; Guo, Q.; Zhu, F.; Jiang, X.; Xie, Y.; Shen, J. Discovery of pyrimidine nucleoside dual prodrugs and pyrazine nucleosides as novel anti-HCV agents. Bioorg. Med. Chem., 2019, 27(5), 748-759.
[http://dx.doi.org/10.1016/j.bmc.2019.01.007] [PMID: 30683552]
[67]
Guinan, M.; Huang, N.; Smith, M.; Miller, G.J. Design, chemical synthesis and antiviral evaluation of 2′-deoxy-2′-fluoro-2′-C-methyl-4′-thionucleosides. Bioorg. Med. Chem. Lett., 2022, 61, 128605.
[http://dx.doi.org/10.1016/j.bmcl.2022.128605] [PMID: 35123007]
[68]
Good, S.S.; Moussa, A.; Zhou, X.J.; Pietropaolo, K.; Sommadossi, J.P. Preclinical evaluation of AT-527, a novel guanosine nucleotide prodrug with potent, pan-genotypic activity against hepatitis C virus. PLoS One, 2020, 15(1), e0227104.
[http://dx.doi.org/10.1371/journal.pone.0227104] [PMID: 31914458]
[69]
Good, S.S.; Westover, J.; Jung, K.H.; Zhou, X.J.; Moussa, A.; La Colla, P.; Collu, G.; Canard, B.; Sommadossi, J.P. AT-527, a double prodrug of a guanosine nucleotide analog, is a potent inhibitor of SARS-CoV-2 in vitro and a promising oral antiviral for treatment of COVID-19. Antimicrob. Agents Chemother., 2021, 65(4), e02479-e20.
[http://dx.doi.org/10.1128/AAC.02479-20] [PMID: 33558299]
[70]
Feng, J.Y.; Wang, T.; Park, Y.; Babusis, D.; Birkus, G.; Xu, Y.; Voitenleitner, C.; Fenaux, M.; Yang, H.; Eng, S.; Tirunagari, N.; Kirschberg, T.; Cho, A.; Ray, A.S. Nucleotide prodrug containing a nonproteinogenic amino acid to improve oral delivery of a hepatitis C virus treatment. Antimicrob. Agents Chemother., 2018, 62(8), e00620-e18.
[http://dx.doi.org/10.1128/AAC.00620-18] [PMID: 29866875]
[71]
Wang, T.; Babusis, D.; Park, Y.; Niu, C.; Kim, C.; Zhao, X.; Lu, B.; Ma, B.; Muench, R.C.; Sperger, D.; Ray, A.S.; Murakami, E. Species differences in liver accumulation and metabolism of nucleotide prodrug sofosbuvir. Drug Metab. Pharmacokinet., 2020, 35(3), 334-340.
[http://dx.doi.org/10.1016/j.dmpk.2020.04.333] [PMID: 32345577]
[72]
Lagrutta, A.; Regan, C.P.; Zeng, H.; Imredy, J.P.; Koeplinger, K.; Morissette, P.; Liu, L.; Wollenberg, G.; Brynczka, C.; Lebrón, J.; DeGeorge, J.; Sannajust, F. Cardiac drug-drug interaction between HCV-NS5B pronucleotide inhibitors and amiodarone is determined by their specific diastereochemistry. Sci. Rep., 2017, 7(1), 44820.
[http://dx.doi.org/10.1038/srep44820] [PMID: 28327633]
[73]
Kandil, S.; Pannecouque, C.; Chapman, F.M.; Westwell, A.D.; McGuigan, C. Polyfluoroaromatic stavudine (d4T) ProTides exhibit enhanced anti-HIV activity. Bioorg. Med. Chem. Lett., 2019, 29(24), 126721.
[http://dx.doi.org/10.1016/j.bmcl.2019.126721] [PMID: 31679972]
[74]
Lin, Z.; Gautam, N.; Alnouti, Y.; McMillan, J.; Bade, A.N.; Gendelman, H.E.; Edagwa, B. ProTide generated long-acting abacavir nanoformulations. Chem. Commun. (Camb.), 2018, 54(60), 8371-8374.
[http://dx.doi.org/10.1039/C8CC04708A] [PMID: 29995046]
[75]
Wang, W.; Smith, N.; Makarov, E.; Sun, Y.; Gebhart, C.L.; Ganesan, M.; Osna, N.A.; Gendelman, H.E.; Edagwa, B.J.; Poluektova, L.Y. A long-acting 3TC ProTide nanoformulation suppresses HBV replication in humanized mice. Nanomedicine, 2020, 28, 102185.
[http://dx.doi.org/10.1016/j.nano.2020.102185] [PMID: 32217146]
[76]
Soni, D.; Bade, A.N.; Gautam, N.; Herskovitz, J.; Ibrahim, I.M.; Smith, N.; Wojtkiewicz, M.S.; Shetty, B.L.D.; Alnouti, Y.; McMillan, J.; Gendelman, H.E.; Edagwa, B.J. Synthesis of a long acting nanoformulated emtricitabine ProTide. Biomaterials, 2019, 222, 119441.
[77]
Wang, Z.; Zang, R.; Niu, Z.; Wang, W.; Wang, X.; Tang, Y. Synthesis and antiviral effect of phosphamide modified vidarabine for treating HSV 1 infections. Bioorg. Med. Chem. Lett., 2021, 52, 128405.
[http://dx.doi.org/10.1016/j.bmcl.2021.128405] [PMID: 34624489]
[78]
Schwenzer, H.; De Zan, E.; Elshani, M.; van Stiphout, R.; Kudsy, M.; Morris, J.; Ferrari, V.; Um, I.H.; Chettle, J.; Kazmi, F.; Campo, L.; Easton, A.; Nijman, S.; Serpi, M.; Symeonides, S.; Plummer, R.; Harrison, D.J.; Bond, G.; Blagden, S.P. The novel nucleoside analogue protide nuc-7738 overcomes cancer resistance mechanisms in vitro and in a first-in-human phase I clinical trial. Clin. Cancer Res., 2021, 27(23), 6500-6513.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-1652] [PMID: 34497073]
[79]
Osgerby, L.; Lai, Y.C.; Thornton, P.J.; Amalfitano, J.; Le Duff, C.S.; Jabeen, I.; Kadri, H.; Miccoli, A.; Tucker, J.H.R.; Muqit, M.M.K.; Mehellou, Y. Kinetin riboside and its ProTides activate the Parkinson’s disease associated PTEN-induced putative kinase 1 (PINK1) independent of mitochondrial depolarization. J. Med. Chem., 2017, 60(8), 3518-3524.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01897] [PMID: 28323427]
[80]
Vanden Avond, M.A.; Meng, H.; Beatka, M.J.; Helbling, D.C.; Prom, M.J.; Sutton, J.L.; Slick, R.A.; Dimmock, D.P.; Pertusati, F.; Serpi, M.; Pileggi, E.; Crutcher, P.; Thomas, S.; Lawlor, M.W. The nucleotide prodrug CERC ‐913 improves MTDNA content in primary hepatocytes from DGUOK‐DEFICIENT rats. J. Inherit. Metab. Dis., 2021, 44(2), 492-501.
[http://dx.doi.org/10.1002/jimd.12354] [PMID: 33368311]
[81]
Rauh, T.; Brameyer, S.; Kielkowski, P.; Jung, K.; Sieber, S.A. MS-based in situ proteomics reveals AMPylation of host proteins during bacterial infection. ACS Infect. Dis., 2020, 6(12), 3277-3289.
[http://dx.doi.org/10.1021/acsinfecdis.0c00740] [PMID: 33259205]
[82]
Egron, D.; Imbach, J.L.; Gosselin, G.; Aubertin, A.M.; Périgaud, C. S-acyl-2-thioethyl phosphoramidate diester derivatives as mononucleotide prodrugs. J. Med. Chem., 2003, 46(21), 4564-4571.
[http://dx.doi.org/10.1021/jm0308444] [PMID: 14521418]
[83]
Sizun, G.; Pierra, C.; Peyronnet, J.; Badaroux, E.; Rabeson, C.; Benzaria-Prad, S.; Surleraux, D.; Loi, A.G.; Musiu, C.; Liuzzi, M.; Seifer, M.; Standring, D.; Sommadossi, J.P.; Gosselin, G. Design, synthesis and antiviral evaluation of 2′- C -methyl branched guanosine pronucleotides: The discovery of IDX184, a potent liver-targeted HCV polymerase inhibitor. Future Med. Chem., 2015, 7(13), 1675-1700.
[http://dx.doi.org/10.4155/fmc.15.96] [PMID: 26424162]
[84]
Okon, A.; Matos de Souza, M.R.; Shah, R.; Amorim, R.; da Costa, L.J.; Wagner, C.R. Anchimerically activatable antiviral ProTides. ACS Med. Chem. Lett., 2017, 8(9), 958-962.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00277] [PMID: 28947944]
[85]
Okon, A.; Han, J.; Dawadi, S.; Demosthenous, C.; Aldrich, C.C.; Gupta, M.; Wagner, C.R. Anchimerically activated protides as inhibitors of cap-dependent translation and inducers of chemosensitization in mantle cell lymphoma. J. Med. Chem., 2017, 60(19), 8131-8144.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00916] [PMID: 28858511]
[86]
Villard, A.L.; Aubertin, A.M.; Peyrottes, S.; Périgaud, C. An original pronucleotide strategy for the simultaneous delivery of two bioactive drugs. Eur. J. Med. Chem., 2021, 216, 113315.
[http://dx.doi.org/10.1016/j.ejmech.2021.113315] [PMID: 33711763]
[87]
Mayes, B.A.; Arumugasamy, J.; Baloglu, E.; Bauer, D.; Becker, A.; Chaudhuri, N.; Latham, G.M.; Li, J.; Mathieu, S.; McGarry, F.P.; Rosinovsky, E.; Stewart, A.; Trochet, C.; Wang, J.; Moussa, A. Synthesis of a nucleoside phosphoramidate prodrug inhibitor of HCV NS5B polymerase: Phenylboronate as a transient protecting group. Org. Process Res. Dev., 2014, 18(6), 717-724.
[http://dx.doi.org/10.1021/op500042u]
[88]
Mayes, B.A.; Wang, J.; Arumugasamy, J.; Arunachalam, K.; Baloglu, E.; Bauer, D.; Becker, A.; Chaudhuri, N.; Glynn, R.; Latham, G.M.; Li, J.; Lim, J.; Liu, J.; Mathieu, S.; McGarry, F.P.; Rosinovsky, E.; Soret, A.F.; Stewart, A.; Moussa, A. Scalable synthesis of a nucleoside phosphoramidate prodrug inhibitor of HCV NS5B RdRp: Challenges in the production of a diastereomeric mixture. Org. Process Res. Dev., 2015, 19(4), 520-530.
[http://dx.doi.org/10.1021/op5003837]
[89]
Procházková, E.; Hřebabecký, H.; Dejmek, M.; Šála, M.; Šmídková, M.; Tloušťová, E.; Zborníková, E.; Eyer, L.; Růžek, D.; Nencka, R. Could 5′-N and S ProTide analogues work as prodrugs of antiviral agents? Bioorg. Med. Chem. Lett., 2020, 30(4), 126897.
[http://dx.doi.org/10.1016/j.bmcl.2019.126897] [PMID: 31882298]
[90]
Jacobson, B.A.; Ahmad, Z.; Chen, S.; Waldusky, G.; Dillenburg, M.; Stoian, E.; Cambron, D.A.; Patel, A.J.; Patel, M.R.; Wagner, C.R.; Kratzke, R.A. 4Ei-10 interdiction of oncogenic cap-mediated translation as therapy for non-small cell lung cancer. Invest. New Drugs, 2021, 39(3), 636-643.
[http://dx.doi.org/10.1007/s10637-020-01036-8] [PMID: 33230623]
[91]
Matos de Souza, M.R.; Cunha, M.S.; Okon, A.; Monteiro, F.L.L.; Campanati, L.; Wagner, C.R.; da Costa, L.J. In vitro and in vivo characterization of the anti-zika virus activity of protides of 2′-C-β-methylguanosine. ACS Infect. Dis., 2020, 6(7), 1650-1658.
[http://dx.doi.org/10.1021/acsinfecdis.0c00091] [PMID: 32525653]
[92]
Ahmad, Z.; Jacobson, B.A.; McDonald, M.W.; Vattendahl Vidal, N.; Vattendahl Vidal, G.; Chen, S.; Dillenburg, M.; Okon, A.M.; Patel, M.R.; Wagner, C.R.; Kratzke, R.A. Repression of oncogenic cap-mediated translation by 4Ei-10 diminishes proliferation, enhances chemosensitivity and alters expression of malignancy-related proteins in mesothelioma. Cancer Chemother. Pharmacol., 2020, 85(2), 425-432.
[http://dx.doi.org/10.1007/s00280-020-04029-9] [PMID: 31974652]
[93]
Meppen, M.; Pacini, B.; Bazzo, R.; Koch, U.; Leone, J.F.; Koeplinger, K.A.; Rowley, M.; Altamura, S.; Di Marco, A.; Fiore, F.; Giuliano, C.; Gonzalez-Paz, O.; Laufer, R.; Pucci, V.; Narjes, F.; Gardelli, C. Cyclic phosphoramidates as prodrugs of 2′-C-methylcytidine. Eur. J. Med. Chem., 2009, 44(9), 3765-3770.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.043] [PMID: 19493593]
[94]
Jain, H.V.; Kalman, T.I. Synthesis and study of cyclic pronucleotides of 5-fluoro-2′-deoxyuridine. Bioorg. Med. Chem. Lett., 2012, 22(14), 4497-4501.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.011] [PMID: 22738636]
[95]
Orr, R.K.; McCabe Dunn, J.M.; Nolting, A.; Hyde, A.M.; Ashley, E.R.; Leone, J.; Sirota, E.; Jurica, J.A.; Gibson, A.; Wise, C.; Oliver, S.; Ruck, R.T. New reactions and processes for the efficient synthesis of a HCV NS5b prodrug. Green Chem., 2018, 20(11), 2519-2525.
[http://dx.doi.org/10.1039/C8GC00102B]
[96]
Karuna, R.; Yokokawa, F.; Wang, K.; Zhang, J.; Xu, H.; Wang, G.; Ding, M.; Chan, W.L.; Abdul Ghafar, N.; Leonardi, A.; Seh, C.C.; Seah, P.G.; Liu, W.; Srinivasa, R.P.S.; Lim, S.P.; Lakshminarayana, S.B.; Growcott, E.; Babu, S.; Fenaux, M.; Zhong, W.; Gu, F.; Shi, P.Y.; Blasco, F.; Chen, Y.L. A cyclic phosphoramidate prodrug of 2′-deoxy-2′-fluoro-2′- C -methylguanosine for the treatment of dengue virus infection. Antimicrob. Agents Chemother., 2020, 64(12), e00654-e20.
[http://dx.doi.org/10.1128/AAC.00654-20] [PMID: 32958712]
[97]
Romanowska, J.; Kolodziej, K.; Sobkowski, M.; Rachwalak, M.; Jakubowski, T.; Golebiewska, J.; Kraszewski, A.; Boryski, J.; Dabrowska, A.; Stawinski, J. Aryl H-phosphonates. 19. New anti-HIV pronucleotide phosphoramidate diesters containing amino- and hydroxypyridine auxiliaries. Eur. J. Med. Chem., 2019, 164, 47-58.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.038] [PMID: 30590257]
[98]
Abraham, T.W.; Kalman, T.I.; McIntee, E.J.; Wagner, C.R. Synthesis and biological activity of aromatic amino acid phosphoramidates of 5-fluoro-2′-deoxyuridine and 1-β-arabinofuranosylcytosine: Evidence of phosphoramidase activity. J. Med. Chem., 1996, 39(23), 4569-4575.
[http://dx.doi.org/10.1021/jm9603680] [PMID: 8917645]
[99]
Drontle, D.; Wagner, C.R. Designing a pronucleotide stratagem: Lessons from amino acid phosphoramidates of anticancer and antiviral pyrimidines. Mini Rev. Med. Chem., 2004, 4(4), 409-419.
[http://dx.doi.org/10.2174/1389557043403945] [PMID: 15134543]
[100]
Chou, T.F.; Baraniak, J.; Kaczmarek, R.; Zhou, X.; Cheng, J.; Ghosh, B.; Wagner, C.R. Phosphoramidate pronucleotides: A comparison of the phosphoramidase substrate specificity of human and Escherichia coli histidine triad nucleotide binding proteins. Mol. Pharm., 2007, 4(2), 208-217.
[http://dx.doi.org/10.1021/mp060070y] [PMID: 17217311]
[101]
Chou, T.F.; Wagner, C.R. Substrate specificity and radioactive labeling studies establish that the histidine triad nucleotide binding proteins (Hints) are nucleoside phosphoramidases and protein nucleotidylases. FASEB J., 2006, 20(4), A41-A41.
[http://dx.doi.org/10.1096/fasebj.20.4.A41-d]
[102]
Chou, T.F.; Wagner, C.R. Lysyl-tRNA synthetase-generated lysyl-adenylate is a substrate for histidine triad nucleotide binding proteins. J. Biol. Chem., 2007, 282(7), 4719-4727.
[http://dx.doi.org/10.1074/jbc.M610530200] [PMID: 17158446]
[103]
Zhou, X.; Chou, T.F.; Aubol, B.E.; Park, C.J.; Wolfenden, R.; Adams, J.; Wagner, C.R. Kinetic mechanism of human histidine triad nucleotide binding protein 1. Biochemistry, 2013, 52(20), 3588-3600.
[http://dx.doi.org/10.1021/bi301616c] [PMID: 23614568]
[104]
Shah, R.; Maize, K.M.; Zhou, X.; Finzel, B.C.; Wagner, C.R. Caught before released: Structural mapping of the reaction trajectory for the sofosbuvir activating enzyme, human histidine triad nucleotide binding protein 1 (hHint1). Biochemistry, 2017, 56(28), 3559-3570.
[http://dx.doi.org/10.1021/acs.biochem.7b00148] [PMID: 28691797]
[105]
Maize, K.M.; Shah, R.; Strom, A.; Kumarapperuma, S.; Zhou, A.; Wagner, C.R.; Finzel, B.C. A crystal structure based guide to the design of human histidine triad nucleotide binding protein 1 (hHint1) activated ProTides. Mol. Pharm., 2017, 14(11), 3987-3997.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00664] [PMID: 28968488]
[106]
Jovanovic, D.; Tremmel, P.; Pallan, P.S.; Egli, M.; Richert, C. The enzyme‐free release of nucleotides from phosphoramidates depends strongly on the amino acid. Angew. Chem. Int. Ed., 2020, 59(45), 20154-20160.
[http://dx.doi.org/10.1002/anie.202008665] [PMID: 32757352]
[107]
Romanowska, J.; Sobkowski, M.; Szymańska-Michalak, A.; Kołodziej, K.; Dąbrowska, A.; Lipniacki, A.; Piasek, A.; Pietrusiewicz, Z.M.; Figlerowicz, M.; Guranowski, A.; Boryski, J.; Stawiński, J.; Kraszewski, A. Aryl H-phosphonates 17: (N-aryl)phosphoramidates of pyrimidine nucleoside analogues and their synthesis, selected properties, and anti-HIV activity. J. Med. Chem., 2011, 54(19), 6482-6491.
[http://dx.doi.org/10.1021/jm2001103] [PMID: 21834513]
[108]
Kolodziej, K.; Romanowska, J.; Stawinski, J.; Boryski, J.; Dabrowska, A.; Lipniacki, A.; Piasek, A.; Kraszewski, A.; Sobkowski, M. Aryl H-Phosphonates 18. Synthesis, properties, and biological activity of 2′,3′-dideoxynucleoside (N-heteroaryl)phosphoramidates of increased lipophilicity. Eur. J. Med. Chem., 2015, 100, 77-88.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.004] [PMID: 26071860]
[109]
Adelfinskaya, O.; Herdewijn, P. Amino acid phosphoramidate nucleotides as alternative substrates for HIV-1 reverse transcriptase. Angew. Chem. Int. Ed., 2007, 46(23), 4356-4358.
[http://dx.doi.org/10.1002/anie.200605016] [PMID: 17443759]
[110]
Song, X.P.; Bouillon, C.; Lescrinier, E.; Herdewijn, P. Iminodipropionic acid as the leaving group for DNA polymerization by HIV-1 reverse transcriptase. ChemBioChem, 2011, 12(12), 1868-1880.
[http://dx.doi.org/10.1002/cbic.201100160] [PMID: 21714056]
[111]
(a) Adelfinskaya, O.; Terrazas, M.; Froeyen, M.; Marlière, P.; Nauwelaerts, K.; Herdewijn, P. Polymerase-catalyzed synthesis of DNA from phosphoramidate conjugates of deoxynucleotides and amino acids. Nucleic Acids Res., 2007, 35(15), 5060-5072.
[http://dx.doi.org/10.1093/nar/gkm498] [PMID: 17652326];
(b) De, S.; Groaz, E.; Margamuljana, L.; Herdewijn, P. Syntheses of 5′-nucleoside monophosphate derivatives with unique aminal, hemiaminal, and hemithioaminal functionalities: A new class of 5′-peptidyl nucleotides. Chemistry, 2016, 22(24), 8167-8180.
[http://dx.doi.org/10.1002/chem.201600721] [PMID: 27136602]
[112]
Olesiak, M.; Krajewska, D.; Wasilewska, E. Thiophosphorylation of biologically relevant alcohols by the oxathiaphospholane approach. Synlett, 2002, 2002(06), 0967-0971.
[113]
McGuigan, C.; Madela, K.; Aljarah, M.; Bourdin, C.; Arrica, M.; Barrett, E.; Jones, S.; Kolykhalov, A.; Bleiman, B.; Bryant, K.D.; Ganguly, B.; Gorovits, E.; Henson, G.; Hunley, D.; Hutchins, J.; Muhammad, J.; Obikhod, A.; Patti, J.; Walters, C.R.; Wang, J.; Vernachio, J.; Ramamurty, C.V.S.; Battina, S.K.; Chamberlain, S. Phosphorodiamidates as a promising new phosphate prodrug motif for antiviral drug discovery: Application to anti-HCV agents. J. Med. Chem., 2011, 54(24), 8632-8645.
[http://dx.doi.org/10.1021/jm2011673] [PMID: 22039920]
[114]
McGuigan, C.; Bourdin, C.; Derudas, M.; Hamon, N.; Hinsinger, K.; Kandil, S.; Madela, K.; Meneghesso, S.; Pertusati, F.; Serpi, M.; Slusarczyk, M.; Chamberlain, S.; Kolykhalov, A.; Vernachio, J.; Vanpouille, C.; Introini, A.; Margolis, L.; Balzarini, J. Design, synthesis and biological evaluation of phosphorodiamidate prodrugs of antiviral and anticancer nucleosides. Eur. J. Med. Chem., 2013, 70, 326-340.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.047] [PMID: 24177359]
[115]
Yoshikawa, M.; Kato, T.; Takenishi, T. Studies of phosphorylation. III. Selective phosphorylation of unprotected nucleosides. Bull. Chem. Soc. Jpn., 1969, 42(12), 3505-3508.
[http://dx.doi.org/10.1246/bcsj.42.3505]
[116]
Wang, G.; Dyatkina, N.; Prhavc, M.; Williams, C.; Serebryany, V.; Hu, Y.; Huang, Y.; Wan, J.; Wu, X.; Deval, J.; Fung, A.; Jin, Z.; Tan, H.; Shaw, K.; Kang, H.; Zhang, Q.; Tam, Y.; Stoycheva, A.; Jekle, A.; Smith, D.B.; Beigelman, L. Synthesis and Anti-HCV activities of 4′-fluoro-2′-substituted uridine triphosphates and nucleotide prodrugs: Discovery of 4′-fluoro-2′-c-methyluridine 5′-phosphoramidate prodrug (AL-335) for the treatment of hepatitis C infection. J. Med. Chem., 2019, 62(9), 4555-4570.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00143] [PMID: 30951311]
[117]
Hedger, A.K.; Oomen, M.E.; Liu, V.; Moazami, M.P.; Rhind, N.; Dekker, J.; Watts, J.K. Progress toward an amplifiable metabolic label for DNA: Conversion of 4-thiothymidine (4sT) to 5-methyl-2′-deoxycytidine and synthesis of a 4sT phosphorodiamidate prodrug. Can. J. Chem., 2018, 96(7), 636-645.
[http://dx.doi.org/10.1139/cjc-2017-0732]
[118]
Marcellin, P.; Chang, T.T.; Lim, S.G.; Tong, M.J.; Sievert, W.; Shiffman, M.L.; Jeffers, L.; Goodman, Z.; Wulfsohn, M.S.; Xiong, S.; Fry, J.; Brosgart, C.L. Adefovir dipivoxil for the treatment of hepatitis B E antigen-positive chronic hepatitis B. N. Engl. J. Med., 2003, 348(9), 808-816.
[http://dx.doi.org/10.1056/NEJMoa020681] [PMID: 12606735]
[119]
Robbins, B.L.; Srinivas, R.V.; Kim, C.; Bischofberger, N.; Fridland, A. Anti-human immunodeficiency virus activity and cellular metabolism of a potential prodrug of the acyclic nucleoside phosphonate 9-R-(2-phosphonomethoxy-propyl) adenine (PMPA), Bis(isopropyloxymethylcar-bonyl)PMPA. Antimicrob. Agents Chemother., 1998, 42(3), 612-617.
[http://dx.doi.org/10.1128/AAC.42.3.612] [PMID: 9517941]
[120]
Peyrottes, S.; Coussot, G.; Lefebvre, I.; Imbach, J.L.; Gosselin, G.; Aubertin, A.M.; Périgaud, C. S-acyl-2-thioethyl aryl phosphotriester derivatives of AZT: Synthesis, antiviral activity, and stability study. J. Med. Chem., 2003, 46(5), 782-793.
[http://dx.doi.org/10.1021/jm021016y] [PMID: 12593658]
[121]
Schlienger, N.; Peyrottes, S.; Kassem, T.; Imbach, J.L.; Gosselin, G.; Aubertin, A.M.; Périgaud, C. S-Acyl-2-thioethyl aryl phosphotriester derivatives as mononucleotide prodrugs. J. Med. Chem., 2000, 43(23), 4570-4574.
[http://dx.doi.org/10.1021/jm000996o] [PMID: 11087582]
[122]
Erion, M.D.; Bullough, D.A.; Lin, C.C.; Hong, Z. HepDirect prodrugs for targeting nucleotide-based antiviral drugs to the liver. Curr. Opin. Investig. Drugs, 2006, 7(2), 109-117.
[PMID: 16499280]
[123]
Erion, M.D.; van Poelje, P.D.; MacKenna, D.A.; Colby, T.J.; Montag, A.C.; Fujitaki, J.M.; Linemeyer, D.L.; Bullough, D.A. Liver-targeted drug delivery using HepDirect prodrugs. J. Pharmacol. Exp. Ther., 2005, 312(2), 554-560.
[http://dx.doi.org/10.1124/jpet.104.075903] [PMID: 15340017]
[124]
Meier, C.; Balzarini, J. Application of the cycloSal-prodrug approach for improving the biological potential of phosphorylated biomolecules. Antiviral Res., 2006, 71(2-3), 282-292.
[http://dx.doi.org/10.1016/j.antiviral.2006.04.011] [PMID: 16735066]
[125]
Meier, C.; Meerbach, A.; Balzarini, J. Cyclosal-pronucleotides - development of first and second generation chemical trojan horses for antiviral chemotherapy. Front. Biosci., 2004, 9(1-3), 873-890.
[http://dx.doi.org/10.2741/1283] [PMID: 14766416]
[126]
Gunic, E.; Girardet, J.L.; Ramasamy, K.; Stoisavljevic-Petkov, V.; Chow, S.; Yeh, L.T.; Hamatake, R.K.; Raney, A.; Hong, Z. Cyclic monophosphate prodrugs of base-modified 2′-C-methyl ribonucleosides as potent inhibitors of hepatitis C virus RNA replication. Bioorg. Med. Chem. Lett., 2007, 17(9), 2452-2455.
[http://dx.doi.org/10.1016/j.bmcl.2007.02.030] [PMID: 17331721]
[127]
Lam, A.M.; Espiritu, C.; Murakami, E.; Zennou, V.; Bansal, S.; Micolochick Steuer, H.M.; Niu, C.; Keilman, M.; Bao, H.; Bourne, N.; Veselenak, R.L.; Reddy, P.G.; Chang, W.; Du, J.; Nagarathnam, D.; Sofia, M.J.; Otto, M.J.; Furman, P.A. Inhibition of hepatitis C virus replicon RNA synthesis by PSI-352938, a cyclic phosphate prodrug of β-D-2′-deoxy-2′-α-fluoro-2′-β-C-methylguanosine. Antimicrob. Agents Chemother., 2011, 55(6), 2566-2575.
[http://dx.doi.org/10.1128/AAC.00032-11] [PMID: 21444700]
[128]
Sontakke, V.A.; Shinde, V.S.; Lönnberg, H.; Ora, M. Synthesis and stability of nucleoside 3′,5′-cyclic phosphate triesters masked with enzymatically and thermally labile phosphate protecting groups. Eur. J. Org. Chem., 2015, 2015(2), 389-394.
[http://dx.doi.org/10.1002/ejoc.201403227]
[129]
Nakamura, M.; Uemura, K.; Saito-Tarashima, N.; Sato, A.; Orba, Y.; Sawa, H.; Matsuda, A.; Maenaka, K.; Minakawa, N. Synthesis and anti-dengue virus activity of 5-Ethynylimidazole-4-carboxamide (EICA) nucleotide prodrugs. Chem. Pharm. Bull. (Tokyo), 2022, 70(3), 220-225.
[http://dx.doi.org/10.1248/cpb.c21-01038] [PMID: 34955490]
[130]
Pertusati, F.; Pileggi, E.; Richards, J.; Wootton, M.; Van Leemputte, T.; Persoons, L.; De Coster, D.; Villanueva, X.; Daelemans, D.; Steenackers, H.; McGuigan, C.; Serpi, M. Drug repurposing: Phosphate prodrugs of anticancer and antiviral FDA-approved nucleosides as novel antimicrobials. J. Antimicrob. Chemother., 2020, 75(10), 2864-2878.
[http://dx.doi.org/10.1093/jac/dkaa268] [PMID: 32688391]
[131]
Huynh, N.; Dickson, C.; Zencak, D.; Hilko, D.H.; Mackay-Sim, A.; Poulsen, S.A. Labeling of cellular DNA with a Cyclo sal phosphotriester pronucleotide analog of 5-ethynyl-2′-deoxyuridine. Chem. Biol. Drug Des., 2015, 86(4), 400-409.
[http://dx.doi.org/10.1111/cbdd.12506] [PMID: 25557046]
[132]
Tera, M.; Glasauer, S.M.K.; Luedtke, N.W. In vivo incorporation of azide groups into DNA by using membrane-permeable nucleotide triesters. ChemBioChem, 2018, 19(18), 1939-1943.
[http://dx.doi.org/10.1002/cbic.201800351] [PMID: 29953711]
[133]
Tera, M.; Luedtke, N.W. Cross-linking cellular nucleic acids via a target-directing double click reagent. Optical Bioorthog. Methods, 2020, 641, 433-457.
[134]
Neef, A.B.; Luedtke, N.W. An azide-modified nucleoside for metabolic labeling of DNA. ChemBioChem, 2014, 15(6), 789-793.
[http://dx.doi.org/10.1002/cbic.201400037] [PMID: 24644275]
[135]
Moreno, S.; Brunner, M.; Delazer, I.; Rieder, D.; Lusser, A.; Micura, R. Synthesis of 4-thiouridines with prodrug functionalization for RNA metabolic labeling. RSC Chem. Biol., 2022, 3(4), 447-455.
[http://dx.doi.org/10.1039/D2CB00001F] [PMID: 35441143]
[136]
Ruthenbeck, A.; Marangoni, E.; Diercks, B.P.; Krüger, A.; Froese, A.; Bork, N.; Nikolaev, V.; Guse, A.; Meier, C. Membrane-permeable octanoyloxybenzyl-masked cnmps as novel tools for non-invasive cell assays. Molecules, 2018, 23(11), 2960.
[http://dx.doi.org/10.3390/molecules23112960] [PMID: 30428589]
[137]
Weinschenk, L.; Schols, D.; Balzarini, J.; Meier, C. Nucleoside diphosphate prodrugs: Nonsymmetric Di PPPro-nucleotides. J. Med. Chem., 2015, 58(15), 6114-6130.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00737] [PMID: 26125628]
[138]
Qi, H.; Lu, J.; Li, J.; Wang, M.; Xu, Y.; Wang, Y.; Zhang, H. Enhanced antitumor activity of monophosphate ester prodrugs of gemcitabine: In vitro and in vivo evaluation. J. Pharm. Sci., 2016, 105(9), 2966-2973.
[http://dx.doi.org/10.1016/j.xphs.2016.02.006] [PMID: 26994559]
[139]
Wang, Y.; Li, Y.; Lu, J.; Qi, H.; Cheng, I.; Zhang, H. Involvement of CYP4F2 in the metabolism of a novel monophosphate ester prodrug of gemcitabine and its interaction potential in vitro. Molecules, 2018, 23(5), 1195.
[http://dx.doi.org/10.3390/molecules23051195] [PMID: 29772747]
[140]
Kraszewski, A.; Sobkowski, M.; Stawinski, J. H-phosphonate chemistry in the synthesis of electrically neutral and charged antiviral and anticancer pronucleotides. Front Chem., 2020, 8, 595738.
[http://dx.doi.org/10.3389/fchem.2020.595738] [PMID: 33282839]
[141]
Szymanska-Michalak, A.; Wawrzyniak, D.; Framski, G.; Stawinski, J.; Barciszewski, J.; Kraszewski, A. New antiglioma zwitterionic pronucleotides with an FdUMP framework. Eur. J. Med. Chem., 2018, 144, 682-691.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.070] [PMID: 29289891]
[142]
Schlienger, N.; Lefebvre, I.; Aubertin, A.M.; Peyrottes, S.; Périgaud, C. Mononucleoside phosphorodithiolates as mononucleotide prodrugs. Eur. J. Med. Chem., 2022, 227, 113914.
[http://dx.doi.org/10.1016/j.ejmech.2021.113914] [PMID: 34695774]
[143]
Li, J.; Liu, S.; Shi, J.; Wang, X.; Xue, Y.; Zhu, H.J. Tissue-specific proteomics analysis of anti-covid-19 nucleoside and nucleotide prodrug-activating enzymes provides insights into the optimization of prodrug design and pharmacotherapy strategy. ACS Pharmacol. Transl. Sci., 2021, 4(2), 870-887.
[http://dx.doi.org/10.1021/acsptsci.1c00016] [PMID: 33855276]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy