Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Tetraspanin-enriched Microdomain Containing CD151, CD9, and TSPAN 8 – Potential Mediators of Entry and Exit Mechanisms in Respiratory Viruses Including SARS-CoV-2

Author(s): RamaRao Malla* and Mohammad Amjad Kamal

Volume 28, Issue 46, 2022

Published on: 13 September, 2022

Page: [3649 - 3657] Pages: 9

DOI: 10.2174/1381612828666220907105543

Price: $65

conference banner
Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which originated in Wuhan, the Hubei region of China, has become a pandemic worldwide. It can transmit through droplets and enter via oral, nasal, and eye mucous membranes. It consists of single-stranded RNA (positive-sense), nonstructural proteins including enzymes and transcriptional proteins, and structural proteins such as Spike, Membrane, Envelope, and Nucleocapsid -proteins. SARS-CoV-2 mediates S-proteins entry and exit via binding to host cell surface proteins like tetraspanins. The transmembrane tetraspanins, CD151, CD9, and tetraspanin 8 (TSPAN8), facilitate the entry of novel coronaviruses by scaffolding host cell receptors and proteases. Also, CD151 was reported to increase airway hyperresponsiveness to calcium and nuclear viral export signaling. They may facilitate entry and exit by activating the serine proteases required to prime S-proteins in tetraspanin-enriched microdomains (TEMs). This article updates recent advances in structural proteins, their epitopes and putative receptors, and their regulation by proteases associated with TEMs. This review furnishes recent updates on the role of CD151 in the pathophysiology of SARS-CoV-2. We describe the role of CD151 in a possible mechanism of entry and exit in the airway, a major site for infection of SARS-CoV-2. We also updated current knowledge on the role of CD9 and TSPAN 8 in the entry and exit mechanism of coronaviruses. Finally, we discussed the importance of some small molecules which target CD151 as possible targeted therapeutics for COVID-19. In conclusion, this study could identify new targets and specific therapeutics to control emerging virus infections.

Keywords: Angiotensin-converting enzyme 2, CD151, COVID-19, cytokine storm, monoclonal antibodies, spike glycoprotein, small molecules, tetraspanin.

Next »
[1]
Matta S, Chopra KK, Arora VK. Morbidity and mortality trends of COVID 19 in top 10 countries. Indian J Tuberc 2020; 67(4): S167-72.
[http://dx.doi.org/10.1016/j.ijtb.2020.09.031] [PMID: 33308665]
[2]
Wang H, Paulson KR, Pease SA, et al. Estimating excess mortality due to the COVID-19 pandemic: A systematic analysis of COVID-19-related mortality, 2020–21. Lancet 2022; 399(10334): 1513-36.
[http://dx.doi.org/10.1016/S0140-6736(21)02796-3] [PMID: 35279232]
[3]
Taylor EH, Marson EJ, Elhadi M, et al. Factors associated with mortality in patients with COVID‐19 admitted to intensive care: A systematic review and meta‐analysis. Anaesthesia 2021; 76(9): 1224-32.
[http://dx.doi.org/10.1111/anae.15532] [PMID: 34189735]
[4]
Jain VK, Iyengar KP, Ish P. Elucidating causes of COVID-19 infection and related deaths after vaccination. Diabetes Metab Syndr 2021; 15(5): 102212.
[http://dx.doi.org/10.1016/j.dsx.2021.102212] [PMID: 34284226]
[5]
Guo YR, Cao QD, Hong ZS, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil Med Res 2020; 7(1): 11.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 32169119]
[6]
Peng X, Xu X, Li Y, Cheng L, Zhou X, Ren B. Transmission routes of 2019-nCoV and controls in dental practice. Int J Oral Sci 2020; 12: 9.
[7]
Xu H, Zhong L, Deng J, et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci 2020; 12(1): 8.
[http://dx.doi.org/10.1038/s41368-020-0074-x] [PMID: 32094336]
[8]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[9]
Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med 2020; 14(2): 185-92.
[http://dx.doi.org/10.1007/s11684-020-0754-0] [PMID: 32170560]
[10]
Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci 2020; 11(7): 995-8.
[11]
Tian HY. 2019-nCoV: New challenges from coronavirus. Chin J Prev Med 2020; 54(3): 235-8.
[PMID: 32187929]
[12]
Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019; 17: 181-92.
[http://dx.doi.org/10.1038/s41579-018-0118-9]
[13]
Diaz JH. Hypothesis: Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may increase the risk of severe COVID-19. J Travel Med 2020; 27(3): taaa041.
[http://dx.doi.org/10.1093/jtm/taaa041] [PMID: 32186711]
[14]
Liu Z, Xiao X, Wei X, et al. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2. J Med Virol 2020; 92(6): 595-601.
[http://dx.doi.org/10.1002/jmv.25726]
[15]
Olds JL, Kabbani N. Is nicotine exposure linked to cardiopulmonary vulnerability to COVID‐19 in the general population? FEBS J 2020; 287(17): 3651-5.
[http://dx.doi.org/10.1111/febs.15303] [PMID: 32189428]
[16]
Yao XH, Li TY, He ZC, et al. A pathological report of three COVID-19 cases by minimally invasive autopsies. Chinese J Pathol 2020; 49: 411-7.
[17]
Kuang D, Xu SP, Hu Y, Liu C, Duan YQ, Wang GP. The pathological changes and related studies of novel coronavirus infected surgical specimen. Chinese J Pathol 2020; 49: 471-3.
[18]
Sah R, Rodriguez-Morales AJ. Complete genome sequence of a 2019 novel coronavirus (SARS-CoV-2) strain isolated in Nepal. Microbiol Resour Announc 2020; 9(11): e00169.
[19]
Paraskevis D, Kostaki EG, Magiorkinis G, Panayiotakopoulos G, Sourvinos G, Tsiodras S. Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infect Genet Evol 2020; 79: 104212.
[http://dx.doi.org/10.1016/j.meegid.2020.104212] [PMID: 32004758]
[20]
Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol 2020; 92: 418-23.
[21]
Wrapp D, Wang N. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367: 1260-3.
[22]
Batlle D, Wysocki J, Satchell K. Soluble angiotensin-converting enzyme 2: A potential approach for coronavirus infection therapy? Clin Sci 2020; 134(5): 543-5.
[http://dx.doi.org/10.1042/CS20200163] [PMID: 32167153]
[23]
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 183(6): 1735.
[http://dx.doi.org/10.1016/j.cell.2020.11.032]
[24]
Kannan S, Shaik Syed Ali P, Sheeza A, Hemalatha K. COVID-19 (Novel Coronavirus 2019) - recent trends. Eur Rev Med Pharmacol Sci 2020; 24(4): 2006-11.
[PMID: 32141569]
[25]
Wilen CB, Tilton JC, Doms RW. Molecular mechanisms of HIV entry. Adv Exp Med Biol 2012; 726: 223-42.
[http://dx.doi.org/10.1007/978-1-4614-0980-9_10] [PMID: 22297516]
[26]
Colpitts TM, Conway MJ, Montgomery RR, Fikrig E. West Nile Virus: Biology, transmission, and human infection. Clin Microbiol Rev 2012; 25(4): 635-48.
[http://dx.doi.org/10.1128/CMR.00045-12] [PMID: 23034323]
[27]
Sieben C, Sezgin E, Eggeling C, Manley S. Influenza A viruses use multivalent sialic acid clusters for cell binding and receptor activation. PLoS Pathog 2020; 16(7): e1008656.
[http://dx.doi.org/10.1371/journal.ppat.1008656] [PMID: 32639985]
[28]
Conventional respiratory support therapy for Severe Acute Respiratory Infections (SARI): Clinical indications and nosocomial infection prevention and control. Chinese J Tuberculosis Resp Dis 2020; 43: E015.
[29]
Sun ML, Yang JM, Sun YP, Su GH. Inhibitors of RAS might be a good choice for the therapy of COVID-19 pneumonia. Chinese J Tuberculosis Resp Dis 2020; 43(0): E014.
[PMID: 32061198]
[30]
Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426(6965): 450-4.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[31]
Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat Med 2005; 11(8): 875-9.
[http://dx.doi.org/10.1038/nm1267] [PMID: 16007097]
[32]
Cao Y, Li L, Feng Z, et al. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov 2020; 6(1): 11.
[http://dx.doi.org/10.1038/s41421-020-0147-1] [PMID: 32133153]
[33]
Liu M, He P, Liu HG, et al. Clinical characteristics of 30 medical workers infected with new coronavirus pneumonia. Chinese J Tuberculosis Resp Dis 2020; 43(0): E016.
[PMID: 32062957]
[34]
Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol 2022; 23(1): 3-20.
[http://dx.doi.org/10.1038/s41580-021-00418-x] [PMID: 34611326]
[35]
Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun 2020; 525(1): 135-40.
[http://dx.doi.org/10.1016/j.bbrc.2020.02.071] [PMID: 32081428]
[36]
Baruah V, Bose S. Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCoV. J Med Virol 2020; 92: 495-500.
[37]
Guo L, Ren L, Yang S, et al. Profiling early humoral response to diagnose novel coronavirus disease (COVID-19). Clin Infect Dis 2020; 71(15): 778-85.
[http://dx.doi.org/10.1093/cid/ciaa310] [PMID: 32198501]
[38]
Cao W, Liu X, Bai T, et al. High-dose intravenous immunoglobulin as a therapeutic option for deteriorating patients with Coronavirus disease 2019. Open Forum Infect Dis 2020; 7(3): ofaa102.
[http://dx.doi.org/10.1093/ofid/ofaa102] [PMID: 32258207]
[39]
Sun Y, Koh V, Marimuthu K, et al. Epidemiological and clinical predictors of COVID-19. Clin Infect Dis 2020; 71(15): 786-92.
[http://dx.doi.org/10.1093/cid/ciaa322] [PMID: 32211755]
[40]
de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: Recent insights into emerging coronaviruses. Nat Rev Microbiol 2016; 14(8): 523-34.
[http://dx.doi.org/10.1038/nrmicro.2016.81] [PMID: 27344959]
[41]
Novel CPERE. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Chinese J Epidemiol 2020; 41: 145-51.
[42]
Roberts A, Deming D, Paddock CD, et al. A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice. PLoS Pathog 2007; 3(1): e5.
[http://dx.doi.org/10.1371/journal.ppat.0030005] [PMID: 17222058]
[43]
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30(3): 269-71.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[44]
Brown AJ, Won JJ, Graham RL, et al. Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Res 2019; 169: 104541.
[http://dx.doi.org/10.1016/j.antiviral.2019.104541] [PMID: 31233808]
[45]
Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 2020; 14(1): 72-3.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[46]
Weston S, Frieman MB. COVID-19: Knowns, unknowns, and questions. MSphere 2020; 5(2): e00203-20.
[http://dx.doi.org/10.1128/mSphere.00203-20] [PMID: 32188753]
[47]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[48]
Dessie G, Malik T. Role of serine proteases and host cell receptors involved in proteolytic activation, entry of SARS-CoV-2 and its current therapeutic options. Infect Drug Resist 2021; 14: 1883-92.
[http://dx.doi.org/10.2147/IDR.S308176] [PMID: 34079299]
[49]
Li K, Meyerholz DK, Bartlett JA, McCray PB Jr. The TMPRSS2 inhibitor nafamostat reduces SARS-CoV-2 pulmonary infection in mouse models of COVID-19. MBio 2021; 12(4): e00970-21.
[http://dx.doi.org/10.1128/mBio.00970-21] [PMID: 34340553]
[50]
Bugge TH, Antalis TM, Wu Q. Type II transmembrane serine proteases. J Biol Chem 2009; 284(35): 23177-81.
[http://dx.doi.org/10.1074/jbc.R109.021006] [PMID: 19487698]
[51]
Matsuyama S, Nao N, Shirato K, et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc Natl Acad Sci USA 2020; 117(13): 7001-3.
[http://dx.doi.org/10.1073/pnas.2002589117] [PMID: 32165541]
[52]
Shapira T, Monreal IA, Dion SP, et al. A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic. Nature 2022; 605(7909): 340-8.
[http://dx.doi.org/10.1038/s41586-022-04661-w] [PMID: 35344983]
[53]
Koch J, Uckeley ZM, Doldan P, Stanifer M, Boulant S, Lozach PY. TMPRSS2 expression dictates the entry route used by SARS‐CoV‐2 to infect host cells. EMBO J 2021; 40(16): e107821.
[http://dx.doi.org/10.15252/embj.2021107821] [PMID: 34159616]
[54]
Zhang F, Li W, Feng J, et al. SARS‐CoV‐2 pseudovirus infectivity and expression of viral entry‐related factors ACE2, TMPRSS2, Kim‐1, and NRP‐1 in human cells from the respiratory, urinary, digestive, reproductive, and immune systems. J Med Virol 2021; 93(12): 6671-85.
[http://dx.doi.org/10.1002/jmv.27244] [PMID: 34324210]
[55]
Wruck W, Adjaye J. SARS-CoV-2 receptor ACE2 is co-expressed with genes related to transmembrane serine proteases, viral entry, immunity and cellular stress. Sci Rep 2020; 10(1): 21415.
[http://dx.doi.org/10.1038/s41598-020-78402-2] [PMID: 33293627]
[56]
Zhao H, Lu L, Peng Z, et al. SARS-CoV-2 omicron variant shows less efficient replication and fusion activity when compared with Delta variant in TMPRSS2-expressed cells. Emerg Microbes Infect 2022; 11(1): 277-83.
[http://dx.doi.org/10.1080/22221751.2021.2023329] [PMID: 34951565]
[57]
Meng B, Abdullahi A, Ferreira IATM, et al. Altered TMPRSS2 usage by SARS-CoV-2 omicron impacts infectivity and fusogenicity. Nature 2022; 603(7902): 706-14.
[http://dx.doi.org/10.1038/s41586-022-04474-x] [PMID: 35104837]
[58]
Padmanabhan P, Desikan R, Dixit NM. Targeting TMPRSS2 and Cathepsin B/L together may be synergistic against SARS-CoV-2 infection. PLOS Comput Biol 2020; 16(12): e1008461.
[http://dx.doi.org/10.1371/journal.pcbi.1008461] [PMID: 33290397]
[59]
Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 2020; 11(1): 1620.
[http://dx.doi.org/10.1038/s41467-020-15562-9] [PMID: 32221306]
[60]
Simmons G, Zmora P, Gierer S, Heurich A, Pöhlmann S. Proteolytic activation of the SARS-coronavirus spike protein: Cutting enzymes at the cutting edge of antiviral research. Antiviral Res 2013; 100(3): 605-14.
[http://dx.doi.org/10.1016/j.antiviral.2013.09.028] [PMID: 24121034]
[61]
Jaimes J, Millet J, Whittaker G. Proteolytic cleavage of the SARS-CoV-2 spike protein and the role of the novel S1/S2 site. iScience 2020; 23(6): 101212.
[62]
Earnest JT, Hantak MP, Park JE, Gallagher T. Coronavirus and influenza virus proteolytic priming takes place in tetraspanin-enriched membrane microdomains. J Virol 2015; 89(11): 6093-104.
[http://dx.doi.org/10.1128/JVI.00543-15] [PMID: 25833045]
[63]
Vankadari N, Wilce JA. Emerging Wuhan (COVID-19) coronavirus: Glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect 2020; 9: 601-4.
[64]
Kumari S, Gayatri Devi V, Badana A, Dasari VR, Malla RR. CD151—A striking marker for cancer therapy. Biomark Cancer 2015; 7: BIC.S21847.
[http://dx.doi.org/10.4137/BIC.S21847] [PMID: 25861224]
[65]
Sowers AE, Hackenbrock CR. Rate of lateral diffusion of intramembrane particles: Measurement by electrophoretic displacement and rerandomization. Proc Natl Acad Sci USA 1981; 78(10): 6246-50.
[http://dx.doi.org/10.1073/pnas.78.10.6246] [PMID: 6947228]
[66]
Boucheix C, Rubinstein E. Tetraspanins. Cell Mol Life Sci 2001; 58(9): 1189-205.
[http://dx.doi.org/10.1007/PL00000933] [PMID: 11577978]
[67]
Kovalenko OV, Yang X, Kolesnikova TV, Hemler ME. Evidence for specific tetraspanin homodimers: Inhibition of palmitoylation makes cysteine residues available for cross-linking. Biochem J 2004; 377(2): 407-17.
[http://dx.doi.org/10.1042/bj20031037] [PMID: 14556650]
[68]
Nydegger S, Khurana S, Krementsov DN, Foti M, Thali M. Mapping of tetraspanin-enriched microdomains that can function as gateways for HIV-1. J Cell Biol 2006; 173(5): 795-807.
[http://dx.doi.org/10.1083/jcb.200508165] [PMID: 16735575]
[69]
Nassar A, Ibrahim IM, Amin FG, et al. A review of human coronaviruses’ receptors: The host-cell targets for the crown bearing viruses. Molecules 2021; 26(21): 6455.
[http://dx.doi.org/10.3390/molecules26216455] [PMID: 34770863]
[70]
Zhu Y, Saint-Pol J, Nguyen V, Rubinstein E, Greco C, Boucheix C. The Tetraspanin Tspan8/Co-029 associates with Endothelin converting enzyme ECE1 and regulates its activity. Thesis, L’universite Paris-Saclay, France 2019.
[71]
Makdisse MRP, Correa AG, Knobel M, et al. Increase in prescription rate of angiotensin-converting enzyme inhibitors or angiotensin receptor blocker for hospitalized patients with acute myocardial infarction and left ventricular systolic dysfunction. Crit Care 2007; 11 (Suppl. 3): P43.
[http://dx.doi.org/10.1186/cc5830]
[72]
Inoue N, Nishikawa T, Ikawa M, Okabe M. Tetraspanin-interacting protein IGSF8 is dispensable for mouse fertility. Fertil Steril 2012; 98(2): 465-70.
[http://dx.doi.org/10.1016/j.fertnstert.2012.04.029] [PMID: 22609062]
[73]
Florin L, Lang T. Tetraspanin assemblies in virus infection. Front Immunol 2018; 9: 1140.
[http://dx.doi.org/10.3389/fimmu.2018.01140] [PMID: 29887866]
[74]
van Spriel AB, Figdor CG. The role of tetraspanins in the pathogenesis of infectious diseases. Microbes Infect 2010; 12(2): 106-12.
[http://dx.doi.org/10.1016/j.micinf.2009.11.001] [PMID: 19896556]
[75]
Monk PN, Partridge LJ. Tetraspanins: Gateways for infection. Infect Disord Drug Targets 2012; 12(1): 4-17.
[http://dx.doi.org/10.2174/187152612798994957] [PMID: 22034932]
[76]
Naudin C. Tetraspanin CD151’s role in the kidney and mapping of genetic modifiers of glomerular disease. Thesis In: School of Biomedical Sciences and Pharmacy, University of Newcastle 2015.
[77]
Pozzi A, Zent R. Hold tight or you’ll fall off: CD151 helps podocytes stick in high-pressure situations. J Clin Invest 2012; 122(1): 13-6.
[http://dx.doi.org/10.1172/JCI61858] [PMID: 22201676]
[78]
Sincock PM, Mayrhofer G, Ashman LK. Localization of the transmembrane 4 superfamily (TM4SF) member PETA-3 (CD151) in normal human tissues: Comparison with CD9, CD63, and alpha5beta1 integrin. J Histochem Cytochem 1997; 45(4): 515-25.
[http://dx.doi.org/10.1177/002215549704500404] [PMID: 9111230]
[79]
Qiao Y, Tam JKC, Tan SSL, et al. CD151, a laminin receptor showing increased expression in asthmatic patients, contributes to airway hyperresponsiveness through calcium signaling. J Allergy Clin Immunol 2017; 139(1): 82-92.e5.
[http://dx.doi.org/10.1016/j.jaci.2016.03.029] [PMID: 27233153]
[80]
Tsujino K, Takeda Y, Arai T, et al. Tetraspanin CD151 protects against pulmonary fibrosis by maintaining epithelial integrity. Am J Respir Crit Care Med 2012; 186(2): 170-80.
[http://dx.doi.org/10.1164/rccm.201201-0117OC] [PMID: 22592804]
[81]
Yip TF, Selim ASM, Lian I, Lee SMY. Advancements in host-based interventions for influenza treatment. Front Immunol 2018; 9: 1547.
[http://dx.doi.org/10.3389/fimmu.2018.01547] [PMID: 30042762]
[82]
Qiao Y, Yan Y, Tan KS, et al. CD151, a novel host factor of nuclear export signaling in influenza virus infection. J Allergy Clin Immunol 2018; 141(5): 1799-817.
[http://dx.doi.org/10.1016/j.jaci.2017.11.032] [PMID: 29274410]
[83]
Wong AH, Tran T. CD151 in respiratory diseases. Front Cell Dev Biol 2020; 8: 64.
[http://dx.doi.org/10.3389/fcell.2020.00064] [PMID: 32117989]
[84]
Scheffer K, Berditchevski F, Florin L. The tetraspanin CD151 in papillomavirus infection. Viruses 2014; 6(2): 893-908.
[http://dx.doi.org/10.3390/v6020893] [PMID: 24553111]
[85]
Hantak MP, Qing E, Earnest JT, Gallagher T. Tetraspanins: Architects of viral entry and exit platforms. J Virol 2019; 93(6): e01429-17.
[http://dx.doi.org/10.1128/JVI.01429-17] [PMID: 30567993]
[86]
Scheffer KD, Gawlitza A, Spoden GA, et al. Tetraspanin CD151 mediates papillomavirus type 16 endocytosis. J Virol 2013; 87(6): 3435-46.
[http://dx.doi.org/10.1128/JVI.02906-12] [PMID: 23302890]
[87]
Hochdorfer D, Florin L, Sinzger C, Lieber D. Tetraspanin CD151 promotes initial events in human cytomegalovirus infection. J Virol 2016; 90(14): 6430-42.
[http://dx.doi.org/10.1128/JVI.00145-16] [PMID: 27147745]
[88]
Ho SH, Martin F, Higginbottom A, et al. Recombinant extracellular domains of tetraspanin proteins are potent inhibitors of the infection of macrophages by human immunodeficiency virus type 1. J Virol 2006; 80(13): 6487-96.
[http://dx.doi.org/10.1128/JVI.02539-05] [PMID: 16775336]
[89]
Fast LA, Lieber D, Lang T, Florin L. Tetraspanins in infections by human cytomegalo- and papillomaviruses. Biochem Soc Trans 2017; 45(2): 489-97.
[http://dx.doi.org/10.1042/BST20160295] [PMID: 28408489]
[90]
Kovalenko OV, Metcalf DG, DeGrado WF, Hemler ME. Structural organization and interactions of transmembrane domains in tetraspanin proteins. BMC Struct Biol 2005; 5(1): 11.
[http://dx.doi.org/10.1186/1472-6807-5-11] [PMID: 15985154]
[91]
Raff AB, Woodham AW, Raff LM, et al. The evolving field of human papillomavirus receptor research: A review of binding and entry. J Virol 2013; 87(11): 6062-72.
[http://dx.doi.org/10.1128/JVI.00330-13] [PMID: 23536685]
[92]
Florin L, Sapp M, Spoden GA. Host-cell factors involved in papillomavirus entry. Med Microbiol Immunol 2012; 201(4): 437-48.
[http://dx.doi.org/10.1007/s00430-012-0270-1] [PMID: 22972234]
[93]
Bienkowska-Haba M, Sapp M. The cytoskeleton in papillomavirus infection. Viruses 2011; 3(3): 260-71.
[http://dx.doi.org/10.3390/v3030260] [PMID: 21994730]
[94]
Berditchevski F. Complexes of tetraspanins with integrins: More than meets the eye. J Cell Sci 2001; 114(23): 4143-51.
[http://dx.doi.org/10.1242/jcs.114.23.4143] [PMID: 11739647]
[95]
Yang X, Claas C, Kraeft SK, et al. Palmitoylation of tetraspanin proteins: Modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology. Mol Biol Cell 2002; 13(3): 767-81.
[http://dx.doi.org/10.1091/mbc.01-05-0275] [PMID: 11907260]
[96]
Surviladze Z, Dziduszko A, Ozbun MA. Essential roles for soluble virion-associated heparan sulfonated proteoglycans and growth factors in human papillomavirus infections. PLoS Pathog 2012; 8(2): e1002519.
[http://dx.doi.org/10.1371/journal.ppat.1002519] [PMID: 22346752]
[97]
Woodham AW, Da Silva DM, Skeate JG, et al. The S100A10 subunit of the annexin A2 heterotetramer facilitates L2-mediated human papillomavirus infection. PLoS One 2012; 7(8): e43519.
[http://dx.doi.org/10.1371/journal.pone.0043519] [PMID: 22927980]
[98]
Dziduszko A, Ozbun MA. Annexin A2 and S100A10 regulate human papillomavirus type 16 entry and intracellular trafficking in human keratinocytes. J Virol 2013; 87(13): 7502-15.
[http://dx.doi.org/10.1128/JVI.00519-13] [PMID: 23637395]
[99]
Hysenaj L, Little S, Kulhanek K, et al. SARS-CoV-2 infection studies in lung organoids identify TSPAN8 as novel mediator. BioRxiv 2021.
[http://dx.doi.org/10.1101/2021.06.01.446640]
[100]
New C, Lee ZY, Tan KS, Wong AHP, Wang DY, Tran T. Tetraspanins: Host factors in viral infections. Int J Mol Sci 2021; 22(21): 11609.
[http://dx.doi.org/10.3390/ijms222111609] [PMID: 34769038]
[101]
Healy EF. How tetraspanin-mediated cell entry of SARS-CoV-2 can dysregulate the shedding of the ACE2 receptor by ADAM17. Biochem Biophys Res Commun 2022; 593: 52-6.
[http://dx.doi.org/10.1016/j.bbrc.2022.01.038] [PMID: 35063769]
[102]
Rouaud F, Méan I, Citi S. The ACE2 receptor for coronavirus entry is localized at apical cell—cell junctions of epithelial cells. Cells 2022; 11(4): 627.
[http://dx.doi.org/10.3390/cells11040627] [PMID: 35203278]
[103]
Xie F, Su P, Pan T, et al. Engineering extracellular vesicles enriched with palmitoylated ACE2 as COVID‐19 therapy. Adv Mater 2021; 33(49): 2103471.
[http://dx.doi.org/10.1002/adma.202103471] [PMID: 34665481]
[104]
Hassanpour M, Rezaie J, Nouri M, Panahi Y. The role of extracellular vesicles in COVID-19 virus infection. Infect Genet Evol 2020; 85: 104422.
[http://dx.doi.org/10.1016/j.meegid.2020.104422] [PMID: 32544615]
[105]
Earnest JT, Hantak MP, Li K, McCray PB Jr, Perlman S, Gallagher T. The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases. PLoS Pathog 2017; 13(7): e1006546.
[http://dx.doi.org/10.1371/journal.ppat.1006546] [PMID: 28759649]
[106]
Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J Infect 2020; 80(6): 607-13.
[http://dx.doi.org/10.1016/j.jinf.2020.03.037] [PMID: 32283152]
[107]
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229): 1033-4.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[108]
Yeung L, Hickey MJ, Wright MD. The many and varied roles of tetraspanins in immune cell recruitment and migration. Front Immunol 2018; 9: 1644.
[http://dx.doi.org/10.3389/fimmu.2018.01644] [PMID: 30072994]
[109]
Lin W, Liu J, Chen J, et al. Peptides of tetraspanin oncoprotein CD151 trigger active immunity against primary tumour and experimental lung metastasis. EBioMedicine 2019; 49: 133-44.
[http://dx.doi.org/10.1016/j.ebiom.2019.10.025] [PMID: 31668880]
[110]
Rocha-Perugini V, González-Granado JM, Tejera E, López-Martín S, Yañez-Mó M, Sánchez-Madrid F. Tetraspanins CD9 and CD151 at the immune synapse support T-cell integrin signaling. Eur J Immunol 2014; 44(7): 1967-75.
[http://dx.doi.org/10.1002/eji.201344235] [PMID: 24723389]
[111]
Zelman-Toister E, Bakos E, Cohen S, et al. CD151 regulates T-cell migration in health and inflammatory bowel disease. Inflamm Bowel Dis 2016; 22(2): 257-67.
[http://dx.doi.org/10.1097/MIB.0000000000000621] [PMID: 26529559]
[112]
Hayward S, Gachehiladze M, Badr N, et al. The CD151‐midkine pathway regulates the immune microenvironment in inflammatory breast cancer. J Pathol 2020; 251(1): 63-73.
[http://dx.doi.org/10.1002/path.5415] [PMID: 32129471]
[113]
Xia X, Yuan P, Liu Y, Wang Y, Cao W, Zheng JC. Emerging roles of extracellular vesicles in COVID‐19, a double‐edged sword? Immunology 2021; 163(4): 416-30.
[http://dx.doi.org/10.1111/imm.13329] [PMID: 33742451]
[114]
Gavara MM, Zaveri K, Badana AK, et al. A novel small molecule inhibitor of CD151 inhibits proliferation of metastatic triple negative breast cancer cell lines. Process Biochem 2018; 66: 254-62.
[http://dx.doi.org/10.1016/j.procbio.2017.12.004]
[115]
Zhang Q, Mi Z, Huang Y, et al. 2-thio-6-azauridine inhibits Vpu mediated BST-2 degradation. Retrovirology 2016; 13(1): 13.
[http://dx.doi.org/10.1186/s12977-016-0247-z] [PMID: 26935098]
[116]
Hwang S, Takimoto T, Hemler ME. Integrin-independent support of cancer drug resistance by tetraspanin CD151. Cell Mol Life Sci 2019; 76(8): 1595-604.
[http://dx.doi.org/10.1007/s00018-019-03014-7] [PMID: 30778617]
[117]
Hua L, Green M, Wong A, Warsh JJ, Li PP. Tetraspan protein CD151: A common target of mood stabilizing drugs? Neuropsychopharmacology 2001; 25(5): 729-36.
[http://dx.doi.org/10.1016/S0893-133X(01)00269-X] [PMID: 11682256]
[118]
Haeuw JF, Goetsch L, Bailly C, Corvaia N. Tetraspanin CD151 as a target for antibody-based cancer immunotherapy. Biochem Soc Trans 2011; 39(2): 553-8.
[http://dx.doi.org/10.1042/BST0390553] [PMID: 21428938]
[119]
Testa JE, Brooks PC, Lin JM, Quigley JP. Eukaryotic expression cloning with an antimetastatic monoclonal antibody identifies a tetraspanin (PETA-3/CD151) as an effector of human tumor cell migration and metastasis. Cancer Res 1999; 59(15): 3812-20.
[PMID: 10447000]
[120]
Devi GV, Badana A, Kumari S, Nagaseshu P, Malla R. Therapeutic potentials of CD151 shRNA in targeting metastasis of triple negative breast cancer cell line MDA-MB-231. J Cancer Sci Ther 2016; 8: 104-12.
[121]
Liu T. wang S, Wang L, Wang J, Li Y. Targeting CD151 by lentivirus-mediated RNA interference inhibits luminal and basal-like breast cancer cell growth and invasion. Mol Cell Biochem 2015; 407(1-2): 111-21.
[http://dx.doi.org/10.1007/s11010-015-2459-2] [PMID: 26003442]
[122]
Devi G, Badana A, Madhuri Ch MMP, Naik S. Knockdown of CD151 gene expression reduces survival of estrogen receptor positive breast cancer cells. J Clin Exp Oncol 2017; 4: 2.
[123]
Han ZB, Yang Z, Chi Y, et al. microRNA-124 suppresses breast cancer cell growth and motility by targeting CD151. Cell Physiol Biochem 2013; 31(6): 823-32.
[http://dx.doi.org/10.1159/000350100] [PMID: 23816858]
[124]
Kgk D, Kumari S, Shailender G, Malla RR. Marine natural compound cyclo(L-leucyl-L-prolyl) peptide inhibits migration of triple negative breast cancer cells by disrupting interaction of CD151 and EGFR signaling. Chem Biol Interact 2020; 315: 108872.
[http://dx.doi.org/10.1016/j.cbi.2019.108872] [PMID: 31669320]
[125]
Akella M, Amajala KC, Malla RR. Bioinformatics analysis of regulatory elements of the CD151 gene and insilico docking of CD151 with diallyl sulfide. Gene Rep 2019; 17: 100551.
[http://dx.doi.org/10.1016/j.genrep.2019.100551]
[126]
Nakamoto T, Murayama Y, Oritani K, et al. A novel therapeutic strategy with anti-CD9 antibody in gastric cancers. J Gastroenterol 2009; 44(9): 889-96.
[http://dx.doi.org/10.1007/s00535-009-0081-3] [PMID: 19468669]
[127]
Ventress JK, Partridge LJ, Read RC, Cozens D, MacNeil S, Monk PN. Peptides from tetraspanin CD9 are potent inhibitors of Staphylococcus aureus adherence to keratinocytes. PLoS One 2016; 11(7): e0160387.
[http://dx.doi.org/10.1371/journal.pone.0160387] [PMID: 27467693]
[128]
Suwatthanarak T, Tanaka M, Miyamoto Y, Miyado K, Okochi M. Inhibition of cancer-cell migration by tetraspanin CD9-binding peptide. Chem Commun 2021; 57(40): 4906-9.
[http://dx.doi.org/10.1039/D1CC01295A] [PMID: 33870995]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy