Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Mini-Review Article

The Impediments of Cancer Stem Cells and An Exploration into the Nanomedical Solutions for Glioblastoma

Author(s): Harshil Jain*, Priyal Dhawan, Sahana Rao, Nikita Lalwani and Harshita Shand

Volume 23, Issue 4, 2023

Published on: 29 September, 2022

Page: [368 - 382] Pages: 15

DOI: 10.2174/1871520622666220901101204

Price: $65

conference banner
Abstract

Glioblastoma is an aggressive and recurrent tumour that affects our brain and spinal cord with an extensively poor prognosis and death of the patient within 14-15 months of diagnosis. The tumour originates from astrocytes and therefore comes under the glioma known as astrocytoma. These tumours exhibit miscellaneous properties and contain cancer stem cells (CSCs). The stem cells exhibit diverse mechanisms through which these cells indulge in the proliferation and renewal of their systems. CSCs pose a significant obstacle as far as a cancer therapy is concerned, which incorporates blocking important signalling pathways involved in CSCs’ self-renewal and survival which may also include inhibition of the ATP-binding cassette transporters. Nanomedicine, biomarkers and drug delivery technologybased approaches using nanoparticles have tremendous ability to tackle the restrictions impending clinical applications, such as diagnosis and targeting of CSC-specific agents. Nanocarrier-based therapeutic agents have shown the potential of penetrating CSCs and increasing drug accumulation in CSCs. Nanomedicine can overcome ATP-driven pumpmediated multidrug resistance while also reducing the harmful effects on non-cancerous cells. The objective of this review is to examine the advantages of nanomedicine and the innovative approaches that have been explored to address the challenges presented by CSCs in order to control the progression of glioblastomas by developing novel nanotherapeutic interventions which target CSCs.

Keywords: Glioblastoma, nanomedicine, cancer stem cells, nanoparticles, AML, neural stem cells.

Graphical Abstract
[1]
Miller, K.D.; Ostrom, Q.T.; Kruchko, C.; Patil, N.; Tihan, T.; Cioffi, G.; Fuchs, H.E.; Waite, K.A.; Jemal, A.; Siegel, R.L.; Barnholtz-Sloan, J.S. Brain and other central nervous system tumor statistics, 2021. CA Cancer J. Clin., 2021, 71(5), 381-406.
[http://dx.doi.org/10.3322/caac.21693] [PMID: 34427324]
[2]
Tan, A.C.; Ashley, D.M.; López, G.Y.; Malinzak, M.; Friedman, H.S.; Khasraw, M. Management of glioblastoma: State of the art and fu-ture directions. CA Cancer J. Clin., 2020, 70(4), 299-312.
[http://dx.doi.org/10.3322/caac.21613] [PMID: 32478924]
[3]
Miranda-Filho, A.; Piñeros, M.; Soerjomataram, I.; Deltour, I.; Bray, F. Cancers of the brain and CNS: Global patterns and trends in inci-dence. Neuro-oncol., 2017, 19, 270-280.
[http://dx.doi.org/10.1093/neuonc/now166]
[4]
Grech, N.; Dalli, T.; Mizzi, S.; Meilak, L.; Calleja, N.; Zrinzo, A. Rising incidence of glioblastoma multiforme in a well-defined population. Cureus, 2020, 12(5), e8195.
[http://dx.doi.org/10.7759/cureus.8195] [PMID: 32572354]
[5]
Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol., 2016, 131(6), 803-820.
[http://dx.doi.org/10.1007/s00401-016-1545-1] [PMID: 27157931]
[6]
Lathia, J.D.; Mack, S.C.; Mulkearns-Hubert, E.E.; Valentim, C.L.L.; Rich, J.N. Cancer stem cells in glioblastoma. Genes Dev., 2015, 29(12), 1203-1217.
[http://dx.doi.org/10.1101/gad.261982.115] [PMID: 26109046]
[7]
Gener, P.; Rafael, D.F.; Fernández, Y.; Ortega, J.S.; Arango, D.; Abasolo, I.; Videira, M.; Schwartz, S., Jr Cancer stem cells and personalized cancer nanomedicine. Nanomedicine (Lond.), 2016, 11(3), 307-320.
[http://dx.doi.org/10.2217/nnm.15.200] [PMID: 26785724]
[8]
Guo, P.; Huang, J.; Moses, M.A. Cancer nanomedicines in an evolving oncology landscape. Trends Pharmacol. Sci., 2020, 41(10), 730-742.
[http://dx.doi.org/10.1016/j.tips.2020.08.001] [PMID: 32873407]
[9]
Hong, I.S.; Jang, G.B.; Lee, H.Y.; Nam, J.S. Targeting cancer stem cells by using the nanoparticles. Int. J. Nanomedicine, 2015, 10(Spec Iss), 251-260.
[PMID: 26425092]
[10]
Singh, D.; Minz, A.P.; Sahoo, S.K. Nanomedicine-mediated drug targeting of cancer stem cells. Drug Discov. Today, 2017, 22(6), 952-959.
[http://dx.doi.org/10.1016/j.drudis.2017.04.005] [PMID: 28435061]
[11]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[12]
van der Meel, R.; Sulheim, E.; Shi, Y.; Kiessling, F.; Mulder, W.J.M.; Lammers, T. Smart cancer nanomedicine. Nat. Nanotechnol., 2019, 14(11), 1007-1017.
[http://dx.doi.org/10.1038/s41565-019-0567-y] [PMID: 31695150]
[13]
Bonnet, D.; Dick, J.E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med., 1997, 3(7), 730-737.
[http://dx.doi.org/10.1038/nm0797-730] [PMID: 9212098]
[14]
Clevers, H. The cancer stem cell: Premises, promises and challenges. Nat. Med., 2011, 17(3), 313-319.
[http://dx.doi.org/10.1038/nm.2304] [PMID: 21386835]
[15]
Reya, T.; Morrison, S.J.; Clarke, M.F.; Weissman, I.L. Stem cells, cancer, and cancer stem cells. Nature, 2001, 414(6859), 105-111.
[http://dx.doi.org/10.1038/35102167] [PMID: 11689955]
[16]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[17]
Wang, K.; Wu, X.; Wang, J.; Huang, J. Cancer stem cell theory: Therapeutic implications for nanomedicine. Int. J. Nanomedicine, 2013, 8, 899-908.
[PMID: 23467584]
[18]
Turdo, A.; Veschi, V.; Gaggianesi, M.; Chinnici, A.; Bianca, P.; Todaro, M.; Stassi, G. `. Meeting the challenge of targeting cancer stem cells. Front. Cell Dev. Biol., 2019, 7, 16.
[http://dx.doi.org/10.3389/fcell.2019.00016] [PMID: 30834247]
[19]
Garg, M. Emerging role of microRNAs in cancer stem cells: Implications in cancer therapy. World J. Stem Cells, 2015, 7(8), 1078-1089.
[http://dx.doi.org/10.4252/wjsc.v7.i8.1078] [PMID: 26435768]
[20]
He, Y-C.; Zhou, F-L.; Shen, Y.; Liao, D-F.; Cao, D. Apoptotic death of cancer stem cells for cancer therapy. Int. J. Mol. Sci., 2014, 15(5), 8335-8351.
[http://dx.doi.org/10.3390/ijms15058335] [PMID: 24823879]
[21]
Mimeault, M.; Batra, S.K. Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells. J. Cell. Mol. Med., 2013, 17(1), 30-54.
[http://dx.doi.org/10.1111/jcmm.12004] [PMID: 23301832]
[22]
Vinogradov, S.; Wei, X. Cancer stem cells and drug resistance: The potential of nanomedicine. Nanomedicine (Lond.), 2012, 7(4), 597-615.
[http://dx.doi.org/10.2217/nnm.12.22] [PMID: 22471722]
[23]
Mukherjee, S. Quiescent stem cell marker genes in glioma gene networks are sufficient to distinguish between normal and glioblastoma (GBM) samples. Sci. Rep., 2020, 10(1), 10937.
[http://dx.doi.org/10.1038/s41598-020-67753-5] [PMID: 32616845]
[24]
Brescia, P.; Richichi, C.; Pelicci, G. Current strategies for identification of glioma stem cells: Adequate or unsatisfactory? J. Oncol., 2012, 2012, 376894.
[http://dx.doi.org/10.1155/2012/376894] [PMID: 22685459]
[25]
Najafi, M.; Farhood, B.; Mortezaee, K. Cancer stem cells (CSCs) in cancer progression and therapy. J. Cell. Physiol., 2019, 234(6), 8381-8395.
[http://dx.doi.org/10.1002/jcp.27740] [PMID: 30417375]
[26]
Chen, K.; Huang, Y.H.; Chen, J.L. Understanding and targeting cancer stem cells: Therapeutic implications and challenges. Acta Pharmacol. Sin., 2013, 34(6), 732-740.
[http://dx.doi.org/10.1038/aps.2013.27] [PMID: 23685952]
[27]
Yamamuro, S.; Okamoto, Y.; Sano, E.; Ochiai, Y.; Ogino, A.; Ohta, T.; Hara, H.; Ueda, T.; Nakayama, T.; Yoshino, A.; Katayama, Y. Characterization of glioma stem-like cells from human glioblastomas. Int. J. Oncol., 2015, 47(1), 91-96.
[http://dx.doi.org/10.3892/ijo.2015.2992] [PMID: 25955568]
[28]
Ortensi, B.; Setti, M.; Osti, D.; Pelicci, G. Cancer stem cell contribution to glioblastoma invasiveness. Stem Cell Res. Ther., 2013, 4(1), 18.
[http://dx.doi.org/10.1186/scrt166] [PMID: 23510696]
[29]
Da Ros, M.; De Gregorio, V.; Iorio, A.L.; Giunti, L.; Guidi, M.; de Martino, M.; Genitori, L.; Sardi, I. Glioblastoma chemoresistance: The double play by microenvironment and blood-brain barrier. Int. J. Mol. Sci., 2018, 19(10), 2879.
[http://dx.doi.org/10.3390/ijms19102879] [PMID: 30248992]
[30]
Scadden, D.T. The stem-cell niche as an entity of action. Nature, 2006, 441(7097), 1075-1079.
[http://dx.doi.org/10.1038/nature04957] [PMID: 16810242]
[31]
Sundar, S.J.; Hsieh, J.K.; Manjila, S.; Lathia, J.D.; Sloan, A. The role of cancer stem cells in glioblastoma. Neurosurg. Focus, 2014, 37(6), E6.
[http://dx.doi.org/10.3171/2014.9.FOCUS14494] [PMID: 25434391]
[32]
Verhaak, R.G.W.; Hoadley, K.A.; Purdom, E.; Wang, V.; Qi, Y.; Wilkerson, M.D.; Miller, C.R.; Ding, L.; Golub, T.; Mesirov, J.P.; Alexe, G.; Lawrence, M.; O’Kelly, M.; Tamayo, P.; Weir, B.A.; Gabriel, S.; Winckler, W.; Gupta, S.; Jakkula, L.; Feiler, H.S.; Hodgson, J.G.; James, C.D.; Sarkaria, J.N.; Brennan, C.; Kahn, A.; Spellman, P.T.; Wilson, R.K.; Speed, T.P.; Gray, J.W.; Meyerson, M.; Getz, G.; Perou, C.M.; Hayes, D.N. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 2010, 17(1), 98-110.
[http://dx.doi.org/10.1016/j.ccr.2009.12.020] [PMID: 20129251]
[33]
Morokoff, A.; Ng, W.; Gogos, A.; Kaye, A.H. Molecular subtypes, stem cells and heterogeneity: Implications for personalised therapy in glioma. J. Clin. Neurosci., 2015, 22(8), 1219-1226.
[http://dx.doi.org/10.1016/j.jocn.2015.02.008] [PMID: 25957782]
[34]
Kawamura, Y.; Takouda, J.; Yoshimoto, K.; Nakashima, K. New aspects of glioblastoma multiforme revealed by similarities between neural and glioblastoma stem cells. Cell Biol. Toxicol., 2018, 34(6), 425-440.
[http://dx.doi.org/10.1007/s10565-017-9420-y] [PMID: 29383547]
[35]
Rong, Y.; Durden, D.L.; Van Meir, E.G.; Brat, D.J. ‘Pseudopalisading’ necrosis in glioblastoma: A familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J. Neuropathol. Exp. Neurol., 2006, 65(6), 529-539.
[http://dx.doi.org/10.1097/00005072-200606000-00001] [PMID: 16783163]
[36]
Rosen, J.M.; Jordan, C.T. The increasing complexity of the cancer stem cell paradigm. Science, 2009, 324(5935), 1670-1673.
[http://dx.doi.org/10.1126/science.1171837] [PMID: 19556499]
[37]
Lathia, J.D.; Heddleston, J.M.; Venere, M.; Rich, J.N. Deadly teamwork: Neural cancer stem cells and the tumor microenvironment. Cell Stem Cell, 2011, 8(5), 482-485.
[http://dx.doi.org/10.1016/j.stem.2011.04.013] [PMID: 21549324]
[38]
Seidel, S.; Garvalov, B.K.; Wirta, V.; von Stechow, L.; Schänzer, A.; Meletis, K.; Wolter, M.; Sommerlad, D.; Henze, A.T.; Nistér, M.; Reifenberger, G.; Lundeberg, J.; Frisén, J.; Acker, T. A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 α. Brain, 2010, 133(Pt 4), 983-995.
[http://dx.doi.org/10.1093/brain/awq042] [PMID: 20375133]
[39]
Soeda, A.; Park, M.; Lee, D.; Mintz, A.; Androutsellis-Theotokis, A.; McKay, R.D.; Engh, J.; Iwama, T.; Kunisada, T.; Kassam, A.B.; Pollack, I.F.; Park, D.M. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1α. Oncogene, 2009, 28(45), 3949-3959.
[http://dx.doi.org/10.1038/onc.2009.252] [PMID: 19718046]
[40]
Persano, L.; Rampazzo, E.; Basso, G.; Viola, G. Glioblastoma cancer stem cells: Role of the microenvironment and therapeutic targeting. Biochem. Pharmacol., 2013, 85(5), 612-622.
[http://dx.doi.org/10.1016/j.bcp.2012.10.001] [PMID: 23063412]
[41]
Le Bras, B.; Barallobre, M.J.; Homman-Ludiye, J.; Ny, A.; Wyns, S.; Tammela, T.; Haiko, P.; Karkkainen, M.J.; Yuan, L.; Muriel, M.P.; Chatzopoulou, E.; Bréant, C.; Zalc, B.; Carmeliet, P.; Alitalo, K.; Eichmann, A.; Thomas, J.L. VEGF-C is a trophic factor for neural pro-genitors in the vertebrate embryonic brain. Nat. Neurosci., 2006, 9(3), 340-348.
[http://dx.doi.org/10.1038/nn1646] [PMID: 16462734]
[42]
Li, Q.; Ford, M.C.; Lavik, E.B.; Madri, J.A. Modeling the neurovascular niche: VEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: An in vitro study. J. Neurosci. Res., 2006, 84(8), 1656-1668.
[http://dx.doi.org/10.1002/jnr.21087] [PMID: 17061253]
[43]
Zhu, T.S.; Costello, M.A.; Talsma, C.E.; Flack, C.G.; Crowley, J.G.; Hamm, L.L.; He, X.; Hervey-Jumper, S.L.; Heth, J.A.; Muraszko, K.M.; DiMeco, F.; Vescovi, A.L.; Fan, X. Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nur-ture self-renewal of cancer stem-like cells. Cancer Res., 2011, 71(18), 6061-6072.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-4269] [PMID: 21788346]
[44]
Ye, X.Z.; Xu, S.L.; Xin, Y.H.; Yu, S.C.; Ping, Y.F.; Chen, L.; Xiao, H.L.; Wang, B.; Yi, L.; Wang, Q.L.; Jiang, X.F.; Yang, L.; Zhang, P.; Qian, C.; Cui, Y.H.; Zhang, X.; Bian, X.W. Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-β1 signaling pathway. J. Immunol., 2012, 189(1), 444-453.
[http://dx.doi.org/10.4049/jimmunol.1103248] [PMID: 22664874]
[45]
Zagzag, D.; Lukyanov, Y.; Lan, L.; Ali, M.A.; Esencay, M.; Mendez, O.; Yee, H.; Voura, E.B.; Newcomb, E.W. Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: Implications for angiogenesis and glioma cell invasion. Lab. Invest., 2006, 86(12), 1221-1232.
[http://dx.doi.org/10.1038/labinvest.3700482] [PMID: 17075581]
[46]
Guelfi, S.; Duffau, H.; Bauchet, L.; Rothhut, B.; Hugnot, J.P. Vascular transdifferentiation in the CNS: A focus on neural and glioblastoma stem-like cells. Stem Cells Int., 2016, 2016, 2759403.
[http://dx.doi.org/10.1155/2016/2759403] [PMID: 27738435]
[47]
Eramo, A.; Ricci-Vitiani, L.; Zeuner, A.; Pallini, R.; Lotti, F.; Sette, G.; Pilozzi, E.; Larocca, L.M.; Peschle, C.; De Maria, R. Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ., 2006, 13(7), 1238-1241.
[http://dx.doi.org/10.1038/sj.cdd.4401872] [PMID: 16456578]
[48]
Bao, S.; Wu, Q.; McLendon, R.E.; Hao, Y.; Shi, Q.; Hjelmeland, A.B.; Dewhirst, M.W.; Bigner, D.D.; Rich, J.N. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 2006, 444(7120), 756-760.
[http://dx.doi.org/10.1038/nature05236] [PMID: 17051156]
[49]
Garnier, D.; Renoult, O.; Alves-Guerra, M.C.; Paris, F.; Pecqueur, C. Glioblastoma stem-like cells, Metabolic strategy to kill a challenging target. Front. Oncol., 2019, 9, 118.
[http://dx.doi.org/10.3389/fonc.2019.00118] [PMID: 30895167]
[50]
Chandran, U.R.; Luthra, S.; Santana-Santos, L.; Mao, P.; Kim, S.H.; Minata, M.; Li, J.; Benos, P.V.; DeWang, M.; Hu, B.; Cheng, S.Y.; Nakano, I.; Sobol, R.W. Gene expression profiling distinguishes proneural glioma stem cells from mesenchymal glioma stem cells. Genom. Data, 2015, 5, 333-336.
[http://dx.doi.org/10.1016/j.gdata.2015.07.007] [PMID: 26251826]
[51]
Guardia, G.D.A.; Correa, B.R.; Araujo, P.R.; Qiao, M.; Burns, S.; Penalva, L.O.F. Proneural and mesenchymal glioma stem cells display major differences in splicing and lncRNA profiles. npj. Genomic Med., 2020, 5, 1-12.
[52]
Bhat, K.P.L.; Balasubramaniyan, V.; Vaillant, B.; Ezhilarasan, R.; Hummelink, K.; Hollingsworth, F.; Wani, K.; Heathcock, L.; James, J.D.; Goodman, L.D.; Conroy, S.; Long, L.; Lelic, N.; Wang, S.; Gumin, J.; Raj, D.; Kodama, Y.; Raghunathan, A.; Olar, A.; Joshi, K.; Pelloski, C.E.; Heimberger, A.; Kim, S.H.; Cahill, D.P.; Rao, G.; Den Dunnen, W.F.A.; Boddeke, H.W.G.M.; Phillips, H.S.; Nakano, I.; Lang, F.F.; Colman, H.; Sulman, E.P.; Aldape, K. Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell, 2013, 24(3), 331-346.
[http://dx.doi.org/10.1016/j.ccr.2013.08.001] [PMID: 23993863]
[53]
Lim, D.A.; Cha, S.; Mayo, M.C.; Chen, M.H.; Keles, E.; VandenBerg, S.; Berger, M.S. Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neuro-oncol., 2007, 9(4), 424-429.
[http://dx.doi.org/10.1215/15228517-2007-023] [PMID: 17622647]
[54]
Altmann, C.; Keller, S.; Schmidt, M.H.H. The role of SVZ stem cells in glioblastoma. Cancers (Basel), 2019, 11(4), 448.
[http://dx.doi.org/10.3390/cancers11040448] [PMID: 30934929]
[55]
Lawlor, K.; Marques-Torrejon, M.A.; Dharmalingham, G.; El-Azhar, Y.; Schneider, M.D.; Pollard, S.M.; Rodríguez, T.A. Glioblastoma stem cells induce quiescence in surrounding neural stem cells via Notch signaling. Genes Dev., 2020, 34(23-24), 1599-1604.
[http://dx.doi.org/10.1101/gad.336917.120] [PMID: 33184225]
[56]
Bradshaw, A.; Wickremsekera, A.; Tan, S.T.; Peng, L.; Davis, P.F.; Itinteang, T. Cancer stem cell hierarchy in glioblastoma multiforme. Front. Surg., 2016, 3, 21.
[http://dx.doi.org/10.3389/fsurg.2016.00021] [PMID: 27148537]
[57]
Hirabayashi, Y.; Gotoh, Y. Epigenetic control of neural precursor cell fate during development. Nat. Rev. Neurosci., 2010, 11(6), 377-388.
[http://dx.doi.org/10.1038/nrn2810] [PMID: 20485363]
[58]
Dean, M.; Fojo, T.; Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer, 2005, 5(4), 275-284.
[http://dx.doi.org/10.1038/nrc1590] [PMID: 15803154]
[59]
Home - ClinicalTrials.gov. Available from: https://www.clinicaltrials.gov/
[60]
EU Clinical Trials Register. 2016. Available from: https://www.clinicaltrialsregister.eu/
[61]
Matsui, W.H. Cancer stem cell signaling pathways. Medicine (Baltimore), 2016, 95(1), S8-S19.
[http://dx.doi.org/10.1097/MD.0000000000004765] [PMID: 27611937]
[62]
Suzuki, Y.; Shirai, K.; Oka, K.; Mobaraki, A.; Yoshida, Y.; Noda, S.E.; Okamoto, M.; Suzuki, Y.; Itoh, J.; Itoh, H.; Ishiuchi, S.; Nakano, T. Higher pAkt expression predicts a significant worse prognosis in glioblastomas. J. Radiat. Res. (Tokyo), 2010, 51(3), 343-348.
[http://dx.doi.org/10.1269/jrr.09109] [PMID: 20410674]
[63]
Wei, Y.; Jiang, Y.; Zou, F.; Liu, Y.; Wang, S.; Xu, N.; Xu, W.; Cui, C.; Xing, Y.; Liu, Y.; Cao, B.; Liu, C.; Wu, G.; Ao, H.; Zhang, X.; Jiang, J. Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc. Natl. Acad. Sci. USA, 2013, 110(17), 6829-6834.
[http://dx.doi.org/10.1073/pnas.1217002110] [PMID: 23569237]
[64]
Jhanwar-Uniyal, M.; Albert, L.; McKenna, E.; Karsy, M.; Rajdev, P.; Braun, A.; Murali, R. Deciphering the signaling pathways of cancer stem cells of glioblastoma multiforme: Role of Akt/mTOR and MAPK pathways. Adv. Enzyme Regul., 2011, 51(1), 164-170.
[http://dx.doi.org/10.1016/j.advenzreg.2010.09.017] [PMID: 21035497]
[65]
Qin, L.S.; Yu, Z.Q.; Zhang, S.M.; Sun, G.; Zhu, J.; Xu, J.; Guo, J.; Fu, L.S. The short chain cell-permeable ceramide (C6) restores cell apoptosis and perifosine sensitivity in cultured glioblastoma cells. Mol. Biol. Rep., 2013, 40(10), 5645-5655.
[http://dx.doi.org/10.1007/s11033-013-2666-4] [PMID: 24065522]
[66]
Atkins, R.J.; Dimou, J.; Paradiso, L.; Morokoff, A.P.; Kaye, A.H.; Drummond, K.J.; Hovens, C.M. Regulation of glycogen synthase ki-nase-3 beta (GSK-3β) by the Akt pathway in gliomas. J. Clin. Neurosci., 2012, 19(11), 1558-1563.
[http://dx.doi.org/10.1016/j.jocn.2012.07.002] [PMID: 22999562]
[67]
Gupta, P.B.; Onder, T.T.; Jiang, G.; Tao, K.; Kuperwasser, C.; Weinberg, R.A.; Lander, E.S. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell, 2009, 138(4), 645-659.
[http://dx.doi.org/10.1016/j.cell.2009.06.034] [PMID: 19682730]
[68]
Magrath, J.W.; Raney, W.R.; Kim, Y. In vitro demonstration of salinomycin as a novel chemotherapeutic agent for the treatment of SOX2 positive glioblastoma cancer stem cells. Oncol. Rep., 2020, 44(2), 777-785.
[http://dx.doi.org/10.3892/or.2020.7642] [PMID: 32627023]
[69]
Boehmerle, W.; Endres, M. Salinomycin induces calpain and cytochrome c-mediated neuronal cell death. Cell Death Dis., 2011, 2(6), e168.
[http://dx.doi.org/10.1038/cddis.2011.46] [PMID: 21633391]
[70]
Jackson, A.L.; Linsley, P.S. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat. Rev. Drug Discov., 2010, 9(1), 57-67.
[http://dx.doi.org/10.1038/nrd3010] [PMID: 20043028]
[71]
The two directions of cancer nanomedicine. Nat. Nanotechnol., 2019, 14(12), 1083.
[http://dx.doi.org/10.1038/s41565-019-0597-5] [PMID: 31802029]
[72]
Wang, K.; Park, J.O.; Zhang, M. Treatment of glioblastoma multiforme using a combination of small interfering RNA targeting epidermal growth factor receptor and β-catenin. J. Gene Med., 2013, 15(1), 42-50.
[http://dx.doi.org/10.1002/jgm.2693] [PMID: 23319157]
[73]
Chung, A.S.; Ferrara, N. Developmental and pathological angiogenesis. Annu. Rev. Cell Dev. Biol., 2011, 27, 563-584.
[http://dx.doi.org/10.1146/annurev-cellbio-092910-154002] [PMID: 21756109]
[74]
Aponte, P.M.; Caicedo, A. Stemness in cancer: Stem cells, cancer stem cells, and their microenvironment. Stem Cells Int., 2017, 2017, 5619472.
[http://dx.doi.org/10.1155/2017/5619472] [PMID: 28473858]
[75]
Zhou, W.; Ke, S.Q.; Huang, Z.; Flavahan, W.; Fang, X.; Paul, J.; Wu, L.; Sloan, A.E.; McLendon, R.E.; Li, X.; Rich, J.N.; Bao, S. Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat. Cell Biol., 2015, 17(2), 170-182.
[http://dx.doi.org/10.1038/ncb3090] [PMID: 25580734]
[76]
Robles Irizarry, L.; Hambardzumyan, D.; Nakano, I.; Gladson, C.L.; Ahluwalia, M.S. Therapeutic targeting of VEGF in the treatment of glioblastoma. Expert Opin. Ther. Targets, 2012, 16(10), 973-984.
[http://dx.doi.org/10.1517/14728222.2012.711817] [PMID: 22876981]
[77]
Burkhardt, J.K.; Hofstetter, C.P.; Santillan, A.; Shin, B.J.; Foley, C.P.; Ballon, D.J.; Pierre Gobin, Y.; Boockvar, J.A. Orthotopic glioblasto-ma stem-like cell xenograft model in mice to evaluate intra-arterial delivery of bevacizumab: From bedside to bench. J. Clin. Neurosci., 2012, 19(11), 1568-1572.
[http://dx.doi.org/10.1016/j.jocn.2012.03.012] [PMID: 22985932]
[78]
Vredenburgh, J.J.; Desjardins, A.; Kirkpatrick, J.P.; Reardon, D.A.; Peters, K.B.; Herndon, J.E., II; Marcello, J.; Bailey, L.; Threatt, S.; Sampson, J.; Friedman, A.; Friedman, H.S. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma multiforme. Int. J. Radiat. Oncol. Biol. Phys., 2012, 82(1), 58-66.
[http://dx.doi.org/10.1016/j.ijrobp.2010.08.058] [PMID: 21036490]
[79]
Popescu, A.M.; Alexandru, O.; Brindusa, C.; Purcaru, S.O.; Tache, D.E.; Tataranu, L.G.; Taisescu, C.; Dricu, A. Targeting the VEGF and PDGF signaling pathway in glioblastoma treatment. Int. J. Clin. Exp. Pathol., 2015, 8(7), 7825-7837.
[PMID: 26339347]
[80]
Li, J.; Zhao, J.; Tan, T.; Liu, M.; Zeng, Z.; Zeng, Y.; Zhang, L.; Fu, C.; Chen, D.; Xie, T. Nanoparticle drug delivery system for glioma and its efficacy improvement strategies: A comprehensive review. Int. J. Nanomedicine, 2020, 15, 2563-2582.
[http://dx.doi.org/10.2147/IJN.S243223] [PMID: 32368041]
[81]
Fisusi, F.A.; Schätzlein, A.G.; Uchegbu, I.F. Nanomedicines in the treatment of brain tumors. Nanomedicine (Lond.), 2018, 13(6), 579-583.
[http://dx.doi.org/10.2217/nnm-2017-0378] [PMID: 29376468]
[82]
Ventola, C.L. Progress in nanomedicine: Approved and investigational nanodrugs. P&T, 2017, 42(12), 742-755.
[PMID: 29234213]
[83]
D’Mello, S.R.; Cruz, C.N.; Chen, M-L.; Kapoor, M.; Lee, S.L.; Tyner, K.M. The evolving landscape of drug products containing nano-materials in the United States. Nat. Nanotechnol., 2017, 12(6), 523-529.
[http://dx.doi.org/10.1038/nnano.2017.67] [PMID: 28436961]
[84]
Zottel, A.; Videtič Paska, A.; Jovčevska, I. Nanotechnology meets oncology: Nanomaterials in brain cancer research, diagnosis and thera-py. Materials (Basel), 2019, 12(10), 1588.
[http://dx.doi.org/10.3390/ma12101588] [PMID: 31096609]
[85]
Woodworth, G.F.; Dunn, G.P.; Nance, E.A.; Hanes, J.; Brem, H. Emerging insights into barriers to effective brain tumor therapeutics. Front. Oncol., 2014, 4, 126.
[http://dx.doi.org/10.3389/fonc.2014.00126] [PMID: 25101239]
[86]
Jain, K.K. Advances in the field of nanooncology. BMC Med., 2010, 8, 83.
[http://dx.doi.org/10.1186/1741-7015-8-83] [PMID: 21144040]
[87]
Šamec, N.; Zottel, A.; Videtič Paska, A.; Jovčevska, I. Nanomedicine and immunotherapy: A step further towards precision medicine for glioblastoma. Molecules, 2020, 25(3), 490.
[http://dx.doi.org/10.3390/molecules25030490] [PMID: 31979318]
[88]
Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treat-ment and survivorship statistics, 2019. CA Cancer J. Clin., 2019, 69(5), 363-385.
[http://dx.doi.org/10.3322/caac.21565] [PMID: 31184787]
[89]
Luo, Y.; Prestwich, G.D. Cancer-targeted polymeric drugs. Curr. Cancer Drug Targets, 2002, 2(3), 209-226.
[http://dx.doi.org/10.2174/1568009023333836] [PMID: 12188908]
[90]
Chidambaram, M.; Manavalan, R.; Kathiresan, K. Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J. Pharm. Pharm. Sci., 2011, 14(1), 67-77.
[http://dx.doi.org/10.18433/J30C7D] [PMID: 21501554]
[91]
Stavrovskaya, A.A. Cellular mechanisms of multidrug resistance of tumor cells. Biochemistry (Mosc.), 2000, 65(1), 95-106.
[PMID: 10702644]
[92]
Narvekar, M.; Xue, H.Y.; Eoh, J.Y.; Wong, H.L. Nanocarrier for poorly water-soluble anticancer drugs--barriers of translation and solu-tions. AAPS PharmSciTech, 2014, 15(4), 822-833.
[http://dx.doi.org/10.1208/s12249-014-0107-x] [PMID: 24687241]
[93]
Aftab, S.; Shah, A.; Nadhman, A.; Kurbanoglu, S.; Aysıl Ozkan, S.; Dionysiou, D.D.; Shukla, S.S.; Aminabhavi, T.M. Nanomedicine: An effective tool in cancer therapy. Int. J. Pharm., 2018, 540(1-2), 132-149.
[http://dx.doi.org/10.1016/j.ijpharm.2018.02.007] [PMID: 29427746]
[94]
Jain, K.K. Role of nanobiotechnology in the personalized management of glioblastoma multiforme. Nanomedicine (Lond.), 2011, 6(3), 411-414.
[http://dx.doi.org/10.2217/nnm.11.12] [PMID: 21542679]
[95]
FDA. FDA approves first-of-its kind targeted RNA-based therapy to treat a rare disease; , 2018. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-its-kindtargeted-rna-based-therapy-treat-rare-disease
[96]
FDA. U.S Food & Drug Administration. Drug approval package: Onpattro (patisiran); , 2018. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210922Orig1s000TOC.cfm
[97]
Zhao, J.; Feng, S.S. Nanocarriers for delivery of siRNA and codelivery of siRNA and other therapeutic agents. Nanomedicine (Lond.), 2015, 10(14), 2199-2228.
[http://dx.doi.org/10.2217/nnm.15.61] [PMID: 26214357]
[98]
Zhang, R.; Saito, R.; Shibahara, I.; Sugiyama, S.; Kanamori, M.; Sonoda, Y.; Tominaga, T. Temozolomide reverses doxorubicin resistance by inhibiting P-glycoprotein in malignant glioma cells. J. Neurooncol., 2016, 126(2), 235-242.
[http://dx.doi.org/10.1007/s11060-015-1968-x] [PMID: 26530267]
[99]
Livney, Y.D.; Assaraf, Y.G. Rationally designed nanovehicles to overcome cancer chemoresistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1716-1730.
[http://dx.doi.org/10.1016/j.addr.2013.08.006] [PMID: 23954781]
[100]
Nieto Montesinos, R.; Béduneau, A.; Pellequer, Y.; Lamprecht, A. Delivery of P-glycoprotein substrates using chemosensitizers and nano-technology for selective and efficient therapeutic outcomes. J. Control. Release, 2012, 161(1), 50-61.
[http://dx.doi.org/10.1016/j.jconrel.2012.04.034] [PMID: 22562066]
[101]
Shen, S.; Xia, J.X.; Wang, J. Nanomedicine-mediated cancer stem cell therapy. Biomaterials, 2016, 74, 1-18.
[http://dx.doi.org/10.1016/j.biomaterials.2015.09.037] [PMID: 26433488]
[102]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[103]
Davis, M.E.; Chen, Z.; Shin, D.M. Nanoparticle therapeutics: An emerging treatment modality for cancer. In: Nature Reviews Drug Discov-ery; Nature Publishing Group, 2008; Vol. 7, pp. 771-782.
[104]
Chen, W.; Dong, J.; Haiech, J.; Kilhoffer, M.C.; Zeniou, M. Cancer stem cell quiescence and plasticity as major challenges in cancer thera-py. Stem Cells Int., 2016, 2016, 1740936.
[http://dx.doi.org/10.1155/2016/1740936] [PMID: 27418931]
[105]
Mukhtar, M.; Bilal, M.; Rahdar, A.; Barani, M.; Arshad, R.; Behl, T.; Brisc, C.; Banica, F.; Bungau, S. Nanomaterials for diagnosis and treatment of brain cancer: Recent updates. Chemosensors (Basel), 2020, 8(4), 117.
[http://dx.doi.org/10.3390/chemosensors8040117]
[106]
Ceña, V.; Játiva, P. Nanoparticle crossing of blood-brain barrier: A road to new therapeutic approaches to central nervous system diseases. Nanomedicine (Lond.), 2018, 13(13), 1513-1516.
[http://dx.doi.org/10.2217/nnm-2018-0139] [PMID: 29998779]
[107]
Knollmann, F.D.; Böck, J.C.; Rautenberg, K.; Beier, J.; Ebert, W.; Felix, R. Differences in predominant enhancement mechanisms of su-perparamagnetic iron oxide and ultrasmall superparamagnetic iron oxide for contrast-enhanced portal magnetic resonance angiography. Preliminary results of an animal study original investigation. Invest. Radiol., 1998, 33(9), 637-643.
[http://dx.doi.org/10.1097/00004424-199809000-00019] [PMID: 9766048]
[108]
Hernández-Pedro, N.Y.; Rangel-López, E.; Magaña-Maldonado, R.; de la Cruz, V.P.; del Angel, A.S.; Pineda, B.; Sotelo, J. Application of nanoparticles on diagnosis and therapy in gliomas. BioMed Res. Int., 2013, 2013, 351031.
[http://dx.doi.org/10.1155/2013/351031] [PMID: 23691498]
[109]
Hansen, C.L.; Hansen, P.R.; Pedersen, N.; Poulsen, H.S.; Gillings, N.; Kjaer, A. Identification of amino acid residues in PEPHC1 important for binding to the tumor-specific receptor EGFRvIII. Chem. Biol. Drug Des., 2008, 72(4), 273-278.
[http://dx.doi.org/10.1111/j.1747-0285.2008.00706.x] [PMID: 18844673]
[110]
Liu, X.; Du, C.; Li, H.; Jiang, T.; Luo, Z.; Pang, Z.; Geng, D.; Zhang, J. Engineered superparamagnetic iron oxide nanoparticles (SPIONs) for dual-modality imaging of intracranial glioblastoma via EGFRvIII targeting. Beilstein J. Nanotechnol., 2019, 10, 1860-1872.
[http://dx.doi.org/10.3762/bjnano.10.181] [PMID: 31579072]
[111]
Du, C.; Liu, X.; Hu, H.; Li, H.; Yu, L.; Geng, D.; Chen, Y.; Zhang, J. Dual-targeting and excretable ultrasmall SPIONs for T1-weighted positive MR imaging of intracranial glioblastoma cells by targeting the lipoprotein receptor-related protein. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(11), 2296-2306.
[http://dx.doi.org/10.1039/C9TB02391G] [PMID: 32100784]
[112]
Xin, H.; Jiang, X.; Gu, J.; Sha, X.; Chen, L.; Law, K.; Chen, Y.; Wang, X.; Jiang, Y.; Fang, X. Angiopep-conjugated poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma. Biomaterials, 2011, 32(18), 4293-4305.
[http://dx.doi.org/10.1016/j.biomaterials.2011.02.044] [PMID: 21427009]
[113]
Alphandéry, E. Nano-therapies for glioblastoma treatment. Cancers (Basel), 2020, 12(1), 242.
[http://dx.doi.org/10.3390/cancers12010242] [PMID: 31963825]
[114]
Lanier, O.L.; Korotych, O.I.; Monsalve, A.G.; Wable, D.; Savliwala, S.; Grooms, N.W.F.; Nacea, C.; Tuitt, O.R.; Dobson, J. Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia. Int. J. Hyperthermia, 2019, 36(1), 687-701.
[http://dx.doi.org/10.1080/02656736.2019.1628313] [PMID: 31340687]
[115]
Jurgons, R.; Seliger, C.; Hilpert, A.; Trahms, L.; Odenbach, S.; Alexiou, C. Drug loaded magnetic nanoparticles for cancer therapy. J. Phys. Condens. Matter, 2006, 18, S2893-S2902.
[http://dx.doi.org/10.1088/0953-8984/18/38/S24]
[116]
Norouzi, M.; Yathindranath, V.; Thliveris, J.A.; Kopec, B.M.; Siahaan, T.J.; Miller, D.W. Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: A combinational approach for enhanced delivery of nanoparticles. Sci. Rep., 2020, 10(1), 11292.
[http://dx.doi.org/10.1038/s41598-020-68017-y] [PMID: 32647151]
[117]
Xu, H.L.; Mao, K.L.; Huang, Y.P.; Yang, J.J.; Xu, J.; Chen, P.P.; Fan, Z.L.; Zou, S.; Gao, Z.Z.; Yin, J.Y.; Xiao, J.; Lu, C.T.; Zhang, B.L.; Zhao, Y.Z. Glioma-targeted superparamagnetic iron oxide nanoparticles as drug-carrying vehicles for theranostic effects. Nanoscale, 2016, 8(29), 14222-14236.
[http://dx.doi.org/10.1039/C6NR02448C] [PMID: 27396404]
[118]
Madgula, V.L.M.; Avula, B.; Reddy, V.L.N.; Khan, I.A.; Khan, S.I. Transport of decursin and decursinol angelate across Caco-2 and MDR-MDCK cell monolayers: In vitro models for intestinal and blood-brain barrier permeability. Planta Med., 2007, 73(4), 330-335.
[http://dx.doi.org/10.1055/s-2007-967137] [PMID: 17372866]
[119]
Hajikarimi, Z.; Khoei, S.; Khoee, S.; Mahdavi, S.R. Evaluation of the cytotoxic effects of PLGA coated iron oxide nanoparticles as a carri-er of 5- fluorouracil and mega-voltage X-ray radiation in DU145 prostate cancer cell line. IEEE Trans. Nanobiosci., 2014, 13(4), 403-408.
[http://dx.doi.org/10.1109/TNB.2014.2328868] [PMID: 25051558]
[120]
Gholami, L.; Tafaghodi, M.; Abbasi, B.; Daroudi, M.; Kazemi Oskuee, R. Preparation of superparamagnetic iron oxide/doxorubicin loaded chitosan nanoparticles as a promising glioblastoma theranostic tool. J. Cell. Physiol., 2019, 234(2), 1547-1559.
[http://dx.doi.org/10.1002/jcp.27019] [PMID: 30145790]
[121]
Grillone, A.; Battaglini, M.; Moscato, S.; Mattii, L.; de Julián Fernández, C.; Scarpellini, A.; Giorgi, M.; Sinibaldi, E.; Ciofani, G. Nutlin-loaded magnetic solid lipid nanoparticles for targeted glioblastoma treatment. Nanomedicine (Lond.), 2019, 14(6), 727-752.
[http://dx.doi.org/10.2217/nnm-2018-0436] [PMID: 30574827]
[122]
Cheng, Y.; Dai, Q.; Morshed, R.A.; Fan, X.; Wegscheid, M.L.; Wainwright, D.A.; Han, Y.; Zhang, L.; Auffinger, B.; Tobias, A.L.; Rincón, E.; Thaci, B.; Ahmed, A.U.; Warnke, P.C.; He, C.; Lesniak, M.S. Blood-brain barrier permeable gold nanoparticles: An efficient delivery platform for enhanced malignant glioma therapy and imaging. Small, 2014, 10(24), 5137-5150.
[http://dx.doi.org/10.1002/smll.201400654] [PMID: 25104165]
[123]
Silva, C.O.; Pinho, J.O.; Lopes, J.M.; Almeida, A.J.; Gaspar, M.M.; Reis, C. Current trends in cancer nanotheranostics: Metallic, polymeric, and lipid-based systems. Pharmaceutics, 2019, 11(1), 22.
[http://dx.doi.org/10.3390/pharmaceutics11010022] [PMID: 30625999]
[124]
Wu, C.; Xu, Q.; Chen, X.; Liu, J. Delivery luteolin with folacin-modified nanoparticle for glioma therapy. Int. J. Nanomedicine, 2019, 14, 7515-7531.
[http://dx.doi.org/10.2147/IJN.S214585] [PMID: 31571861]
[125]
Aldea, M.; Florian, I.A.; Kacso, G.; Craciun, L.; Boca, S.; Soritau, O.; Florian, I.S. Nanoparticles for targeting intratumoral hypoxia: Ex-ploiting a potential weakness of glioblastoma. Pharm. Res., 2016, 33(9), 2059-2077.
[http://dx.doi.org/10.1007/s11095-016-1947-8] [PMID: 27230936]
[126]
Jiang, X.; Wang, C.; Fitch, S.; Yang, F. Targeting tumor hypoxia using nanoparticle-engineered CXCR4-overexpressing adipose-derived stem cells. Theranostics, 2018, 8(5), 1350-1360.
[http://dx.doi.org/10.7150/thno.22736] [PMID: 29507625]
[127]
Poonaki, E.; Ariakia, F.; Jalili-Nik, M.; Ardestani, M.S.; Tondro, G.; Samini, F. Targeting BMI-1 with PLGA-PEG nanoparticle-containing PTC209 modulates the behavior of human glioblastoma stem cells and cancer cells. Cancer Nano., 2021, 12, 5.
[http://dx.doi.org/10.1186/s12645-021-00078-8]
[128]
Kuo, Y.C.; Chen, Y.C. Targeting delivery of etoposide to inhibit the growth of human glioblastoma multiforme using lactoferrin- and folic acid-grafted poly(lactide-co-glycolide) nanoparticles. Int. J. Pharm., 2015, 479(1), 138-149.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.070] [PMID: 25560309]
[129]
Jaimes-Aguirre, L.; Morales-Avila, E.; Ocampo-García, B.E.; Medina, L.A.; López-Téllez, G.; Gibbens-Bandala, B.V.; Izquierdo-Sánchez, V. Biodegradable poly(D,L-lactide-co-glycolide)/poly(L-γ-glutamic acid) nanoparticles conjugated to folic acid for targeted delivery of doxorubicin. Mater. Sci. Eng. C, 2017, 76, 743-751.
[http://dx.doi.org/10.1016/j.msec.2017.03.145] [PMID: 28482586]
[130]
Emamgholizadeh Minaei, S.; Khoei, S.; Khoee, S.; Karimi, M.R. Tri-block copolymer nanoparticles modified with folic acid for te-mozolomide delivery in glioblastoma. Int. J. Biochem. Cell Biol., 2019, 108, 72-83.
[http://dx.doi.org/10.1016/j.biocel.2019.01.010] [PMID: 30660689]
[131]
Mamaeva, V.; Rosenholm, J.M.; Bate-Eya, L.T.; Bergman, L.; Peuhu, E.; Duchanoy, A.; Fortelius, L.E.; Landor, S.; Toivola, D.M.; Lin-dén, M.; Sahlgren, C. Mesoporous silica nanoparticles as drug delivery systems for targeted inhibition of Notch signaling in cancer. Mol. Ther., 2011, 19(8), 1538-1546.
[http://dx.doi.org/10.1038/mt.2011.105] [PMID: 21629222]
[132]
Kim, B.Y.; Rutka, J.T.; Chan, W.C. Nanomedicine. N. Engl. J. Med., 2010, 363(25), 2434-2443.
[http://dx.doi.org/10.1056/NEJMra0912273] [PMID: 21158659]
[133]
Coluccia, D.; Figueiredo, C.A.; Wu, M.Y.; Riemenschneider, A.N.; Diaz, R.; Luck, A.; Smith, C.; Das, S.; Ackerley, C.; O’Reilly, M.; Hynynen, K.; Rutka, J.T. Enhancing glioblastoma treatment using cisplatin-gold-nanoparticle conjugates and targeted delivery with magnet-ic resonance-guided focused ultrasound. Nanomedicine, 2018, 14(4), 1137-1148.
[http://dx.doi.org/10.1016/j.nano.2018.01.021] [PMID: 29471172]
[134]
Wang, L.; Tang, S.; Yu, Y.; Lv, Y.; Wang, A.; Yan, X.; Li, N.; Sha, C.; Sun, K.; Li, Y. Intranasal delivery of temozolomide-conjugated gold nanoparticles functionalized with anti-EphA3 for glioblastoma targeting. Mol. Pharm., 2021, 18(3), 915-927.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00911] [PMID: 33417456]
[135]
Joh, D.Y.; Sun, L.; Stangl, M.; Al Zaki, A.; Murty, S.; Santoiemma, P.P.; Davis, J.J.; Baumann, B.C.; Alonso-Basanta, M.; Bhang, D.; Kao, G.D.; Tsourkas, A.; Dorsey, J.F. Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization. PLoS One, 2013, 8(4), e62425.
[http://dx.doi.org/10.1371/journal.pone.0062425] [PMID: 23638079]
[136]
Shatsberg, Z.; Zhang, X.; Ofek, P.; Malhotra, S.; Krivitsky, A.; Scomparin, A.; Tiram, G.; Calderón, M.; Haag, R.; Satchi-Fainaro, R. Func-tionalized nanogels carrying an anticancer microRNA for glioblastoma therapy. J. Control. Release, 2016, 239, 159-168.
[http://dx.doi.org/10.1016/j.jconrel.2016.08.029] [PMID: 27569663]
[137]
Ofek, P.; Calderón, M.; Mehrabadi, F.S.; Krivitsky, A.; Ferber, S.; Tiram, G.; Yerushalmi, N.; Kredo-Russo, S.; Grossman, R.; Ram, Z.; Haag, R.; Satchi-Fainaro, R. Restoring the oncosuppressor activity of microRNA-34a in glioblastoma using a polyglycerol-based polyplex. Nanomedicine, 2016, 12(7), 2201-2214.
[http://dx.doi.org/10.1016/j.nano.2016.05.016] [PMID: 27262933]
[138]
Li, Y.; Guessous, F.; Zhang, Y.; Dipierro, C.; Kefas, B.; Johnson, E.; Marcinkiewicz, L.; Jiang, J.; Yang, Y.; Schmittgen, T.D.; Lopes, B.; Schiff, D.; Purow, B.; Abounader, R. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res., 2009, 69(19), 7569-7576.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0529] [PMID: 19773441]
[139]
Chiou, G.Y.; Cherng, J.Y.; Hsu, H.S.; Wang, M.L.; Tsai, C.M.; Lu, K.H.; Chien, Y.; Hung, S.C.; Chen, Y.W.; Wong, C.I.; Tseng, L.M.; Huang, P.I.; Yu, C.C.; Hsu, W.H.; Chiou, S.H. Cationic polyurethanes-short branch PEI-mediated delivery of Mir145 inhibited epithelial-mesenchymal transdifferentiation and cancer stem-like properties and in lung adenocarcinoma. J. Control. Release, 2012, 159(2), 240-250.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.014] [PMID: 22285547]
[140]
Yang, Y.P.; Chien, Y.; Chiou, G.Y.; Cherng, J.Y.; Wang, M.L.; Lo, W.L.; Chang, Y.L.; Huang, P.I.; Chen, Y.W.; Shih, Y.H.; Chen, M.T.; Chiou, S.H. Inhibition of cancer stem cell-like properties and reduced chemoradioresistance of glioblastoma using microRNA145 with cat-ionic polyurethane-short branch PEI. Biomaterials, 2012, 33(5), 1462-1476.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.071] [PMID: 22098779]
[141]
Han, J.; Chen, Q. MiR-16 modulate temozolomide resistance by regulating BCL-2 in human glioma cells. Int. J. Clin. Exp. Pathol., 2015, 8(10), 12698-12707.
[PMID: 26722459]
[142]
Zhou, X.; Wu, W.; Zeng, A.; Nie, E.; Jin, X.; Yu, T.; Zhi, T.; Jiang, K.; Wang, Y.; Zhang, J.; You, Y. MicroRNA-141-3p promotes glioma cell growth and temozolomide resistance by directly targeting p53. Oncotarget, 2017, 8(41), 71080-71094.
[http://dx.doi.org/10.18632/oncotarget.20528] [PMID: 29050344]
[143]
Lee, T.J.; Yoo, J.Y.; Shu, D.; Li, H.; Zhang, J.; Yu, J.G.; Jaime-Ramirez, A.C.; Acunzo, M.; Romano, G.; Cui, R.; Sun, H.L.; Luo, Z.; Old, M.; Kaur, B.; Guo, P.; Croce, C.M. RNA nanoparticle-based targeted therapy for glioblastoma through inhibition of oncogenic miR-21. Mol. Ther., 2017, 25(7), 1544-1555.
[http://dx.doi.org/10.1016/j.ymthe.2016.11.016] [PMID: 28109960]
[144]
Wang, C.H.; Chiou, S.H.; Chou, C.P.; Chen, Y.C.; Huang, Y.J.; Peng, C.A. Photothermolysis of glioblastoma stem-like cells targeted by carbon nanotubes conjugated with CD133 monoclonal antibody. Nanomedicine, 2011, 7(1), 69-79.
[http://dx.doi.org/10.1016/j.nano.2010.06.010] [PMID: 20620237]
[145]
Kim, J.S.; Shin, D.H.; Kim, J.S. Dual-targeting immunoliposomes using angiopep-2 and CD133 antibody for glioblastoma stem cells. J. Control. Release, 2018, 269, 245-257.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.026] [PMID: 29162480]
[146]
Shin, D.H.; Xuan, S.; Kim, W-Y.; Bae, G-U.; Kim, J-S. CD133 antibody-conjugated immunoliposomes encapsulating gemcitabine for tar-geting glioblastoma stem cells. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(24), 3771-3781.
[http://dx.doi.org/10.1039/c4tb00185k] [PMID: 32261723]
[147]
Szopa, W.; Burley, T.A.; Kramer-Marek, G.; Kaspera, W. Diagnostic and therapeutic biomarkers in glioblastoma: Current status and future perspectives. BioMed Res. Int., 2017, 2017, 8013575.
[http://dx.doi.org/10.1155/2017/8013575] [PMID: 28316990]
[148]
Yu, W.; Zhang, L.; Wei, Q.; Shao, A. O6-Methylguanine-DNA Methyltransferase (MGMT): Challenges and new opportunities in glioma chemotherapy. Front. Oncol., 2020, 9, 1547.
[http://dx.doi.org/10.3389/fonc.2019.01547] [PMID: 32010632]
[149]
Kobayashi, K.; Tomita, H.; Shimizu, M.; Tanaka, T.; Suzui, N.; Miyazaki, T.; Hara, A. p53 expression as a diagnostic biomarker in ulcera-tive colitis-associated cancer. Int. J. Mol. Sci., 2017, 18(6), 1284.
[http://dx.doi.org/10.3390/ijms18061284] [PMID: 28621756]
[150]
Zilfou, J.T.; Lowe, S.W. Tumor suppressive functions of p53. Cold Spring Harb. Perspect. Biol., 2009, 1(5), a001883.
[http://dx.doi.org/10.1101/cshperspect.a001883] [PMID: 20066118]
[151]
Al-Khallaf, H. Isocitrate dehydrogenases in physiology and cancer: Biochemical and molecular insight. Cell Biosci., 2017, 7, 37.
[http://dx.doi.org/10.1186/s13578-017-0165-3] [PMID: 28785398]
[152]
Saadeh, F.S.; Mahfouz, R.; Assi, H.I. EGFR as a clinical marker in glioblastomas and other gliomas. Int. J. Biol. Markers, 2018, 33(1), 22-32.
[http://dx.doi.org/10.5301/ijbm.5000301] [PMID: 28885661]
[153]
Vincent, M.D.; Kuruvilla, M.S.; Leighl, N.B.; Kamel-Reid, S. Biomarkers that currently affect clinical practice: EGFR, ALK, MET, KRAS. Curr. Oncol., 2012, 19(Suppl. 1), S33-S44.
[http://dx.doi.org/10.3747/co.19.1149] [PMID: 22787409]
[154]
Raica, M.; Cimpean, A.M. Platelet-derived growth factor (PDGF)/PDGF receptors (PDGFR) axis as target for antitumor and antiangiogenic therapy. Pharmaceuticals (Basel), 2010, 3(3), 572-599.
[http://dx.doi.org/10.3390/ph3030572] [PMID: 27713269]
[155]
Chen, C.Y.; Chen, J.; He, L.; Stiles, B.L. PTEN: Tumor suppressor and metabolic regulator. Front. Endocrinol. (Lausanne), 2018, 9, 338.
[http://dx.doi.org/10.3389/fendo.2018.00338] [PMID: 30038596]
[156]
Han, F.; Hu, R.; Yang, H.; Liu, J.; Sui, J.; Xiang, X.; Wang, F.; Chu, L.; Song, S. PTEN gene mutations correlate to poor prognosis in glio-ma patients: A meta-analysis. OncoTargets Ther., 2016, 9, 3485-3492.
[PMID: 27366085]
[157]
Langhans, J.; Schneele, L.; Trenkler, N.; von Bandemer, H.; Nonnenmacher, L.; Karpel-Massler, G.; Siegelin, M.D.; Zhou, S.; Halatsch, M.E.; Debatin, K.M.; Westhoff, M.A. The effects of PI3K-mediated signalling on glioblastoma cell behaviour. Oncogenesis, 2017, 6(11), 398.
[http://dx.doi.org/10.1038/s41389-017-0004-8] [PMID: 29184057]
[158]
Yang, J.; Nie, J.; Ma, X.; Wei, Y.; Peng, Y.; Wei, X. Targeting PI3K in cancer: Mechanisms and advances in clinical trials. Mol. Cancer, 2019, 18(1), 26.
[http://dx.doi.org/10.1186/s12943-019-0954-x] [PMID: 30782187]
[159]
Hu, N.; Richards, R.; Jensen, R. Role of chromosomal 1p/19q co-deletion on the prognosis of oligodendrogliomas: A systematic review and meta-analysis. Interdiscip. Neurosurg., 2016, 5, 58-63.
[http://dx.doi.org/10.1016/j.inat.2016.06.008]
[160]
Glumac, P.M.; LeBeau, A.M. The role of CD133 in cancer: A concise review. Clin. Transl. Med., 2018, 7(1), 18.
[http://dx.doi.org/10.1186/s40169-018-0198-1] [PMID: 29984391]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy