Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Advances in Metal-organic Frameworks (MOFs) based Biosensors for Diagnosis: An Update

Author(s): Ghazala Ashraf*, Tauqir Ahmad, Muhammad Zeeshan Ahmed, Murtaza and Yousef Rasmi*

Volume 22, Issue 27, 2022

Published on: 05 September, 2022

Page: [2222 - 2240] Pages: 19

DOI: 10.2174/1568026622666220829125548

Price: $65

conference banner
Abstract

Metal-organic frameworks (MOFs) have significant advantages over other candidate classes of chemo-sensory materials owing to their extraordinary structural tunability and characteristics. MOF-based biosensing is a simple and convenient method for identifying various species. Biomarkers are molecular or cellular processes that link environmental exposure to a health outcome. Biomarkers are important in understanding the links between environmental chemical exposure and the development of chronic diseases, as well as in identifying disease-prone subgroups. Until now, several species, including nanoparticles (NPs) and their nanocomposites, small molecules, and unique complex systems, have been used for the chemical sensing of biomarkers. Following the overview of the field, we discussed the various fabrication methods for MOFs development in this review. We provide a thorough overview of the previous five years of progress to broaden the scope of analytes for future research. Several enzymatic and non-enzymatic sensors are offered, together with a mandatory measuring method that includes detection range and dynamic range. In addition, we reviewed the comparison of enzymatic and non-enzymatic biosensors, inventive edges, and the difficulties that need to be solved. This work might open up new possibilities for material production, sensor development, medical diagnostics, and other sensing fields.

Keywords: Metal-organic frameworks, Biomarkers, Protein, Dopamine, Metabolites, Disease diagnosis.

Graphical Abstract
[1]
Getachew, A.; Cheneke, W.; Asres, Y.; Bekele, S.; Kebede, E. Assessment of coverage and quality of selected clinical chemistry tests among medical laboratories of health facilities in Jimma zone, South West Ethiopia. J. Trop. Med., 2019, 2019, 5954313.
[2]
Asha, C.S.; Bhat, S.K.; Nayak, D.; Bhat, C. Auto removal of bright spot from images captured against flashing light source. IEEE Int. Conf. Distrib. Comput. VLSI, Electr. Circuits Robot. Discov., 2019, 2019, 9007933.
[http://dx.doi.org/10.1109/DISCOVER47552.2019.9007933]
[3]
Masood, Z.; Rehman, H.U.; Baloch, A.B.; Akbar, N.U.; Zakir, M.; Gul, I.; Gul, N.; Jamil, N.; Din, N.; Ambreen, B.; Shahid, I.; Ahmad, T.; Shah, T.; Masab, M.; Haseeb, A. Analysis of physicochemical parameters of water and sediments collected from Rawal Dam Islama-bad. Am. J. Toxicol. Sci., 2015, 7, 123-128.
[4]
Ashraf, G.; Asif, M.; Aziz, A.; Wang, Z.; Qiu, X.; Huang, Q.; Xiao, F.; Liu, H. Nanocomposites consisting of copper and copper oxide incorporated into MoS4 nanostructures for sensitive voltammetric determination of bisphenol A. Mikrochim. Acta, 2019, 186(6), 337.
[http://dx.doi.org/10.1007/s00604-019-3406-9] [PMID: 31073647]
[5]
Asif, M.; Aziz, A.; Wang, Z.; Ashraf, G.; Wang, J.; Luo, H.; Chen, X.; Xiao, F.; Liu, H. Hierarchical CNTs@CuMn layered double hy-droxide nanohybrid with enhanced electrochemical performance in H2S detection from live cells. Anal. Chem., 2019, 91(6), 3912-3920.
[http://dx.doi.org/10.1021/acs.analchem.8b04685] [PMID: 30761890]
[6]
Asif, M.; Aziz, A.; Azeem, M.; Wang, Z.; Ashraf, G.; Xiao, F.; Chen, X.; Liu, H. A review on electrochemical biosensing platform based on layered double hydroxides for small molecule biomarkers determination. Adv. Colloid Interface Sci., 2018, 262, 21-38.
[http://dx.doi.org/10.1016/j.cis.2018.11.001] [PMID: 30428998]
[7]
Asif, M.; Aziz, A.; Ashraf, G.; Wang, Z.; Wang, J.; Azeem, M.; Chen, X.; Xiao, F.; Liu, H. Facet-inspired core-shell gold nanoislands on metal oxide octadecahedral heterostructures: High sensing performance toward sulfide in biotic fluids. ACS Appl. Mater. Interfaces, 2018, 10(43), 36675-36685.
[http://dx.doi.org/10.1021/acsami.8b12186] [PMID: 30298714]
[8]
Aziz, A.; Asif, M.; Ashraf, G.; Azeem, M.; Majeed, I.; Ajmal, M.; Wang, J.; Liu, H. Advancements in electrochemical sensing of hydro-gen peroxide, glucose and dopamine by using 2D nanoarchitectures of layered double hydroxides or metal dichalcogenides. A review. Mikrochim. Acta, 2019, 186(10), 671.
[http://dx.doi.org/10.1007/s00604-019-3776-z] [PMID: 31489483]
[9]
Iftikhar, T.; Xu, Y.; Aziz, A.; Ashraf, G.; Li, G.; Asif, M.; Xiao, F.; Liu, H. Tuning electrocatalytic aptitude by incorporating α-MnO2 nanorods in Cu-MOF/rGO/CuO hybrids: Electrochemical sensing of resorcinol for practical applications. ACS Appl. Mater. Interfaces, 2021, 13(27), 31462-31473.
[http://dx.doi.org/10.1021/acsami.1c07067] [PMID: 34196524]
[10]
Majeed, S.; Farooq, M.U.; Khan, N.A.; Fatima, B.; Majeed, S.; Anjum, S. MOF-based electrochemical sensors for hydrogen peroxide. In: Metal-Organic Frameworks-Based Hybrid Materials for Environmental Sensing and Monitoring, 1st ed; CRC Press: USA, 2022; pp. 137-146.
[11]
Ahmad, N.; Rasheed, S.; Fatima, B.; Majeed, S.; Mohyuddin, A. Najam-ul-Haq, M.; Hussain, D. MOF-based electrochemical sensors for toxic anions. In: Metal-Organic Frameworks-Based Hybrid Materials for Environmental Sensing and Monitoring, 1st ed; CRC Press: USA, 2022; pp. 99-107.
[12]
Saeed, U.; Batool, R.; Hussain, D.; Majeed, S. MOF-based electrochemical sensors for glucose. In: Metal-Organic Frameworks-Based Hybrid Materials for Environmental Sensing and Monitoring, 1st ed; CRC Press: USA, 2022; pp. 207-216.
[13]
Ashraf, G.; Asif, M.; Aziz, A.; Dao, A.Q.; Zhang, T.; Iftikhar, T.; Wang, Q.; Liu, H. Facet-energy inspired metal oxide extended hexapods decorated with graphene quantum dots: Sensitive detection of bisphenol A in live cells. Nanoscale, 2020, 12(16), 9014-9023.
[http://dx.doi.org/10.1039/C9NR10944G] [PMID: 32270807]
[14]
Zhang, Q.; Wang, C.F.; Lv, Y.K. Luminescent switch sensors for the detection of biomolecules based on metal-organic frameworks. Analyst (Lond.), 2018, 143(18), 4221-4229.
[http://dx.doi.org/10.1039/C8AN00816G] [PMID: 30090910]
[15]
Iftikhar, T.; Asif, M.; Aziz, A.; Ashraf, G.; Jun, S.; Li, G.; Liu, H. Topical advances in nanomaterials based electrochemical sensors for resorcinol detection. Trends Environ. Anal. Chem., 2021, 31, e00138.
[http://dx.doi.org/10.1016/j.teac.2021.e00138]
[16]
Ashraf, G.; Asif, M.; Aziz, A.; Iftikhar, T.; Liu, H. Rice-spikelet-like copper oxide decorated with platinum stranded in the CNT network for electrochemical in vitro detection of serotonin. ACS Appl. Mater. Interfaces, 2021, 13(5), 6023-6033.
[http://dx.doi.org/10.1021/acsami.0c20645] [PMID: 33496593]
[17]
Liu, J.; Li, Y.; Lou, Z. Recent advancements in MOF/Biomass and Bio-MOF multifunctional materials: A review. Sustainability (Basel), 2022, 14(10), 5768.
[http://dx.doi.org/10.3390/su14105768]
[18]
Balasubramanian, S.; Nesakumar, N.; Kulandaisamy, A.J.; Balaguru Rayappan, J.B. MOFs as sensors methods and merits. Met. Fram. Hybrid Mater. Environ. Sens. Monit., 2022, 65-74.
[19]
Ashraf, G.; Asif, M.; Aziz, A.; Iftikhar, T.; Zhong, Z.T.; Zhang, S.; Liu, B.; Chen, W.; Zhao, Y.D. Advancing interfacial properties of carbon cloth via anodic-induced self-assembly of MOFs film integrated with α-MnO2: A sustainable electrocatalyst sensing acetylcholine. J. Hazard. Mater., 2022, 426, 128133.
[http://dx.doi.org/10.1016/j.jhazmat.2021.128133] [PMID: 34968843]
[20]
Aziz, A.; Asif, M.; Ashraf, G.; Farooq, U.; Yang, Q.; Wang, S. Trends in biosensing platforms for SARS-CoV-2 detection: A critical ap-praisal against standard detection tools. Curr. Opin. Colloid Interface Sci., 2021, 52, 101418.
[http://dx.doi.org/10.1016/j.cocis.2021.101418] [PMID: 33495685]
[21]
Ashraf, G.; Aziz, A.; Qaisrani, R.N.; Chen, W.; Asif, M. Detecting and inactivating severe acute respiratory syndrome coronavirus-2 under the auspices of electrochemistry. Curr. Res. Chem. Biol., 2021, 1, 100001.
[http://dx.doi.org/10.1016/j.crchbi.2021.100001] [PMID: 35814867]
[22]
Shashanka, R.; Chaira, D.; Kumara Swamy, B. Fabrication of yttria dispersed duplex stainless steel electrode to determine dopamine, ascorbic and uric acid electrochemically by using cyclic voltammetry. Artic. Int. J. Sci. Eng. Res., 2016, 7, 1275-1285.
[23]
Shashanka, R.; Chaira, D.; Kumara Swamy, B.E. Electrochemical investigation of duplex stainless steel at carbon paste electrode and its application to the detection of dopamine, ascorbic and uric acid. Int. J. Sci. Eng. Res., 2015, 6, 1863-1871.
[24]
Grattieri, M.; Minteer, S.D. Self-powered biosensors. ACS Sens., 2018, 3(1), 44-53.
[http://dx.doi.org/10.1021/acssensors.7b00818] [PMID: 29161018]
[25]
Zhao, W.W.; Xu, J.J.; Chen, H.Y. Photoelectrochemical enzymatic biosensors. Biosens. Bioelectron., 2017, 92, 294-304.
[http://dx.doi.org/10.1016/j.bios.2016.11.009] [PMID: 27836594]
[26]
Rajendrachari, S.; Bahaddureghatta, E.; Kumara Swamy, S.R.D.C. Synthesis of silver nanoparticles and their applications. Anal. Bioanal. Electrochem., 2013, 5, 455-466.
[27]
Jayaprakash, G.K.; Kumara Swamy, B.E.; Rajendrachari, S.; Sharma, S.C.; Flores-Moreno, R. Dual descriptor analysis of cetylpyridinium modified carbon paste electrodes for ascorbic acid sensing applications. J. Mol. Liq., 2021, 334, 116348.
[http://dx.doi.org/10.1016/j.molliq.2021.116348]
[28]
Karyakin, A.A. Glucose biosensors for clinical and personal use. Electrochem. Commun., 2021, 125, 106973.
[http://dx.doi.org/10.1016/j.elecom.2021.106973]
[29]
Shashanka, R.; Kumara Swamy, B.E. Biosynthesis of silver nanoparticles using leaves of acacia melanoxylon and their application as dopamine and hydrogen peroxide sensors. Phys. Chem. Res., 2020, 8, 1-18.
[30]
Shashanka, R.; Chaira, D.; Kumara Swamy, B.E. Electrocatalytic response of duplex and yittria dispersed duplex stainless steel modified carbon paste electrode in detecting folic acid using cyclic voltammetry. Int. J. Electrochem. Sci., 2015, 10, 5586-5598.
[31]
Shashanka, R.; Jayaprakash, G.K.; Prakashaiah, B.G.; Kumar, M.; Kumara Swamy, B.E. Electrocatalytic determination of ascorbic acid using a green synthesised magnetite nano-flake modified carbon paste electrode by cyclic voltammetric method. Mater. Res. Innov., 2021, 26, 229-239.
[http://dx.doi.org/10.1080/14328917.2021.1945795]
[32]
Faruk Hossain, M.; Slaughter, G. Flexible electrochemical uric acid and glucose biosensor. Bioelectrochemistry, 2021, 141, 107870.
[http://dx.doi.org/10.1016/j.bioelechem.2021.107870] [PMID: 34118555]
[33]
Nakamoto, C.; Goto, Y.; Tomizawa, Y.; Fukata, Y.; Fukata, M.; Harpsøe, K.; Gloriam, D.E.; Aoki, K.; Takeuchi, T. A novel red fluores-cence dopamine biosensor selectively detects dopamine in the presence of norepinephrine in vitro. Mol. Brain, 2021, 14(1), 173.
[http://dx.doi.org/10.1186/s13041-021-00882-8] [PMID: 34872607]
[34]
Erkmen, C.; Demir, Y.; Kurbanoglu, S.; Uslu, B. Multi-Purpose electrochemical tyrosinase nanobiosensor based on poly (3,4 ethylene-dioxythiophene) nanoparticles decorated graphene quantum dots: Applications to hormone drugs analyses and inhibition studies. Sens. Actuators B Chem., 2021, 343, 130164.
[http://dx.doi.org/10.1016/j.snb.2021.130164]
[35]
Mansha, M.; Ahmad, T.; Ullah, N.; Akram Khan, S.; Ashraf, M.; Ali, S.; Tan, B.; Khan, I. Photocatalytic water‐splitting by organic con-jugated polymers: Opportunities and challenges. Chem. Rec., 2022, 2022, e202100336.
[http://dx.doi.org/10.1002/tcr.202100336] [PMID: 35257485]
[36]
Waheed, A.; Kazi, I.W.; Manzar, M.S.; Ahmad, T.; Mansha, M.; Ullah, N.; Ahmed Blaisi, N.I. Ultrahigh and efficient removal of Methyl orange, Eriochrom Black T and acid Blue 92 by triazine based cross-linked polyamine resin: Synthesis, isotherm and kinetic studies. Colloids Surf. A Physicochem. Eng. Asp., 2020, 607, 125472.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125472]
[37]
Mansha, M.; Waheed, A.; Ahmad, T.; Kazi, I.W.; Ullah, N. Synthesis of a novel polysuccinimide based resin for the ultrahigh removal of anionic azo dyes from aqueous solution. Environ. Res., 2020, 184, 109337.
[http://dx.doi.org/10.1016/j.envres.2020.109337] [PMID: 32151846]
[38]
Ahmad, T.; Ullah, N. The oxa-Michael reaction in the synthesis of 5- and 6-membered oxygen-containing heterocycles. Org. Chem. Front., 2021, 8(6), 1329-1344.
[http://dx.doi.org/10.1039/D0QO01312A]
[39]
Saood Manzar, M.; Ahmad, T.; Ullah, N.; Velayudhaperumal Chellam, P.; John, J.; Zubair, M.; Brandão, R.J.; Meili, L.; Alagha, O.; Çevik, E. Comparative adsorption of Eriochrome Black T and Tetracycline by NaOH-modified steel dust: Kinetic and process modeling. Separ. Purif. Tech., 2022, 287, 120559.
[http://dx.doi.org/10.1016/j.seppur.2022.120559]
[40]
Ahmad, T.; Mansha, M.; Kazi, I.W.; Waheed, A.; Ullah, N. Synthesis of 3,5-diaminobenzoic acid containing crosslinked porous polyam-ine resin as a new adsorbent for efficient removal of cationic and anionic dyes from aqueous solutions. J. Water Process Eng., 2021, 43, 102304.
[http://dx.doi.org/10.1016/j.jwpe.2021.102304]
[41]
Mansha, M.; Kazi, I.W.; Manzar, M.S.; Ahmed, T.; Waheed, A.; Ullah, N.; Blaisi, N.I. Ultrahigh removal of methyl orange, acid blue-92 and malachite green by a novel triazine-based polyamine resin: Synthesis, isotherm and kinetic studies. Int. J. Environ. Anal. Chem., 2020, 2020, 1858072.
[http://dx.doi.org/10.1080/03067319.2020.1858072]
[42]
Usman, M.; Iqbal, N.; Noor, T.; Zaman, N.; Asghar, A.; Abdelnaby, M.M.; Galadima, A.; Helal, A. Advanced strategies in metal-organic frameworks for CO2 capture and separation. Chem. Rec., 2021. Available from: https://onlinelibrary.wiley.com/doi/10.1002/tcr.202100230
[http://dx.doi.org/10.1002/tcr.202100030] [PMID: 34757694]
[43]
Sarango, L.; Paseta, L.; Navarro, M.; Zornoza, B.; Coronas, J. Controlled deposition of MOFs by dip-coating in thin film nanocomposite membranes for organic solvent nanofiltration. J. Ind. Eng. Chem., 2018, 59, 8-16.
[http://dx.doi.org/10.1016/j.jiec.2017.09.053]
[44]
Ni, L.; Liao, Z.; Chen, K.; Xie, J.; Li, Q.; Qi, J.; Sun, X.; Wang, L.; Li, J. Defect-engineered UiO-66-NH2 modified thin film nanocompo-site membrane with enhanced nanofiltration performance. Chem. Commun. (Camb.), 2020, 56(60), 8372-8375.
[http://dx.doi.org/10.1039/D0CC01556C] [PMID: 32672312]
[45]
Lin, Y.; Li, W.H.; Wen, Y.; Wang, G.E.; Ye, X.L.; Xu, G. Layer‐by‐Layer growth of preferred‐oriented MOF thin film on nanowire array for high‐performance chemiresistive sensing. Angew. Chem. Int. Ed., 2021, 60(49), 25758-25761.
[http://dx.doi.org/10.1002/anie.202111519] [PMID: 34633732]
[46]
Jayaramulu, K.; Geyer, F.; Schneemann, A.; Kment, Š.; Otyepka, M.; Zboril, R.; Vollmer, D.; Fischer, R.A. Hydrophobic metal-organic frameworks. Adv. Mater., 2019, 31(32), 1900820.
[http://dx.doi.org/10.1002/adma.201900820] [PMID: 31155761]
[47]
Cai, X.; Luo, Y.; Liu, B.; Cheng, H.M. Preparation of 2D material dispersions and their applications. Chem. Soc. Rev., 2018, 47(16), 6224-6266.
[http://dx.doi.org/10.1039/C8CS00254A] [PMID: 29905344]
[48]
Duan, J.; Li, Y.; Pan, Y.; Behera, N.; Jin, W. Metal-organic framework nanosheets: An emerging family of multifunctional 2D materials. Coord. Chem. Rev., 2019, 395, 25-45.
[http://dx.doi.org/10.1016/j.ccr.2019.05.018]
[49]
Ulhakim, M.T.; Rezki, M.; Dewi, K.K.; Abrori, S.A.; Harimurti, S.; Septiani, N.L.W.; Kurnia, K.A.; Setyaningsih, W.; Darmawan, N.; Yuliarto, B. Review—recent trend on two-dimensional metal-organic frameworks for electrochemical biosensor application. J. Electrochem. Soc., 2020, 167(13), 136509.
[http://dx.doi.org/10.1149/1945-7111/abb6cc]
[50]
Liu, W.; Yin, R.; Xu, X.; Zhang, L.; Shi, W.; Cao, X. Structural engineering of low‐dimensional metal-organic frameworks: Synthesis, properties, and applications. Adv. Sci. (Weinh.), 2019, 6(12), 1802373.
[http://dx.doi.org/10.1002/advs.201802373] [PMID: 31380160]
[51]
Cheng, L.; Wang, X.; Gong, F.; Liu, T.; Liu, Z. 2D nanomaterials for cancer theranostic applications. Adv. Mater., 2020, 32(13), 1902333.
[http://dx.doi.org/10.1002/adma.201902333] [PMID: 31353752]
[52]
Xu, M.; Yuan, S.; Chen, X.Y.; Chang, Y.J.; Day, G.; Gu, Z.Y.; Zhou, H.C. Two-dimensional metal-organic framework nanosheets as an enzyme inhibitor: Modulation of the α-chymotrypsin activity. J. Am. Chem. Soc., 2017, 139(24), 8312-8319.
[http://dx.doi.org/10.1021/jacs.7b03450] [PMID: 28538098]
[53]
Zhao, S.S.; Yang, J.; Liu, Y.Y.; Ma, J.F. Fluorescent aromatic tag-functionalized MOFs for highly selective sensing of metal ions and small organic molecules. Inorg. Chem., 2016, 55(5), 2261-2273.
[http://dx.doi.org/10.1021/acs.inorgchem.5b02666] [PMID: 26895464]
[54]
Wu, S.; Qin, L.; Zhang, K.; Xin, Z.; Zhao, S. Ultrathin 2D metal-organic framework nanosheets prepared via sonication exfoliation of membranes from interfacial growth and exhibition of enhanced catalytic activity by their gold nanocomposites. RSC Advances, 2019, 9(17), 9386-9391.
[http://dx.doi.org/10.1039/C9RA00662A] [PMID: 35520711]
[55]
Ding, S.Y.; Dong, M.; Wang, Y.W.; Chen, Y.T.; Wang, H.Z.; Su, C.Y.; Wang, W. Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(II). J. Am. Chem. Soc., 2016, 138(9), 3031-3037.
[http://dx.doi.org/10.1021/jacs.5b10754] [PMID: 26878337]
[56]
Li, P.Z.; Maeda, Y.; Xu, Q. Top-down fabrication of crystalline metal-organic framework nanosheets. Chem. Commun. (Camb.), 2011, 47(29), 8436-8438.
[http://dx.doi.org/10.1039/c1cc12510a] [PMID: 21709877]
[57]
Arun Kumar, S.; Balasubramaniam, B.; Bhunia, S.; Jaiswal, M.K.; Verma, K. Prateek.; Khademhosseini, A.; Gupta, R.K.; Gaharwar, A.K. TWO‐DIMENSIONAL metal organic frameworks for biomedical applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2021, 13(2), e1674.
[http://dx.doi.org/10.1002/wnan.1674] [PMID: 33137846]
[58]
Dhakshinamoorthy, A.; Asiri, A.M.; Garcia, H. 2D metal-organic frameworks as multifunctional materials in heterogeneous catalysis and electro/photocatalysis. Adv. Mater., 2019, 31(41), 1900617.
[http://dx.doi.org/10.1002/adma.201900617] [PMID: 31432586]
[59]
Yang, Y.; Wang, F.; Yang, Q.; Hu, Y.; Yan, H.; Chen, Y.Z.; Liu, H.; Zhang, G.; Lu, J.; Jiang, H.L.; Xu, H. Hollow metal-organic frame-work nanospheres via emulsion-based interfacial synthesis and their application in size-selective catalysis. ACS Appl. Mater. Interfaces, 2014, 6(20), 18163-18171.
[http://dx.doi.org/10.1021/am505145d] [PMID: 25247890]
[60]
Kambe, T.; Sakamoto, R.; Hoshiko, K.; Takada, K.; Miyachi, M.; Ryu, J.H.; Sasaki, S.; Kim, J.; Nakazato, K.; Takata, M.; Nishihara, H. π-Conjugated nickel bis(dithiolene) complex nanosheet. J. Am. Chem. Soc., 2013, 135(7), 2462-2465.
[http://dx.doi.org/10.1021/ja312380b] [PMID: 23360513]
[61]
Zhao, M.; Huang, Y.; Peng, Y.; Huang, Z.; Ma, Q.; Zhang, H. Two-dimensional metal-organic framework nanosheets: Synthesis and applications. Chem. Soc. Rev., 2018, 47(16), 6267-6295.
[http://dx.doi.org/10.1039/C8CS00268A] [PMID: 29971309]
[62]
Hu, Z.; Castano, I.; Wang, S.; Wang, Y.; Peng, Y.; Qian, Y.; Chi, C.; Wang, X.; Zhao, D. Modulator effects on the water-based synthesis of Zr/Hf metal-organic frameworks: Quantitative relationship studies between modulator, synthetic condition, and performance. Cryst. Growth Des., 2016, 16(4), 2295-2301.
[http://dx.doi.org/10.1021/acs.cgd.6b00076]
[63]
Wang, Z.; Wang, G.; Qi, H.; Wang, M.; Wang, M.; Park, S.; Wang, H.; Yu, M.; Kaiser, U.; Fery, A.; Zhou, S.; Dong, R.; Feng, X. Ultrathin two-dimensional conjugated metal-organic framework single-crystalline nanosheets enabled by surfactant-assisted synthesis. Chem. Sci. (Camb.), 2020, 11(29), 7665-7671.
[http://dx.doi.org/10.1039/D0SC01408G] [PMID: 34094144]
[64]
Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Llabrés i Xamena, F.X.; Gascon, J. Metal-organic frame-work nanosheets in polymer composite materials for gas separation. Nat. Mater., 2015, 14(1), 48-55.
[http://dx.doi.org/10.1038/nmat4113] [PMID: 25362353]
[65]
Lugier, O.; Thakur, N.; Wu, L.; Vockenhuber, M.; Ekinci, Y.; Castellanos, S. Bottom-up nanofabrication with extreme-ultraviolet light: Metal-organic frameworks on patterned monolayers. ACS Appl. Mater. Interfaces, 2021, 13(36), 43777-43786.
[http://dx.doi.org/10.1021/acsami.1c13667] [PMID: 34463483]
[66]
Li, F.L.; Wang, P.; Huang, X.; Young, D.J.; Wang, H.F.; Braunstein, P.; Lang, J.P. Large‐scale, bottom‐up synthesis of binary metal-organic framework nanosheets for efficient water oxidation. Angew. Chem. Int. Ed., 2019, 58(21), 7051-7056.
[http://dx.doi.org/10.1002/anie.201902588] [PMID: 30913361]
[67]
Usman, K.A.S.; Maina, J.W.; Seyedin, S.; Conato, M.T.; Payawan, L.M., Jr; Dumée, L.F.; Razal, J.M. Downsizing metal-organic frame-works by bottom-up and top-down methods. NPG Asia Mater., 2020, 12(1), 58.
[http://dx.doi.org/10.1038/s41427-020-00240-5]
[68]
Wu, X.; Yue, H.; Zhang, Y.; Gao, X.; Li, X.; Wang, L.; Cao, Y.; Hou, M.; An, H.; Zhang, L.; Li, S.; Ma, J.; Lin, H.; Fu, Y.; Gu, H.; Lou, W.; Wei, W.; Zare, R.N.; Ge, J. Packaging and delivering enzymes by amorphous metal-organic frameworks. Nat. Commun., 2019, 10(1), 5165.
[http://dx.doi.org/10.1038/s41467-019-13153-x] [PMID: 31727883]
[69]
Bilal, M.; Iqbal, H.M.N.; Adil, S.F.; Shaik, M.R.; Abdelgawad, A.; Hatshan, M.R.; Khan, M. Surface-coated magnetic nanostructured materials for robust bio-catalysis and biomedical applications-A review. J. Adv. Res., 2022, 38, 157-177.
[http://dx.doi.org/10.1016/j.jare.2021.09.013] [PMID: 35572403]
[70]
Chapman, J.; Ismail, A.; Dinu, C. Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts, 2018, 8(6), 238.
[http://dx.doi.org/10.3390/catal8060238]
[71]
Ma, L.; Jiang, F.; Fan, X.; Wang, L.; He, C.; Zhou, M.; Li, S.; Luo, H.; Cheng, C.; Qiu, L. Metal-organic‐framework‐engineered en-zyme‐mimetic catalysts. Adv. Mater., 2020, 32(49), 2003065.
[http://dx.doi.org/10.1002/adma.202003065] [PMID: 33124725]
[72]
Singh, S. Nanomaterials exhibiting enzyme-like properties (Nanozymes): Current advances and future perspectives. Front Chem., 2019, 7, 46.
[http://dx.doi.org/10.3389/fchem.2019.00046] [PMID: 30805331]
[73]
Ihsanullah, I. Applications of MOFs as adsorbents in water purification: Progress, challenges and outlook. Curr. Opin. Environ. Sci. Health, 2022, 26, 100335.
[http://dx.doi.org/10.1016/j.coesh.2022.100335]
[74]
Lian, X.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H.C. Enzyme-MOF (metal-organic framework) composites. Chem. Soc. Rev., 2017, 46(11), 3386-3401.
[http://dx.doi.org/10.1039/C7CS00058H] [PMID: 28451673]
[75]
Bornscheuer, U.T.; Huisman, G.W.; Kazlauskas, R.J.; Lutz, S.; Moore, J.C.; Robins, K. Engineering the third wave of biocatalysis. Nature, 2012, 485(7397), 185-194.
[http://dx.doi.org/10.1038/nature11117] [PMID: 22575958]
[76]
Feng, D.; Liu, T.F.; Su, J.; Bosch, M.; Wei, Z.; Wan, W.; Yuan, D.; Chen, Y.P.; Wang, X.; Wang, K.; Lian, X.; Gu, Z.Y.; Park, J.; Zou, X.; Zhou, H.C. Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. Nat. Commun., 2015, 6(1), 5979.
[http://dx.doi.org/10.1038/ncomms6979] [PMID: 25598311]
[77]
Xia, H.; Li, N.; Zhong, X.; Jiang, Y. Metal-organic frameworks: A potential platform for enzyme immobilization and related applications. Front. Bioeng. Biotechnol., 2020, 8, 695.
[http://dx.doi.org/10.3389/fbioe.2020.00695] [PMID: 32695766]
[78]
Patra, S.; Hidalgo Crespo, T.; Permyakova, A.; Sicard, C.; Serre, C.; Chaussé, A.; Steunou, N.; Legrand, L. Design of metal organic framework-enzyme based bioelectrodes as a novel and highly sensitive biosensing platform. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(46), 8983-8992.
[http://dx.doi.org/10.1039/C5TB01412C] [PMID: 32263029]
[79]
Dhakshinamoorthy, A.; Asiri, A.M.; Garcia, H. Integration of metal organic frameworks with enzymes as multifunctional solids for cas-cade catalysis. Dalton Trans., 2020, 49(32), 11059-11072.
[http://dx.doi.org/10.1039/D0DT02045A] [PMID: 32808625]
[80]
Liang, K.; Coghlan, C.J.; Bell, S.G.; Doonan, C.; Falcaro, P. Enzyme encapsulation in zeolitic imidazolate frameworks: A comparison between controlled co-precipitation and biomimetic mineralisation. Chem. Commun. (Camb.), 2016, 52(3), 473-476.
[http://dx.doi.org/10.1039/C5CC07577G] [PMID: 26548587]
[81]
Xing, Q.; Pan, Y.; Hu, Y.; Wang, L. Review of the biomolecular modification of the metal-organ-framework. Front Chem., 2020, 8, 642.
[http://dx.doi.org/10.3389/fchem.2020.00642] [PMID: 32850658]
[82]
Yang, Y.; Arqué, X.; Patiño, T.; Guillerm, V.; Blersch, P.R.; Pérez-Carvajal, J.; Imaz, I.; Maspoch, D.; Sánchez, S. Enzyme-powered po-rous micromotors built from a hierarchical micro- and mesoporous UiO-type metal-organic framework. J. Am. Chem. Soc., 2020, 142(50), 20962-20967.
[http://dx.doi.org/10.1021/jacs.0c11061] [PMID: 33274916]
[83]
Li, P.; Moon, S.Y.; Guelta, M.A.; Lin, L.; Gómez-Gualdrón, D.A.; Snurr, R.Q.; Harvey, S.P.; Hupp, J.T.; Farha, O.K. Nanosizing a metal-organic framework enzyme carrier for accelerating nerve agent hydrolysis. ACS Nano, 2016, 10(10), 9174-9182.
[http://dx.doi.org/10.1021/acsnano.6b04996] [PMID: 27701869]
[84]
Souza, J.E.S.; Oliveira, G.P.; Alexandre, J.Y.N.H.; Neto, J.G.L.; Sales, M.B.; Junior, P.G.S.; Oliveira, A.L.B.; Souza, M.C.M.; Santos, J.C.S. A comprehensive review on the use of Metal-Organic Frameworks (MOFs) coupled with enzymes as biosensors. Electrochem, 2022, 3(1), 89-113.
[http://dx.doi.org/10.3390/electrochem3010006]
[85]
Lian, X.; Chen, Y.P.; Liu, T.F.; Zhou, H.C. Coupling two enzymes into a tandem nanoreactor utilizing a hierarchically structured MOF. Chem. Sci. (Camb.), 2016, 7(12), 6969-6973.
[http://dx.doi.org/10.1039/C6SC01438K] [PMID: 28451131]
[86]
Chen, Y.; Han, S.; Li, X.; Zhang, Z.; Ma, S. Why does enzyme not leach from metal-organic frameworks (MOFs)? Unveiling the interac-tions between an enzyme molecule and a MOF. Inorg. Chem., 2014, 53(19), 10006-10008.
[http://dx.doi.org/10.1021/ic501062r] [PMID: 25238256]
[87]
Majewski, M.B.; Howarth, A.J.; Li, P.; Wasielewski, M.R.; Hupp, J.T.; Farha, O.K. Enzyme encapsulation in metal-organic frameworks for applications in catalysis. CrystEngComm, 2017, 19(29), 4082-4091.
[http://dx.doi.org/10.1039/C7CE00022G]
[88]
Kim, Y.; Yang, T.; Yun, G.; Ghasemian, M.B.; Koo, J.; Lee, E.; Cho, S.J.; Kim, K. Hydrolytic transformation of microporous metal-organic frameworks to hierarchical micro‐ and mesoporous MOFs. Angew. Chem. Int. Ed., 2015, 54(45), 13273-13278.
[http://dx.doi.org/10.1002/anie.201506391] [PMID: 26381062]
[89]
Wu, H.; Li, T.; Bao, Y.; Zhang, X.; Wang, C.; Wei, C.; Xu, Z.; Tong, W.; Chen, D.; Huang, X. MOF-enzyme hybrid nanosystem decorated 3D hollow fiber membranes for in-situ blood separation and biosensing array. Biosens. Bioelectron., 2021, 190, 113413.
[http://dx.doi.org/10.1016/j.bios.2021.113413] [PMID: 34116446]
[90]
Ma, W.; Jiang, Q.; Yu, P.; Yang, L.; Mao, L. Zeolitic imidazolate framework-based electrochemical biosensor for in vivo electrochemical measurements. Anal. Chem., 2013, 85(15), 7550-7557.
[http://dx.doi.org/10.1021/ac401576u] [PMID: 23815314]
[91]
Hou, C.; Wang, Y.; Ding, Q.; Jiang, L.; Li, M.; Zhu, W.; Pan, D.; Zhu, H.; Liu, M. Facile synthesis of enzyme-embedded magnetic metal-organic frameworks as a reusable mimic multi-enzyme system: Mimetic peroxidase properties and colorimetric sensor. Nanoscale, 2015, 7(44), 18770-18779.
[http://dx.doi.org/10.1039/C5NR04994F] [PMID: 26505865]
[92]
Wu, X.; Ge, J.; Yang, C.; Hou, M.; Liu, Z. Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environment. Chem. Commun. (Camb.), 2015, 51(69), 13408-13411.
[http://dx.doi.org/10.1039/C5CC05136C] [PMID: 26214658]
[93]
Wu, X.; Yang, C.; Ge, J.; Liu, Z. Polydopamine tethered enzyme/metal-organic framework composites with high stability and reusability. Nanoscale, 2015, 7(45), 18883-18886.
[http://dx.doi.org/10.1039/C5NR05190H] [PMID: 26393314]
[94]
Wang, Y.; Hou, C.; Zhang, Y.; He, F.; Liu, M.; Li, X. Preparation of graphene nano-sheet bonded PDA/MOF microcapsules with immobi-lized glucose oxidase as a mimetic multi-enzyme system for electrochemical sensing of glucose. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(21), 3695-3702.
[http://dx.doi.org/10.1039/C6TB00276E] [PMID: 32263308]
[95]
Wang, Q.; Zhang, X.; Huang, L.; Zhang, Z.; Dong, S. GOx@ZIF-8(NiPd) nanoflower: An artificial enzyme system for tandem catalysis. Angew. Chem. Int. Ed., 2017, 56(50), 16082-16085.
[http://dx.doi.org/10.1002/anie.201710418] [PMID: 29119659]
[96]
Liu, X.; Qi, W.; Wang, Y.; Lin, D.; Yang, X.; Su, R.; He, Z. Rational design of mimic multienzyme systems in hierarchically porous bio-mimetic metal-organic frameworks. ACS Appl. Mater. Interfaces, 2018, 10(39), 33407-33415.
[http://dx.doi.org/10.1021/acsami.8b09388] [PMID: 30146872]
[97]
Mohammad, M.; Razmjou, A.; Liang, K.; Asadnia, M.; Chen, V. Metal-organic-framework-based enzymatic microfluidic biosensor via surface patterning and biomineralization. ACS Appl. Mater. Interfaces, 2019, 11(2), 1807-1820.
[http://dx.doi.org/10.1021/acsami.8b16837] [PMID: 30525376]
[98]
Nishan, U.; Haq, S.U.; Rahim, A.; Asad, M.; Badshah, A.; Ali Shah, A.H.; Iqbal, A.; Muhammad, N. Ionic-liquid-stabilized TiO2 nanostructures: A platform for detection of hydrogen peroxide. ACS Omega, 2021, 6(48), 32754-32762.
[http://dx.doi.org/10.1021/acsomega.1c04548] [PMID: 34901624]
[99]
Shieh, F.K.; Wang, S.C.; Yen, C.I.; Wu, C.C.; Dutta, S.; Chou, L.Y.; Morabito, J.V.; Hu, P.; Hsu, M.H.; Wu, K.C.W.; Tsung, C.K. Impart-ing functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: Size-selective sheltering of catalase in metal-organic framework microcrystals. J. Am. Chem. Soc., 2015, 137(13), 4276-4279.
[http://dx.doi.org/10.1021/ja513058h] [PMID: 25781479]
[100]
Chen, W.; Yang, W.; Lu, Y.; Zhu, W.; Chen, X. Encapsulation of enzyme into mesoporous cages of metal-organic frameworks for the development of highly stable electrochemical biosensors. Anal. Methods, 2017, 9(21), 3213-3220.
[http://dx.doi.org/10.1039/C7AY00710H]
[101]
Gao, C.; Zhu, H.; Chen, J.; Qiu, H. Facile synthesis of enzyme functional metal-organic framework for colorimetric detecting H 2 O 2 and ascorbic acid. Chin. Chem. Lett., 2017, 28(5), 1006-1012.
[http://dx.doi.org/10.1016/j.cclet.2017.02.011]
[102]
Zhang, C.; Wang, X.; Hou, M.; Li, X.; Wu, X.; Ge, J. Immobilization on metal-organic framework engenders high sensitivity for enzymat-ic electrochemical detection. ACS Appl. Mater. Interfaces, 2017, 9(16), 13831-13836.
[http://dx.doi.org/10.1021/acsami.7b02803] [PMID: 28398720]
[103]
Liang, W.; Xu, H.; Carraro, F.; Maddigan, N.K.; Li, Q.; Bell, S.G.; Huang, D.M.; Tarzia, A.; Solomon, M.B.; Amenitsch, H.; Vaccari, L.; Sumby, C.J.; Falcaro, P.; Doonan, C.J. Enhanced activity of enzymes encapsulated in hydrophilic metal-organic frameworks. J. Am. Chem. Soc., 2019, 141(6), 2348-2355.
[http://dx.doi.org/10.1021/jacs.8b10302] [PMID: 30636404]
[104]
Lyu, F.; Zhang, Y.; Zare, R.N.; Ge, J.; Liu, Z. One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biologi-cal activities. Nano Lett., 2014, 14(10), 5761-5765.
[http://dx.doi.org/10.1021/nl5026419] [PMID: 25211437]
[105]
Chulkaivalsucharit, P.; Wu, X.; Ge, J. Synthesis of enzyme-embedded metal-organic framework nanocrystals in reverse micelles. RSC Advances, 2015, 5(123), 101293-101296.
[http://dx.doi.org/10.1039/C5RA21069K]
[106]
Wu, X.; Yang, C.; Ge, J. Green synthesis of enzyme/metal-organic framework composites with high stability in protein denaturing sol-vents. Bioresour. Bioprocess., 2017, 4(1), 24.
[http://dx.doi.org/10.1186/s40643-017-0154-8] [PMID: 28596935]
[107]
Dong, S.; Peng, L.; Wei, W.; Huang, T. Three MOF-templated carbon nanocomposites for potential platforms of enzyme immobilization with improved electrochemical performance. ACS Appl. Mater. Interfaces, 2018, 10(17), 14665-14672.
[http://dx.doi.org/10.1021/acsami.8b00702] [PMID: 29620852]
[108]
Wang, X.; Lu, X.; Wu, L.; Chen, J. 3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detec-tion of bisphenol A. Biosens. Bioelectron., 2015, 65, 295-301.
[http://dx.doi.org/10.1016/j.bios.2014.10.010] [PMID: 25461172]
[109]
Mercante, L.A.; Iwaki, L.E.O.; Scagion, V.P.; Oliveira, O.N., Jr; Mattoso, L.H.C.; Correa, D.S. Electrochemical detection of bisphenol A by tyrosinase immobilized on electrospun nanofibers decorated with gold nanoparticles. Electrochem, 2021, 2(1), 41-49.
[http://dx.doi.org/10.3390/electrochem2010004]
[110]
Baranwal, A.; Chandra, P. Clinical implications and electrochemical biosensing of monoamine neurotransmitters in body fluids, in vitro,in vivo, and ex vivo models. Biosens. Bioelectron., 2018, 121, 137-152.
[http://dx.doi.org/10.1016/j.bios.2018.09.002] [PMID: 30212666]
[111]
Tavakolian-Ardakani, Z.; Hosu, O.; Cristea, C.; Mazloum-Ardakani, M.; Marrazza, G. Latest trends in electrochemical sensors for neuro-transmitters: A review. Sensors (Basel), 2019, 19(9), 2037.
[http://dx.doi.org/10.3390/s19092037] [PMID: 31052309]
[112]
Gao, L.L.; Gao, E.Q. Metal-organic frameworks for electrochemical sensors of neurotransmitters. Coord. Chem. Rev., 2021, 434, 213784.
[http://dx.doi.org/10.1016/j.ccr.2021.213784]
[113]
Qiu, Z.; Yang, T.; Gao, R.; Jie, G.; Hou, W. An electrochemical ratiometric sensor based on 2D MOF nanosheet/Au/polyxanthu-] renic acid composite for detection of dopamine. J. Electroanal. Chem. (Lausanne), 2019, 835, 123-129.
[http://dx.doi.org/10.1016/j.jelechem.2019.01.040]
[114]
Du, Q.; Wu, P.; Dramou, P.; Chen, R.; He, H. One-step fabrication of a boric acid-functionalized lanthanide metal-organic framework as a ratiometric fluorescence sensor for the selective recognition of dopamine. New J. Chem., 2019, 43(3), 1291-1298.
[http://dx.doi.org/10.1039/C8NJ05318A]
[115]
Zhang, D.; Du, P.; Chen, J.; Guo, H.; Lu, X. Pyrazolate-based porphyrinic metal-organic frameworks as catechol oxidase mimic enzyme for fluorescent and colorimetric dual-mode detection of dopamine with high sensitivity and specificity. Sens. Actuators B Chem., 2021, 341, 130000.
[http://dx.doi.org/10.1016/j.snb.2021.130000]
[116]
Chauhan, N.; Tiwari, S.; Narayan, T.; Jain, U. Bienzymatic assembly formed @ Pt nano sensing framework detecting acetylcholine in aqueous phase. Appl. Surf. Sci., 2019, 474, 154-160.
[http://dx.doi.org/10.1016/j.apsusc.2018.04.056]
[117]
Jing, L.; Xie, C.; Li, Q.; Yang, M.; Li, S.; Li, H.; Xia, F. Electrochemical biosensors for the analysis of breast cancer biomarkers: From design to application. Anal. Chem., 2022, 94(1), 269-296.
[http://dx.doi.org/10.1021/acs.analchem.1c04475] [PMID: 34854296]
[118]
Zhang, S.; Rong, F.; Guo, C.; Duan, F.; He, L.; Wang, M.; Zhang, Z.; Kang, M.; Du, M. Metal-organic frameworks (MOFs) based electro-chemical biosensors for early cancer diagnosis in vitro. Coord. Chem. Rev., 2021, 439, 213948.
[http://dx.doi.org/10.1016/j.ccr.2021.213948]
[119]
Filik, H.; Avan, A.A. Nanostructures for nonlabeled and labeled electrochemical immunosensors: Simultaneous electrochemical detection of cancer markers: A review. Talanta, 2019, 205, 120153.
[http://dx.doi.org/10.1016/j.talanta.2019.120153] [PMID: 31450406]
[120]
Cruz-Navarro, J.A.; Hernandez-Garcia, F.; Alvarez Romero, G.A. Novel applications of metal-organic frameworks (MOFs) as redox-active materials for elaboration of carbon-based electrodes with electroanalytical uses. Coord. Chem. Rev., 2020, 412, 213263.
[http://dx.doi.org/10.1016/j.ccr.2020.213263]
[121]
Wang, M.; Hu, M.; Li, Z.; He, L.; Song, Y.; Jia, Q.; Zhang, Z.; Du, M. Construction of Tb-MOF-on-Fe-MOF conjugate as a novel plat-form for ultrasensitive detection of carbohydrate antigen 125 and living cancer cells. Biosens. Bioelectron., 2019, 142, 111536.
[http://dx.doi.org/10.1016/j.bios.2019.111536] [PMID: 31362204]
[122]
Li, Y.; Hu, M.; Huang, X.; Wang, M.; He, L.; Song, Y.; Jia, Q.; Zhou, N.; Zhang, Z.; Du, M. Multicomponent zirconium-based metal-organic frameworks for impedimetric aptasensing of living cancer cells. Sens. Actuators B Chem., 2020, 306, 127608.
[http://dx.doi.org/10.1016/j.snb.2019.127608]
[123]
Yu, J.; Wei, Z.; Li, Q.; Wan, F.; Chao, Z.; Zhang, X.; Lin, L.; Meng, H.; Tian, L. Advanced cancer starvation therapy by simultaneous deprivation of lactate and glucose using a MOF nanoplatform. Adv. Sci. (Weinh.), 2021, 8(19), 2101467.
[http://dx.doi.org/10.1002/advs.202101467] [PMID: 34363341]
[124]
Waheed, A.; Ahmad, T.; Haroon, M.; Ullah, N. A highly sensitive and selective fluorescent sensor for Zinc(II) ions based on a 1,2,3‐Triazolyl‐functionalized 2,2′‐dipicolylamine (DPA). ChemistrySelect, 2020, 5(17), 5300-5305.
[http://dx.doi.org/10.1002/slct.202000928]
[125]
Mahmudunnabi, R.G.; Farhana, F.Z.; Kashaninejad, N.; Firoz, S.H.; Shim, Y.B.; Shiddiky, M.J.A. Nanozyme-based electrochemical bio-sensors for disease biomarker detection. Analyst (Lond.), 2020, 145(13), 4398-4420.
[http://dx.doi.org/10.1039/D0AN00558D] [PMID: 32436931]
[126]
Nawaz, M.; Taha, M.; Qureshi, F.; Ullah, N.; Selvaraj, M.; Shahzad, S.; Chigurupati, S.; Abubshait, S.A.; Ahmad, T.; Chinnam, S.; Hisaindee, S. Synthesis, α-amylase and α-glucosidase inhibition and molecular docking studies of indazole derivatives. J. Biomol. Struct. Dyn., 2021, 2021, 1947892.
[http://dx.doi.org/10.1080/07391102.2021.1947892] [PMID: 34463216]
[127]
Archana, V.; Xia, Y.; Fang, R. Gnana kumar, G. Hierarchical CuO/NiO-carbon nanocomposite derived from metal organic framework on cello tape for the flexible and high performance nonenzymatic electrochemical glucose sensors. ACS Sustain. Chem.& Eng., 2019, 7(7), 6707-6719.
[http://dx.doi.org/10.1021/acssuschemeng.8b05980]
[128]
Arif, D.; Hussain, Z.; Sohail, M.; Liaqat, M.A.; Khan, M.A.; Noor, T. A non-enzymatic electrochemical sensor for glucose detection based on Ag@TiO2@ metal-organic framework (ZIF-67) nanocomposite. Front Chem., 2020, 8, 573510.
[http://dx.doi.org/10.3389/fchem.2020.573510] [PMID: 33195063]
[129]
Chen, H.; Qiu, Q.; Sharif, S.; Ying, S.; Wang, Y.; Ying, Y. Solution-phase synthesis of platinum nanoparticle-decorated metal-organic framework hybrid nanomaterials as biomimetic nanoenzymes for biosensing applications. ACS Appl. Mater. Interfaces, 2018, 10(28), 24108-24115.
[http://dx.doi.org/10.1021/acsami.8b04737] [PMID: 29956534]
[130]
Ahmad, T.; Basheer, C.; Saad, B. Derivatization strategies for the determination of biogenic amines with chromatographic techniques. Food Chem. Funct. Anal., 2020, 2020, 239-267.
[131]
Shadlaghani, A.; Farzaneh, M.; Kinser, D.; Reid, R.C. Direct electrochemical detection of glutamate, acetylcholine, choline, and adenosine using non-enzymatic electrodes. Sensors (Basel), 2019, 19(3), 447.
[http://dx.doi.org/10.3390/s19030447] [PMID: 30678261]
[132]
Qian, T.; Wu, S.; Shen, J. Facilely prepared polypyrrole-reduced graphite oxide core-shell microspheres with high dispersibility for elec-trochemical detection of dopamine. Chem. Commun. (Camb.), 2013, 49(41), 4610-4612.
[http://dx.doi.org/10.1039/c3cc00276d] [PMID: 23527381]
[133]
Yang, G.J.; Xu, J.J.; Wang, K.; Chen, H.Y. Electrocatalytic oxidation of dopamine and ascorbic acid on carbon paste electrode modified with nanosized cobalt phthalocyanine particles: Simultaneous determination in the presence of CTAB. Electroanalysis, 2006, 18(3), 282-290.
[http://dx.doi.org/10.1002/elan.200403387]
[134]
Zhou, K.; Shen, D.; Li, X.; Chen, Y.; Hou, L.; Zhang, Y.; Sha, J. Molybdenum oxide-based metal-organic framework/polypyrrole nano-composites for enhancing electrochemical detection of dopamine. Talanta, 2020, 209, 120507.
[http://dx.doi.org/10.1016/j.talanta.2019.120507] [PMID: 31892003]
[135]
Huang, Z.; Zhang, L.; Cao, P.; Wang, N.; Lin, M. Electrochemical sensing of dopamine using a Ni-based metal-organic framework modi-fied electrode. Ionics, 2021, 27(3), 1339-1345.
[http://dx.doi.org/10.1007/s11581-020-03857-2]
[136]
Misek, D.E.; Kim, E.H. Protein biomarkers for the early detection of breast cancer. Int. J. Proteomics, 2011, 2011, 1-9.
[http://dx.doi.org/10.1155/2011/343582] [PMID: 22084684]
[137]
Huang, X.; He, Z.; Guo, D.; Liu, Y.; Song, J.; Yung, B.C.; Lin, L.; Yu, G.; Zhu, J.J.; Xiong, Y.; Chen, X. “Three-in-one” nanohybrids as synergistic nanoquenchers to enhance no-wash fluorescence biosensors for ratiometric detection of cancer biomarkers. Theranostics, 2018, 8(13), 3461-3473.
[http://dx.doi.org/10.7150/thno.25179] [PMID: 30026859]
[138]
Yola, M.L. Sensitive sandwich-type voltammetric immunosensor for breast cancer biomarker HER2 detection based on gold nanoparti-cles decorated Cu-MOF and Cu2ZnSnS4 NPs/Pt/g-C3N4 composite. Mikrochim. Acta, 2021, 188(3), 78.
[http://dx.doi.org/10.1007/s00604-021-04735-y] [PMID: 33569679]
[139]
Wei, J.P.; Qiao, B.; Song, W.J.; Chen, T. li, F.; Li, B.Z.; Wang, J.; Han, Y.; Huang, Y.F.; Zhou, Z.J. Synthesis of magnetic framework composites for the discrimination of Escherichia coli at the strain level. Anal. Chim. Acta, 2015, 868, 36-44.
[http://dx.doi.org/10.1016/j.aca.2015.02.018] [PMID: 25813232]
[140]
Li, Y.; Liu, Z.; Lu, W.; Zhao, M.; Xiao, H.; Hu, T.; Ma, J.; Zheng, Z.; Jia, J.; Wu, H. A label-free electrochemical aptasensor based on the core-shell Cu-MOF@TpBD hybrid nanoarchitecture for the sensitive detection of PDGF-BB. Analyst (Lond.), 2021, 146(3), 979-988.
[http://dx.doi.org/10.1039/D0AN01885F] [PMID: 33554228]
[141]
Wang, X.Z.; Du, J.; Xiao, N.N.; Zhang, Y.; Fei, L.; LaCoste, J.D.; Huang, Z.; Wang, Q.; Wang, X.R.; Ding, B. Driving force to detect Alz-heimer’s disease biomarkers: Application of a thioflavine T@Er-MOF ratiometric fluorescent sensor for smart detection of presenilin 1, amyloid β-protein and acetylcholine. Analyst (Lond.), 2020, 145(13), 4646-4663.
[http://dx.doi.org/10.1039/D0AN00440E] [PMID: 32458857]
[142]
Wang, F.; Chen, X.; Chen, L.; Yang, J.; Wang, Q. High-performance non-enzymatic glucose sensor by hierarchical flower-like nickel(II)-based MOF/carbon nanotubes composite. Mater. Sci. Eng. C, 2019, 96, 41-50.
[http://dx.doi.org/10.1016/j.msec.2018.11.004] [PMID: 30606549]
[143]
Ranganethan, S.; Lee, S.; Lee, J.; Chang, S. Electrochemical non-enzymatic glucose sensor based on hexagonal boron nitride with metal-organic framework composite. Electrochem. Non-Enzymatic Glucose Sens. based Hexag. Boron Nitride with Met. Framew. Compos., 2017, 26, 379-385.
[144]
Wang, M.Q.; Zhang, Y.; Bao, S.J.; Yu, Y.N.; Ye, C. Ni(II)-based metal-organic framework anchored on carbon nanotubes for highly sensitive non-enzymatic hydrogen peroxide sensing. Electrochim. Acta, 2016, 190, 365-370.
[http://dx.doi.org/10.1016/j.electacta.2015.12.199]
[145]
Hira, S.A.; Nagappan, S.; Annas, D.; Kumar, Y.A.; Park, K.H. NO2-functionalized metal-organic framework incorporating bimetallic alloy nanoparticles as a sensor for efficient electrochemical detection of dopamine. Electrochem. Commun., 2021, 125, 107012.
[http://dx.doi.org/10.1016/j.elecom.2021.107012]
[146]
Liu, B.; Wang, X.; Zhai, Y.; Zhang, Z.; Liu, H.; Li, L.; Wen, H. Facile preparation of well conductive 2D MOF for nonenzymatic detection of hydrogen peroxide: Relationship between electrocatalysis and metal center. J. Electroanal. Chem. (Lausanne), 2020, 858, 113804.
[http://dx.doi.org/10.1016/j.jelechem.2019.113804]
[147]
Agostoni, V.; Horcajada, P.; Noiray, M.; Malanga, M.; Aykaç, A.; Jicsinszky, L.; Vargas-Berenguel, A.; Semiramoth, N.; Daoud-Mahammed, S.; Nicolas, V.; Martineau, C.; Taulelle, F.; Vigneron, J.; Etcheberry, A.; Serre, C.; Gref, R.A. “green” strategy to construct non-covalent, stable and bioactive coatings on porous MOF nanoparticles. Sci. Rep., 2015, 5(1), 7925.
[http://dx.doi.org/10.1038/srep07925] [PMID: 25603994]
[148]
Rowsell, J.L.C.; Yaghi, O.M. Metal-organic frameworks: A new class of porous materials. Microporous Mesoporous Mater., 2004, 73(1-2), 3-14.
[http://dx.doi.org/10.1016/j.micromeso.2004.03.034]
[149]
Cavalcante, F.T.T.; Cavalcante, A.L.G.; de Sousa, I.G.; Neto, F.S.; dos Santos, J.C.S. Current status and future perspectives of supports and protocols for enzyme immobilization. Catalysts, 2021, 11(10), 1222.
[http://dx.doi.org/10.3390/catal11101222]
[150]
Liu, L.; Zhou, Y.; Liu, S.; Xu, M. The applications of metal−organic frameworks in electrochemical sensors. ChemElectroChem, 2018, 5(1), 6-19.
[http://dx.doi.org/10.1002/celc.201700931]
[151]
Ferri, S.; Kojima, K.; Sode, K. Review of glucose oxidases and glucose dehydrogenases: A bird’s eye view of glucose sensing enzymes. J. Diabetes Sci. Technol., 2011, 5(5), 1068-1076.
[http://dx.doi.org/10.1177/193229681100500507] [PMID: 22027299]
[152]
Zhang, L.; Wang, Z.; Zhang, Y.; Cao, F.; Dong, K.; Ren, J.; Qu, X. Erythrocyte membrane cloaked metal-organic framework nanoparticle as biomimetic nanoreactor for starvation-activated colon cancer therapy. ACS Nano, 2018, 12(10), 10201-10211.
[http://dx.doi.org/10.1021/acsnano.8b05200] [PMID: 30265804]
[153]
Hassan, M.H.; Vyas, C.; Grieve, B.; Bartolo, P. Recent advances in enzymatic and non-enzymatic electrochemical glucose sensing. Sensors (Basel), 2021, 21(14), 4672.
[http://dx.doi.org/10.3390/s21144672] [PMID: 34300412]
[154]
Abrera, A.T.; Sützl, L.; Haltrich, D. Pyranose oxidase: A versatile sugar oxidoreductase for bioelectrochemical applications. Bioelectrochemistry, 2020, 132, 107409.
[http://dx.doi.org/10.1016/j.bioelechem.2019.107409] [PMID: 31821902]
[155]
Brugger, D.; Krondorfer, I.; Shelswell, C.; Huber-Dittes, B.; Haltrich, D.; Peterbauer, C.K. Engineering pyranose 2-oxidase for modified oxygen reactivity. PLoS One, 2014, 9(10), e109242.
[http://dx.doi.org/10.1371/journal.pone.0109242] [PMID: 25296188]
[156]
Kurbanoglu, S.; Zafar, M.N.; Tasca, F.; Aslam, I.; Spadiut, O.; Leech, D.; Haltrich, D.; Gorton, L. Amperometric flow injection analysis of glucose and galactose based on engineered pyranose 2-oxidases and osmium polymers for biosensor applications. Electroanalysis, 2018, 30(7), 1496-1504.
[http://dx.doi.org/10.1002/elan.201800096]
[157]
Wang, J. Electrochemical glucose biosensors. Chem. Rev., 2008, 108(2), 814-825.
[http://dx.doi.org/10.1021/cr068123a] [PMID: 18154363]
[158]
Newman, J.D.; Turner, A.P.F. Home blood glucose biosensors: A commercial perspective. Biosens. Bioelectron., 2005, 20(12), 2435-2453.
[http://dx.doi.org/10.1016/j.bios.2004.11.012] [PMID: 15854818]
[159]
Si, P.; Ding, S.; Yuan, J.; Lou, X.W.D.; Kim, D.H. Hierarchically structured one-dimensional TiO2 for protein immobilization, direct electrochemistry, and mediator-free glucose sensing. ACS Nano, 2011, 5(9), 7617-7626.
[http://dx.doi.org/10.1021/nn202714c] [PMID: 21866956]
[160]
Vennila, P.; Yoo, D.J.; Kim, A.R. kumar, G.G. Ni-Co/Fe3O4 flower-like nanocomposite for the highly sensitive and selective enzyme free glucose sensor applications. J. Alloys Compd., 2017, 703, 633-642.
[http://dx.doi.org/10.1016/j.jallcom.2017.01.044]
[161]
Masoomi-Godarzi, S.; Khodadadi, A.A.; Vesali-Naseh, M.; Mortazavi, Y. Highly stable and selective non-enzymatic glucose biosensor using carbon nanotubes decorated by Fe3O4 nanoparticles. J. Electrochem. Soc., 2014, 161(1), B19-B25.
[http://dx.doi.org/10.1149/2.057401jes]
[162]
Park, S.; Park, S.; Jeong, R.A.; Boo, H.; Park, J.; Kim, H.C.; Chung, T.D. Nonenzymatic continuous glucose monitoring in human whole blood using electrified nanoporous Pt. Biosens. Bioelectron., 2012, 31(1), 284-291.
[http://dx.doi.org/10.1016/j.bios.2011.10.033] [PMID: 22154166]
[163]
Naseri, M.; Fotouhi, L.; Ehsani, A. Nanostructured metal organic framework modified glassy carbon electrode as a high efficient non-enzymatic amperometric sensor for electrochemical detection of H2O2. J. Electrochem. Sci. Technol., 2018, 9(1), 28-36.
[http://dx.doi.org/10.33961/JECST.2018.9.1.28]
[164]
Abrori, S.A.; Septiani, N.L.W. Nugraha; Anshori, I.; Suyatman; Suendo, V.; Yuliarto, B. Metal-organic-framework FeBDC-derived Fe3O4 for non-enzymatic electrochemical detection of glucose. Sensors (Basel), 2020, 20(17), 4891.
[http://dx.doi.org/10.3390/s20174891]
[165]
Hwang, D.W.; Lee, S.; Seo, M.; Chung, T.D. Recent advances in electrochemical non-enzymatic glucose sensors - A review. Anal. Chim. Acta, 2018, 1033, 1-34.
[http://dx.doi.org/10.1016/j.aca.2018.05.051] [PMID: 30172314]
[166]
Chen, Y.C.; Hsu, J.H.; Chen, Z.B.; Lin, Y.G.; Hsu, Y.K. Fabrication of Fe3O4 nanotube arrays for high-performance non-enzymatic de-tection of glucose. J. Electroanal. Chem. (Lausanne), 2017, 788, 144-149.
[http://dx.doi.org/10.1016/j.jelechem.2017.02.007]
[167]
Zhang, C.; Ni, H.; Chen, R.; Zhan, W.; Zhang, B.; Lei, R.; Xiao, T.; Zha, Y. Enzyme-free glucose sensing based on Fe3O4 nanorod arrays. Mikrochim. Acta, 2015, 182(9-10), 1811-1818.
[http://dx.doi.org/10.1007/s00604-015-1511-y]
[168]
Yang, Z.; Zhang, C.; Zhang, J.; Bai, W. Potentiometric glucose biosensor based on core-shell Fe3O4-enzyme-polypyrrole nanoparticles. Biosens. Bioelectron., 2014, 51, 268-273.
[http://dx.doi.org/10.1016/j.bios.2013.07.054] [PMID: 23974157]
[169]
Umar, A.; Ahmad, R.; Al-Hajry, A.; Kim, S.H.; Abaker, M.E.; Hahn, Y.B. Spruce branched α-Fe2O3 nanostructures as potential scaffolds for a highly sensitive and selective glucose biosensor. New J. Chem., 2014, 38(12), 5873-5879.
[http://dx.doi.org/10.1039/C4NJ01148A]
[170]
Liu, Y.; Zhao, W.; Li, X.; Liu, J.; Han, Y.; Wu, J.; Zhang, X.; Xu, Y. Hierarchical α-Fe2O3 microcubes supported on Ni foam as non-enzymatic glucose sensor. Appl. Surf. Sci., 2020, 512, 145710.
[http://dx.doi.org/10.1016/j.apsusc.2020.145710]
[171]
Zhang, Y.; Xu, J.; Xia, J.; Zhang, F.; Wang, Z. MOF-derived porous Ni 2 P/graphene composites with enhanced electrochemical properties for sensitive nonenzymatic glucose sensing. ACS Appl. Mater. Interfaces, 2018, 10(45), 39151-39160.
[http://dx.doi.org/10.1021/acsami.8b11867] [PMID: 30350939]
[172]
Chen, X.; Liu, D.; Cao, G.; Tang, Y.; Wu, C. In situ synthesis of a sandwich-like Graphene@ZIF-67 heterostructure for highly sensitive nonenzymatic glucose sensing in human serums. ACS Appl. Mater. Interfaces, 2019, 11(9), 9374-9384.
[http://dx.doi.org/10.1021/acsami.8b22478] [PMID: 30727733]
[173]
Li, W.; Lv, S.; Wang, Y.; Zhang, L.; Cui, X. Nanoporous gold induced vertically standing 2D NiCo bimetal-organic framework nanosheets for non-enzymatic glucose biosensing. Sens. Actuators B Chem., 2019, 281, 652-658.
[http://dx.doi.org/10.1016/j.snb.2018.10.150]
[174]
Rana, J.S.; Jindal, J.; Beniwal, V.; Chhokar, V. Utility biosensors for applications in agriculture - A review. J. Am. Sci., 2010, 6, 353-375.
[175]
A, M.; Rajan S, A.; Sahu, N.K. Comparative study of enzymatic and non-enzymatic detection of glucose using manganese ferrite nano-particles. Mater. Res. Express, 2020, 7(9), 094001.
[http://dx.doi.org/10.1088/2053-1591/abb32e]
[176]
Dong, S.; Zhang, D.; Suo, G.; Wei, W.; Huang, T. Exploiting multi-function Metal-Organic Framework nanocomposite Ag@Zn-TSA as highly efficient immobilization matrixes for sensitive electrochemical biosensing. Anal. Chim. Acta, 2016, 934, 203-211.
[http://dx.doi.org/10.1016/j.aca.2016.05.040] [PMID: 27506361]
[177]
Gong, C.; Shen, Y.; Chen, J.; Song, Y.; Chen, S.; Song, Y.; Wang, L. Microperoxidase-11@PCN-333 (Al)/three-dimensional macroporous carbon electrode for sensing hydrogen peroxide. Sens. Actuators B Chem., 2017, 239, 890-897.
[http://dx.doi.org/10.1016/j.snb.2016.08.108]
[178]
Lu, X.; Wang, X.; Wu, L.; Wu, L. Dhanjai; Fu, L.; Gao, Y.; Chen, J. Response characteristics of bisphenols on a metal-organic frame-work-based tyrosinase nanosensor. ACS Appl. Mater. Interfaces, 2016, 8(25), 16533-16539.
[http://dx.doi.org/10.1021/acsami.6b05008] [PMID: 27281291]
[179]
Ma, B.; Cheong, L.Z.; Weng, X.; Tan, C.P.; Shen, C. Lipase@ZIF-8 nanoparticles-based biosensor for direct and sensitive detection of methyl parathion. Electrochim. Acta, 2018, 283, 509-516.
[http://dx.doi.org/10.1016/j.electacta.2018.06.176]
[180]
Ding, Y.; Liu, Y.; Zhang, L.; Wang, Y.; Bellagamba, M.; Parisi, J.; Li, C.M.; Lei, Y. Sensitive and selective nonenzymatic glucose detec-tion using functional NiO-Pt hybrid nanofibers. Electrochim. Acta, 2011, 58, 209-214.
[http://dx.doi.org/10.1016/j.electacta.2011.09.039]
[181]
Zhang, X.; Gu, A.; Wang, G.; Huang, Y.; Ji, H.; Fang, B. Porous Cu-NiO modified glass carbon electrode enhanced nonenzymatic glucose electrochemical sensors. Analyst (Lond.), 2011, 136(24), 5175-5180.
[http://dx.doi.org/10.1039/c1an15784a] [PMID: 22029045]
[182]
Salimi, A.; Sharifi, E.; Noorbakhsh, A.; Soltanian, S. Direct electrochemistry and electrocatalytic activity of catalase immobilized onto electrodeposited nano-scale islands of nickel oxide. Biophys. Chem., 2007, 125(2-3), 540-548.
[http://dx.doi.org/10.1016/j.bpc.2006.11.004] [PMID: 17166647]
[183]
Safavi, A.; Maleki, N.; Farjami, E. Fabrication of a glucose sensor based on a novel nanocomposite electrode. Biosens. Bioelectron., 2009, 24(6), 1655-1660.
[http://dx.doi.org/10.1016/j.bios.2008.08.040] [PMID: 18849160]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy