Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Hybrid Histone Deacetylase Inhibitor: An Effective Strategy for Cancer Therapy

Author(s): Jiyong Wu*, Jing Nie, Yepeng Luan and Yanjiao Ding*

Volume 30, Issue 20, 2023

Published on: 21 October, 2022

Page: [2267 - 2311] Pages: 45

DOI: 10.2174/0929867329666220826163626

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Inhibition of histone deacetylases (HDACs) has proven to be an effective strategy for cancer therapy. To date, five histone deacetylase inhibitors (HDACis) have been approved for cancer treatment, and numerous others are undergoing clinical trials. An agent that can simultaneously and effectively inhibit two or more targets may offer greater therapeutic benefits over single-acting agents in preventing resistance to treatment and potentiating synergistic effects. A prime example of a bifunctional agent is the hybrid HDACi. Representative classes of reported hybrid HDACis are reviewed here to shed light on the design of novel hybrid HDACis for cancer therapy.

Keywords: Histone deacetylase, hybrid, multitarget inhibitors, antitumor, cancer therapy, bifunctional agent.

[1]
Fraga, M.F.; Ballestar, E.; Villar-Garea, A.; Boix-Chornet, M.; Espada, J.; Schotta, G.; Bonaldi, T.; Haydon, C.; Ropero, S.; Petrie, K.; Iyer, N.G.; Pérez-Rosado, A.; Calvo, E.; Lopez, J.A.; Cano, A.; Calasanz, M.J.; Colomer, D.; Piris, M.A.; Ahn, N.; Imhof, A.; Caldas, C.; Jenuwein, T.; Esteller, M. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet., 2005, 37(4), 391-400.
[http://dx.doi.org/10.1038/ng1531] [PMID: 15765097]
[2]
Ropero, S.; Esteller, M. The role of histone deacetylases (HDACs) in human cancer. Mol. Oncol., 2007, 1(1), 19-25.
[http://dx.doi.org/10.1016/j.molonc.2007.01.001] [PMID: 19383284]
[3]
Zhang, L.; Han, Y.; Jiang, Q.; Wang, C.; Chen, X.; Li, X.; Xu, F.; Jiang, Y.; Wang, Q.; Xu, W. Trend of histone deacetylase inhibitors in cancer therapy: Isoform selectivity or multitargeted strategy. Med. Res. Rev., 2015, 35(1), 63-84.
[http://dx.doi.org/10.1002/med.21320] [PMID: 24782318]
[4]
Paris, M.; Porcelloni, M.; Binaschi, M.; Fattori, D. Histone deacetylase inhibitors: From bench to clinic. J. Med. Chem., 2008, 51(6), 1505-1529.
[http://dx.doi.org/10.1021/jm7011408] [PMID: 18247554]
[5]
Yu, C.W.; Chang, P.T.; Hsin, L.W.; Chern, J.W. Quinazolin-4-one derivatives as selective histone deacetylase-6 inhibitors for the treatment of Alzheimer’s disease. J. Med. Chem., 2013, 56(17), 6775-6791.
[http://dx.doi.org/10.1021/jm400564j] [PMID: 23905680]
[6]
Meng, J.; Li, Y.; Camarillo, C.; Yao, Y.; Zhang, Y.; Xu, C.; Jiang, L. The anti-tumor histone deacetylase inhibitor SAHA and the natural flavonoid curcumin exhibit synergistic neuroprotection against amyloid-beta toxicity. PLoS One, 2014, 9(1), e85570.
[http://dx.doi.org/10.1371/journal.pone.0085570] [PMID: 24409332]
[7]
Shirakawa, K.; Chavez, L.; Hakre, S.; Calvanese, V.; Verdin, E. Reactivation of latent HIV by histone deacetylase inhibitors. Trends Microbiol., 2013, 21(6), 277-285.
[http://dx.doi.org/10.1016/j.tim.2013.02.005] [PMID: 23517573]
[8]
Jønsson, K.L.; Tolstrup, M.; Vad-Nielsen, J.; Kjær, K.; Laustsen, A.; Andersen, M.N.; Rasmussen, T.A.; Søgaard, O.S.; Østergaard, L.; Denton, P.W.; Jakobsen, M.R. Histone deacetylase inhibitor romidepsin inhibits de novo HIV-1 infections. Antimicrob. Agents Chemother., 2015, 59(7), 3984-3994.
[http://dx.doi.org/10.1128/AAC.00574-15] [PMID: 25896701]
[9]
Schiattarella, G.G.; Sannino, A.; Toscano, E.; Cattaneo, F.; Trimarco, B.; Esposito, G.; Perrino, C. Cardiovascular effects of histone deacetylase inhibitors epigenetic therapies: Systematic review of 62 studies and new hypotheses for future research. Int. J. Cardiol., 2016, 219, 396-403.
[http://dx.doi.org/10.1016/j.ijcard.2016.06.012] [PMID: 27362830]
[10]
Stenzel, K.; Hamacher, A.; Hansen, F.K.; Gertzen, C.G.W.; Senger, J.; Marquardt, V.; Marek, L.; Marek, M.; Romier, C.; Remke, M.; Jung, M.; Gohlke, H.; Kassack, M.U.; Kurz, T. Alkoxyurea-based histone deacetylase inhibitors increase cisplatin potency in chemoresistant cancer cell lines. J. Med. Chem., 2017, 60(13), 5334-5348.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01538] [PMID: 28581289]
[11]
Wagner, F.F.; Olson, D.E.; Gale, J.P.; Kaya, T.; Weïwer, M.; Aidoud, N.; Thomas, M.; Davoine, E.L.; Lemercier, B.C.; Zhang, Y.L.; Holson, E.B. Potent and selective inhibition of histone deacetylase 6 (HDAC6) does not require a surface-binding motif. J. Med. Chem., 2013, 56(4), 1772-1776.
[http://dx.doi.org/10.1021/jm301355j] [PMID: 23368884]
[12]
Marson, C.M. Histone deacetylase inhibitors: Design, structure-activity relationships and therapeutic implications for cancer. Anticancer. Agents Med. Chem., 2009, 9(6), 661-692.
[http://dx.doi.org/10.2174/187152009788679976] [PMID: 19601748]
[13]
Thurn, K.T.; Thomas, S.; Moore, A.; Munster, P.N. Rational therapeutic combinations with histone deacetylase inhibitors for the treatment of cancer. Future Oncol., 2011, 7(2), 263-283.
[http://dx.doi.org/10.2217/fon.11.2] [PMID: 21345145]
[14]
Shah, M.H.; Binkley, P.; Chan, K.; Xiao, J.; Arbogast, D.; Collamore, M.; Farra, Y.; Young, D.; Grever, M. Cardiotoxicity of histone deacetylase inhibitor depsipeptide in patients with metastatic neuroendocrine tumors. Clin. Cancer Res., 2006, 12(13), 3997-4003.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2689] [PMID: 16818698]
[15]
Molife, R.; Fong, P.; Scurr, M.; Judson, I.; Kaye, S.; de Bono, J. HDAC inhibitors and cardiac safety. Clin. Cancer Res., 2007, 13(3), 1068.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1715] [PMID: 17289905]
[16]
Rosik, L.; Niegisch, G.; Fischer, U.; Jung, M.; Schulz, W.A.; Hoffmann, M.J. Limited efficacy of specific HDAC6 inhibition in urothelial cancer cells. Cancer Biol. Ther., 2014, 15(6), 742-757.
[http://dx.doi.org/10.4161/cbt.28469] [PMID: 24618845]
[17]
Fu, R.G.; Sun, Y.; Sheng, W.B.; Liao, D.F. Designing multi-targeted agents: An emerging anticancer drug discovery paradigm. Eur. J. Med. Chem., 2017, 136, 195-211.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.016] [PMID: 28494256]
[18]
Morphy, R.; Rankovic, Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem., 2005, 48(21), 6523-6543.
[http://dx.doi.org/10.1021/jm058225d] [PMID: 16220969]
[19]
Fortin, S.; Bérubé, G. Advances in the development of hybrid anticancer drugs. Expert Opin. Drug Discov., 2013, 8(8), 1029-1047.
[http://dx.doi.org/10.1517/17460441.2013.798296] [PMID: 23646979]
[20]
Bérubé, G. An overview of molecular hybrids in drug discovery. Expert Opin. Drug Discov., 2016, 11(3), 281-305.
[http://dx.doi.org/10.1517/17460441.2016.1135125] [PMID: 26727036]
[21]
Wu, Y.; Wang, L.; Huang, Y.; Chen, S.; Wu, S.; Dong, G.; Sheng, C. Nicotinamide Phosphoribosyltransferase (NAMPT) is a new target of antitumor agent chidamide. ACS Med. Chem. Lett., 2019, 11(1), 40-44.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00407] [PMID: 31938461]
[22]
Bolden, J.E.; Peart, M.J.; Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov., 2006, 5(9), 769-784.
[http://dx.doi.org/10.1038/nrd2133] [PMID: 16955068]
[23]
Bots, M.; Johnstone, R.W. Rational combinations using HDAC inhibitors. Clin. Cancer Res., 2009, 15(12), 3970-3977.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2786] [PMID: 19509171]
[24]
Frew, A.J.; Johnstone, R.W.; Bolden, J.E. Enhancing the apoptotic and therapeutic effects of HDAC inhibitors. Cancer Lett., 2009, 280(2), 125-133.
[http://dx.doi.org/10.1016/j.canlet.2009.02.042] [PMID: 19359091]
[25]
Salerno, S.; Da Settimo, F.; Taliani, S.; Simorini, F.; La Motta, C.; Fornaciari, G.; Marini, A.M. Recent advances in the development of dual topoisomerase I and II inhibitors as anticancer drugs. Curr. Med. Chem., 2010, 17(35), 4270-4290.
[http://dx.doi.org/10.2174/092986710793361252] [PMID: 20939813]
[26]
Baglini, E.; Salerno, S.; Barresi, E.; Robello, M.; Settimo, F.D.; Taliani, S.; Marini, A.M. Multiple Topoisomerase I (TopoI), Topoisomerase II (TopoII) and Tyrosyl-DNA Phosphodiesterase (TDP) inhibitors in the development of anticancer drugs. Eur. J. Pharm. Sci., 2021, 156, 105594.
[27]
Capranico, G.; Binaschi, M. DNA sequence selectivity of topoisomerases and topoisomerase poisons. Biochim. Biophys. Acta, 1998, 1400(1-3), 185-194.
[http://dx.doi.org/10.1016/S0167-4781(98)00135-3] [PMID: 9748568]
[28]
Pommier, Y.; Leo, E.; Zhang, H.; Marchand, C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol., 2010, 17(5), 421-433.
[http://dx.doi.org/10.1016/j.chembiol.2010.04.012] [PMID: 20534341]
[29]
Yu, C.C.; Pan, S.L.; Chao, S.W.; Liu, S.P.; Hsu, J.L.; Yang, Y.C.; Li, T.K.; Huang, W.J.; Guh, J.H. A novel small molecule hybrid of vorinostat and DACA displays anticancer activity against human hormone-refractory metastatic prostate cancer through dual inhibition of histone deacetylase and topoisomerase I. Biochem. Pharmacol., 2014, 90(3), 320-330.
[http://dx.doi.org/10.1016/j.bcp.2014.06.001] [PMID: 24915421]
[30]
Twelves, C.J.; Gardner, C.; Flavin, A.; Sludden, J.; Dennis, I.; de Bono, J.; Beale, P.; Vasey, P.; Hutchison, C.; Macham, M.A.; Rodriguez, A.; Judson, I.; Bleehen, N.M. Phase I and pharmacokinetic study of DACA (XR5000): A novel inhibitor of topoisomerase I and II. Br. J. Cancer, 1999, 80(11), 1786-1791.
[http://dx.doi.org/10.1038/sj.bjc.6690598] [PMID: 10468297]
[31]
Guerrant, W.; Patil, V.; Canzoneri, J.C.; Oyelere, A.K. Dual targeting of histone deacetylase and topoisomerase II with novel bifunctional inhibitors. J. Med. Chem., 2012, 55(4), 1465-1477.
[http://dx.doi.org/10.1021/jm200799p] [PMID: 22260166]
[32]
Guerrant, W.; Patil, V.; Canzoneri, J.C.; Yao, L.P.; Hood, R.; Oyelere, A.K. Dual-acting histone deacetylase-topoisomerase I inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(11), 3283-3287.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.108] [PMID: 23622981]
[33]
Leu, Y.L.; Chen, C.S.; Wu, Y.J.; Chern, J.W. Benzyl ether-linked glucuronide derivative of 10-hydroxycamptothecin designed for selective camptothecin-based anticancer therapy. J. Med. Chem., 2008, 51(6), 1740-1746.
[http://dx.doi.org/10.1021/jm701151c] [PMID: 18318465]
[34]
He, S.; Dong, G.; Wang, Z.; Chen, W.; Huang, Y.; Li, Z.; Jiang, Y.; Liu, N.; Yao, J.; Miao, Z.; Zhang, W.; Sheng, C. Discovery of novel multiacting topoisomerase I/II and histone deacetylase inhibitors. ACS Med. Chem. Lett., 2015, 6(3), 239-243.
[http://dx.doi.org/10.1021/ml500327q] [PMID: 25815139]
[35]
Canel, C.; Moraes, R.M.; Dayan, F.E.; Ferreira, D. Podophyllotoxin. Phytochemistry, 2000, 54(2), 115-120.
[http://dx.doi.org/10.1016/S0031-9422(00)00094-7] [PMID: 10872202]
[36]
Xu, H.; Lv, M.; Tian, X. A review on hemisynthesis, biosynthesis, biological activities, mode of action, and structure-activity relationship of podophyllotoxins: 2003-2007. Curr. Med. Chem., 2009, 16(3), 327-349.
[http://dx.doi.org/10.2174/092986709787002682] [PMID: 19149581]
[37]
Zhang, X.; Bao, B.; Yu, X.; Tong, L.; Luo, Y.; Huang, Q.; Su, M.; Sheng, L.; Li, J.; Zhu, H.; Yang, B.; Zhang, X.; Chen, Y.; Lu, W. The discovery and optimization of novel dual inhibitors of topoisomerase II and histone deacetylase. Bioorg. Med. Chem., 2013, 21(22), 6981-6995.
[http://dx.doi.org/10.1016/j.bmc.2013.09.023] [PMID: 24095018]
[38]
Bouwman, P.; Jonkers, J. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat. Rev. Cancer, 2012, 12(9), 587-598.
[http://dx.doi.org/10.1038/nrc3342] [PMID: 22918414]
[39]
Bose, P.; Dai, Y.; Grant, S. Histone deacetylase inhibitor (HDACI) mechanisms of action: Emerging insights. Pharmacol. Ther., 2014, 143(3), 323-336.
[http://dx.doi.org/10.1016/j.pharmthera.2014.04.004] [PMID: 24769080]
[40]
Lee, C.K.; Wang, S.; Huang, X.; Ryder, J.; Liu, B. HDAC inhibition synergistically enhances alkylator-induced DNA damage responses and apoptosis in multiple myeloma cells. Cancer Lett., 2010, 296(2), 233-240.
[http://dx.doi.org/10.1016/j.canlet.2010.04.014] [PMID: 20447761]
[41]
Cai, B.; Lyu, H.; Huang, J.; Wang, S.; Lee, C.K.; Gao, C.; Liu, B. Combination of bendamustine and entinostat synergistically inhibits proliferation of multiple myeloma cells via induction of apoptosis and DNA damage response. Cancer Lett., 2013, 335(2), 343-350.
[http://dx.doi.org/10.1016/j.canlet.2013.02.046] [PMID: 23459296]
[42]
Liu, C.; Ding, H.; Li, X.; Pallasch, C.P.; Hong, L.; Guo, D.; Chen, Y.; Wang, D.; Wang, W.; Wang, Y.; Hemann, M.T.; Jiang, H.A. DNA/HDAC dual-targeting drug CY190602 with significantly enhanced anticancer potency. EMBO Mol. Med., 2015, 7(4), 438-449.
[http://dx.doi.org/10.15252/emmm.201404580] [PMID: 25759362]
[43]
López-Iglesias, A.A.; Herrero, A.B.; Chesi, M.; San-Segundo, L.; González-Méndez, L.; Hernández-García, S.; Misiewicz-Krzeminska, I.; Quwaider, D.; Martín-Sánchez, M.; Primo, D.; Paíno, T.; Bergsagel, P.L.; Mehrling, T.; González-Díaz, M.; San-Miguel, J.F.; Mateos, M.V.; Gutiérrez, N.C.; Garayoa, M.; Ocio, E.M. Preclinical anti-myeloma activity of EDO-S101, a new bendamustine-derived molecule with added HDACi activity, through potent DNA damage induction and impairment of DNA repair. J. Hematol. Oncol., 2017, 10(1), 127.
[http://dx.doi.org/10.1186/s13045-017-0495-y] [PMID: 28633670]
[44]
Xie, R.; Li, Y.; Tang, P.; Yuan, Q. Rational design, synthesis and preliminary antitumor activity evaluation of a chlorambucil derivative with potent DNA/HDAC dual-targeting inhibitory activity. Bioorg. Med. Chem. Lett., 2017, 27(18), 4415-4420.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.011] [PMID: 28818449]
[45]
Lesueur, P.; Chevalier, F.; Austry, J.B.; Waissi, W.; Burckel, H.; Noël, G.; Habrand, J.L.; Saintigny, Y.; Joly, F. Poly-(ADP-ribose)-polymerase inhibitors as radiosensitizers: A systematic review of pre-clinical and clinical human studies. Oncotarget, 2017, 8(40), 69105-69124.
[http://dx.doi.org/10.18632/oncotarget.19079] [PMID: 28978184]
[46]
O’Sullivan, C.C.; Moon, D.H.; Kohn, E.C.; Lee, J.M. Beyond breast and ovarian cancers: PARP inhibitors for BRCA mutation-associated and BRCA-like solid tumors. Front. Oncol., 2014, 4, 42.
[http://dx.doi.org/10.3389/fonc.2014.00042] [PMID: 24616882]
[47]
Robert, C.; Rassool, F.V. HDAC inhibitors: Roles of DNA damage and repair. Adv. Cancer Res., 2012, 116, 87-129.
[http://dx.doi.org/10.1016/B978-0-12-394387-3.00003-3] [PMID: 23088869]
[48]
Chao, O.S.; Goodman, O.B. Jr Synergistic loss of prostate cancer cell viability by coinhibition of HDAC and PARP. Mol. Cancer Res., 2014, 12(12), 1755-1766.
[http://dx.doi.org/10.1158/1541-7786.MCR-14-0173] [PMID: 25127709]
[49]
Baldan, F.; Mio, C.; Allegri, L.; Puppin, C.; Russo, D.; Filetti, S.; Damante, G. Synergy between HDAC and PARP inhibitors on proliferation of a human anaplastic thyroid cancer-derived cell line. Int. J. Endocrinol., 2015, 2015, 978371.
[http://dx.doi.org/10.1155/2015/978371] [PMID: 25705225]
[50]
Rasmussen, R.D.; Gajjar, M.K.; Jensen, K.E.; Hamerlik, P. Enhanced efficacy of combined HDAC and PARP targeting in glioblastoma. Mol. Oncol., 2016, 10(5), 751-763.
[http://dx.doi.org/10.1016/j.molonc.2015.12.014] [PMID: 26794465]
[51]
Yuan, Z.; Chen, S.; Sun, Q.; Wang, N.; Li, D.; Miao, S.; Gao, C.; Chen, Y.; Tan, C.; Jiang, Y. Olaparib hydroxamic acid derivatives as dual PARP and HDAC inhibitors for cancer therapy. Bioorg. Med. Chem., 2017, 25(15), 4100-4109.
[http://dx.doi.org/10.1016/j.bmc.2017.05.058] [PMID: 28601509]
[52]
Tian, Y.; Xie, Z.; Liao, C. Design, synthesis and anticancer activities of novel dual poly(ADP-ribose) polymerase-1/histone deacetylase-1 inhibitors. Bioorg. Med. Chem. Lett., 2020, 30(8), 127036.
[http://dx.doi.org/10.1016/j.bmcl.2020.127036] [PMID: 32088129]
[53]
Wloga, D.; Joachimiak, E.; Fabczak, H. Tubulin post-translational modifications and microtubule dynamics. Int. J. Mol. Sci., 2017, 18(10), E2207.
[http://dx.doi.org/10.3390/ijms18102207] [PMID: 29065455]
[54]
Dong, M.; Liu, F.; Zhou, H.; Zhai, S.; Yan, B. Novel natural product- and privileged scaffold-based tubulin inhibitors targeting the colchicine binding site. Molecules, 2016, 21(10), E1375.
[http://dx.doi.org/10.3390/molecules21101375] [PMID: 27754459]
[55]
Jordan, M.A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer, 2004, 4(4), 253-265.
[http://dx.doi.org/10.1038/nrc1317] [PMID: 15057285]
[56]
Dumontet, C.; Jordan, M.A. Microtubule-binding agents: A dynamic field of cancer therapeutics. Nat. Rev. Drug Discov., 2010, 9(10), 790-803.
[http://dx.doi.org/10.1038/nrd3253] [PMID: 20885410]
[57]
Shaik, S.P.; Vishnuvardhan, M.V.P.S.; Sultana, F.; Subba Rao, A.V.; Bagul, C.; Bhattacharjee, D.; Kapure, J.S.; Jain, N.; Kamal, A. Design and synthesis of 1,2,3-triazolo linked benzo[d]imidazo[2,1-b]thiazole conjugates as tubulin polymerization inhibitors. Bioorg. Med. Chem., 2017, 25(13), 3285-3297.
[http://dx.doi.org/10.1016/j.bmc.2017.04.013] [PMID: 28462842]
[58]
Pang, Y.; Yan, J.; An, B.; Huang, L.; Li, X. The synthesis and evaluation of new butadiene derivatives as tubulin polymerization inhibitors. Bioorg. Med. Chem., 2017, 25(12), 3059-3067.
[http://dx.doi.org/10.1016/j.bmc.2017.03.066] [PMID: 28404525]
[59]
Subba Rao, A.V.; Swapna, K.; Shaik, S.P.; Lakshma Nayak, V.; Srinivasa Reddy, T.; Sunkari, S.; Shaik, T.B.; Bagul, C.; Kamal, A. Synthesis and biological evaluation of cis-restricted triazole/tetrazole mimics of combretastatin-benzothiazole hybrids as tubulin polymerization inhibitors and apoptosis inducers. Bioorg. Med. Chem., 2017, 25(3), 977-999.
[http://dx.doi.org/10.1016/j.bmc.2016.12.010] [PMID: 28034647]
[60]
Chobanian, N.H.; Greenberg, V.L.; Gass, J.M.; Desimone, C.P.; Van Nagell, J.R.; Zimmer, S.G. Histone deacetylase inhibitors enhance paclitaxel-induced cell death in ovarian cancer cell lines independent of p53 status. Anticancer Res., 2004, 24(2B), 539-545.
[PMID: 15160991]
[61]
Hwang, J.J.; Kim, Y.S.; Kim, M.J.; Kim, D.E.; Jeong, I.G.; Kim, C.S. Histone deacetylase inhibitor potentiates anticancer effect of docetaxel via modulation of Bcl-2 family proteins and tubulin in hormone refractory prostate cancer cells. J. Urol., 2010, 184(6), 2557-2564.
[http://dx.doi.org/10.1016/j.juro.2010.07.035] [PMID: 21030039]
[62]
Kim, J.H.; Yoon, E.K.; Chung, H.J.; Park, S.Y.; Hong, K.M.; Lee, C.H.; Lee, Y.S.; Choi, K.; Yang, Y.; Kim, K.; Kim, I.H. p53 acetylation enhances taxol-induced apoptosis in human cancer cells. Apoptosis, 2013, 18(1), 110-120.
[http://dx.doi.org/10.1007/s10495-012-0772-8] [PMID: 23161364]
[63]
Zuco, V.; De Cesare, M.; Cincinelli, R.; Nannei, R.; Pisano, C.; Zaffaroni, N.; Zunino, F. Synergistic antitumor effects of novel HDAC inhibitors and paclitaxel in vitro and in vivo. PLoS One, 2011, 6(12), e29085.
[http://dx.doi.org/10.1371/journal.pone.0029085] [PMID: 22194993]
[64]
Zhang, X.; Zhang, J.; Tong, L.; Luo, Y.; Su, M.; Zang, Y.; Li, J.; Lu, W.; Chen, Y. The discovery of colchicine-SAHA hybrids as a new class of antitumor agents. Bioorg. Med. Chem., 2013, 21(11), 3240-3244.
[http://dx.doi.org/10.1016/j.bmc.2013.03.049] [PMID: 23602523]
[65]
Zhang, X.; Kong, Y.; Zhang, J.; Su, M.; Zhou, Y.; Zang, Y.; Li, J.; Chen, Y.; Fang, Y.; Zhang, X.; Lu, W. Design, synthesis and biological evaluation of colchicine derivatives as novel tubulin and histone deacetylase dual inhibitors. Eur. J. Med. Chem., 2015, 95, 127-135.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.035] [PMID: 25805446]
[66]
Lamaa, D.; Lin, H.P.; Zig, L.; Bauvais, C.; Bollot, G.; Bignon, J.; Levaique, H.; Pamlard, O.; Dubois, J.; Ouaissi, M.; Souce, M.; Kasselouri, A.; Saller, F.; Borgel, D.; Jayat-Vignoles, C.; Al-Mouhammad, H.; Feuillard, J.; Benihoud, K.; Alami, M.; Hamze, A. Design and synthesis of tubulin and histone deacetylase inhibitor based on iso-combretastatin A-4. J. Med. Chem., 2018, 61(15), 6574-6591.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00050] [PMID: 30004697]
[67]
Hamze, A.; Rasolofonjatovo, E.; Provot, O.; Mousset, C.; Veau, D.; Rodrigo, J.; Bignon, J.; Liu, J.M.; Wdzieczak-Bakala, J.; Thoret, S.; Dubois, J.; Brion, J.D.; Alami, M. B-ring-modified isocombretastatin A-4 analogues endowed with interesting anticancer activities. ChemMedChem, 2011, 6(12), 2179-2191.
[http://dx.doi.org/10.1002/cmdc.201100325] [PMID: 21990101]
[68]
Yang, Z.; Wang, T.; Wang, F.; Niu, T.; Liu, Z.; Chen, X.; Long, C.; Tang, M.; Cao, D.; Wang, X.; Xiang, W.; Yi, Y.; Ma, L.; You, J.; Chen, L. Discovery of selective histone deacetylase 6 inhibitors using the quinazoline as the cap for the treatment of cancer. J. Med. Chem., 2016, 59(4), 1455-1470.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01342] [PMID: 26443078]
[69]
Wang, F.; Zheng, L.; Yi, Y.; Yang, Z.; Qiu, Q.; Wang, X.; Yan, W.; Bai, P.; Yang, J.; Li, D.; Pei, H.; Niu, T.; Ye, H.; Nie, C.; Hu, Y.; Yang, S.; Wei, Y.; Chen, L. SKLB-23bb, A HDAC6-selective inhibitor, exhibits superior and broad-spectrum antitumor activity via additionally targeting microtubules. Mol. Cancer Ther., 2018, 17(4), 763-775.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0332] [PMID: 29610282]
[70]
O’Boyle, N.M. Pollock, J.K.; Carr, M.; Knox, A.J.; Nathwani, S.M.; Wang, S.; Caboni, L.; Zisterer, D.M.; Meegan, M.J. β-Lactam estrogen receptor antagonists and a dual-targeting estrogen receptor/tubulin ligand. J. Med. Chem., 2014, 57(22), 9370-9382.
[http://dx.doi.org/10.1021/jm500670d] [PMID: 25369367]
[71]
Jameera Begam, A.; Jubie, S.; Nanjan, M.J. Estrogen receptor agonists/antagonists in breast cancer therapy: A critical review. Bioorg. Chem., 2017, 71, 257-274.
[http://dx.doi.org/10.1016/j.bioorg.2017.02.011] [PMID: 28274582]
[72]
Jang, E.R.; Lim, S.J.; Lee, E.S.; Jeong, G.; Kim, T.Y.; Bang, Y.J.; Lee, J.S. The histone deacetylase inhibitor trichostatin A sensitizes estrogen receptor alpha-negative breast cancer cells to tamoxifen. Oncogene, 2004, 23(9), 1724-1736.
[http://dx.doi.org/10.1038/sj.onc.1207315] [PMID: 14676837]
[73]
Li, Y.; Yuan, Y.Y.; Meeran, S.M.; Tollefsbol, T.O. Synergistic epigenetic reactivation of estrogen receptor-α (ERα) by combined green tea polyphenol and histone deacetylase inhibitor in ERα-negative breast cancer cells. Mol. Cancer, 2010, 9, 274.
[http://dx.doi.org/10.1186/1476-4598-9-274] [PMID: 20946668]
[74]
Thomas, S.; Thurn, K.T.; Raha, P.; Chen, S.; Munster, P.N. Efficacy of histone deacetylase and estrogen receptor inhibition in breast cancer cells due to concerted down regulation of Akt. PLoS One, 2013, 8(7), e68973.
[http://dx.doi.org/10.1371/journal.pone.0068973] [PMID: 23874830]
[75]
Gryder, B.E.; Rood, M.K.; Johnson, K.A.; Patil, V.; Raftery, E.D.; Yao, L.P.; Rice, M.; Azizi, B.; Doyle, D.F.; Oyelere, A.K. Histone deacetylase inhibitors equipped with estrogen receptor modulation activity. J. Med. Chem., 2013, 56(14), 5782-5796.
[http://dx.doi.org/10.1021/jm400467w] [PMID: 23786452]
[76]
Tang, C.; Li, C.; Zhang, S.; Hu, Z.; Wu, J.; Dong, C.; Huang, J.; Zhou, H.B. Novel bioactive hybrid compound dual targeting estrogen receptor and histone deacetylase for the treatment of breast cancer. J. Med. Chem., 2015, 58(11), 4550-4572.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00099] [PMID: 25993269]
[77]
Coopman, P.; Garcia, M.; Brünner, N.; Derocq, D.; Clarke, R.; Rochefort, H. Anti-proliferative and anti-estrogenic effects of ICI 164,384 and ICI 182,780 in 4-OH-tamoxifen-resistant human breast-cancer cells. Int. J. Cancer, 1994, 56(2), 295-300.
[http://dx.doi.org/10.1002/ijc.2910560225] [PMID: 8314314]
[78]
Mendoza-Sanchez, R.; Cotnoir-White, D.; Kulpa, J.; Jutras, I.; Pottel, J.; Moitessier, N.; Mader, S.; Gleason, J.L. Design, synthesis and evaluation of antiestrogen and histone deacetylase inhibitor molecular hybrids. Bioorg. Med. Chem., 2015, 23(24), 7597-7606.
[http://dx.doi.org/10.1016/j.bmc.2015.11.005] [PMID: 26613635]
[79]
Chen, Y.; Clegg, N.J.; Scher, H.I. Anti-androgens and androgen-depleting therapies in prostate cancer: New agents for an established target. Lancet Oncol., 2009, 10(10), 981-991.
[http://dx.doi.org/10.1016/S1470-2045(09)70229-3] [PMID: 19796750]
[80]
Culig, Z.; Hobisch, A.; Bartsch, G.; Klocker, H. Androgen receptor--an update of mechanisms of action in prostate cancer. Urol. Res., 2000, 28(4), 211-219.
[http://dx.doi.org/10.1007/s002400000111] [PMID: 11011957]
[81]
Gaughan, L.; Logan, I.R.; Cook, S.; Neal, D.E.; Robson, C.N. Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of the receptor. J. Biol. Chem., 2002, 277(29), 25904-25913.
[http://dx.doi.org/10.1074/jbc.M203423200] [PMID: 11994312]
[82]
Gibbs, A.; Schwartzman, J.; Deng, V.; Alumkal, J. Sulforaphane destabilizes the androgen receptor in prostate cancer cells by inactivating histone deacetylase 6. Proc. Natl. Acad. Sci. USA, 2009, 106(39), 16663-16668.
[http://dx.doi.org/10.1073/pnas.0908908106] [PMID: 19805354]
[83]
Chen, L.; Meng, S.; Wang, H.; Bali, P.; Bai, W.; Li, B.; Atadja, P.; Bhalla, K.N.; Wu, J. Chemical ablation of androgen receptor in prostate cancer cells by the histone deacetylase inhibitor LAQ824. Mol. Cancer Ther., 2005, 4(9), 1311-1319.
[http://dx.doi.org/10.1158/1535-7163.MCT-04-0287] [PMID: 16170022]
[84]
Patra, N.; De, U.; Kim, T.H.; Lee, Y.J.; Ahn, M.Y.; Kim, N.D.; Yoon, J.H.; Choi, W.S.; Moon, H.R.; Lee, B.M.; Kim, H.S. A novel histone deacetylase (HDAC) inhibitor MHY219 induces apoptosis via up-regulation of androgen receptor expression in human prostate cancer cells. Biomed. Pharmacother., 2013, 67(5), 407-415.
[http://dx.doi.org/10.1016/j.biopha.2013.01.006] [PMID: 23583193]
[85]
Gryder, B.E.; Akbashev, M.J.; Rood, M.K.; Raftery, E.D.; Meyers, W.M.; Dillard, P.; Khan, S.; Oyelere, A.K. Selectively targeting prostate cancer with antiandrogen equipped histone deacetylase inhibitors. ACS Chem. Biol., 2013, 8(11), 2550-2560.
[http://dx.doi.org/10.1021/cb400542w] [PMID: 24004176]
[86]
Rosati, R.; Chen, B.; Patki, M.; McFall, T.; Ou, S.; Heath, E.; Ratnam, M.; Qin, Z. Hybrid enzalutamide derivatives with histone deacetylase inhibitor activity decrease heat shock protein 90 and androgen receptor levels and inhibit viability in enzalutamide-resistant C4-2 prostate cancer cells. Mol. Pharmacol., 2016, 90(3), 225-237.
[http://dx.doi.org/10.1124/mol.116.103416] [PMID: 27382012]
[87]
Zhang, G.; Pradhan, S. Mammalian epigenetic mechanisms. IUBMB Life, 2014, 66(4), 240-256.
[http://dx.doi.org/10.1002/iub.1264] [PMID: 24706538]
[88]
Singh, V.; Sharma, P.; Capalash, N. DNA methyltransferase-1 inhibitors as epigenetic therapy for cancer. Curr. Cancer Drug Targets, 2013, 13(4), 379-399.
[http://dx.doi.org/10.2174/15680096113139990077] [PMID: 23517596]
[89]
Zhu, W.G.; Otterson, G.A. The interaction of histone deacetylase inhibitors and DNA methyltransferase inhibitors in the treatment of human cancer cells. Curr. Med. Chem. Anticancer Agents, 2003, 3(3), 187-199.
[http://dx.doi.org/10.2174/1568011033482440] [PMID: 12769777]
[90]
Kuck, D.; Singh, N.; Lyko, F.; Medina-Franco, J.L. Novel and selective DNA methyltransferase inhibitors: Docking-based virtual screening and experimental evaluation. Bioorg. Med. Chem., 2010, 18(2), 822-829.
[http://dx.doi.org/10.1016/j.bmc.2009.11.050] [PMID: 20006515]
[91]
Yuan, Z.; Sun, Q.; Li, D.; Miao, S.; Chen, S.; Song, L.; Gao, C.; Chen, Y.; Tan, C.; Jiang, Y. Design, synthesis and anticancer potential of NSC-319745 hydroxamic acid derivatives as DNMT and HDAC inhibitors. Eur. J. Med. Chem., 2017, 134, 281-292.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.017] [PMID: 28419930]
[92]
Shi, Y.; Lan, F.; Matson, C.; Mulligan, P.; Whetstine, J.R.; Cole, P.A.; Casero, R.A.; Shi, Y. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 2004, 119(7), 941-953.
[http://dx.doi.org/10.1016/j.cell.2004.12.012] [PMID: 15620353]
[93]
Mould, D.P.; McGonagle, A.E.; Wiseman, D.H.; Williams, E.L.; Jordan, A.M. Reversible inhibitors of LSD1 as therapeutic agents in acute myeloid leukemia: Clinical significance and progress to date. Med. Res. Rev., 2015, 35(3), 586-618.
[http://dx.doi.org/10.1002/med.21334] [PMID: 25418875]
[94]
Przespolewski, A.; Wang, E.S. Inhibitors of LSD1 as a potential therapy for acute myeloid leukemia. Expert Opin. Investig. Drugs, 2016, 25(7), 771-780.
[http://dx.doi.org/10.1080/13543784.2016.1175432] [PMID: 27077938]
[95]
Vianello, P.; Sartori, L.; Amigoni, F.; Cappa, A.; Fagá, G.; Fattori, R.; Legnaghi, E.; Ciossani, G.; Mattevi, A.; Meroni, G.; Moretti, L.; Cecatiello, V.; Pasqualato, S.; Romussi, A.; Thaler, F.; Trifiró, P.; Villa, M.; Botrugno, O.A.; Dessanti, P.; Minucci, S.; Vultaggio, S.; Zagarrí, E.; Varasi, M.; Mercurio, C. Thieno[3,2-b]pyrrole-5-carboxamides as new reversible inhibitors of histone lysine demethylase KDM1A/LSD1. Part 2: Structure-based drug design and structure-activity relationship. J. Med. Chem., 2017, 60(5), 1693-1715.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01019] [PMID: 28186757]
[96]
Zheng, Y.C.; Duan, Y.C.; Ma, J.L.; Xu, R.M.; Zi, X.; Lv, W.L.; Wang, M.M.; Ye, X.W.; Zhu, S.; Mobley, D.; Zhu, Y.Y.; Wang, J.W.; Li, J.F.; Wang, Z.R.; Zhao, W.; Liu, H.M. Triazole-dithiocarbamate based selective lysine specific demethylase 1 (LSD1) inactivators inhibit gastric cancer cell growth, invasion, and migration. J. Med. Chem., 2013, 56(21), 8543-8560.
[http://dx.doi.org/10.1021/jm401002r] [PMID: 24131029]
[97]
Vasilatos, S.N.; Katz, T.A.; Oesterreich, S.; Wan, Y.; Davidson, N.E.; Huang, Y. Crosstalk between lysine-specific demethylase 1 (LSD1) and histone deacetylases mediates antineoplastic efficacy of HDAC inhibitors in human breast cancer cells. Carcinogenesis, 2013, 34(6), 1196-1207.
[http://dx.doi.org/10.1093/carcin/bgt033] [PMID: 23354309]
[98]
Haydn, T.; Metzger, E.; Schuele, R.; Fulda, S. Concomitant epigenetic targeting of LSD1 and HDAC synergistically induces mitochondrial apoptosis in rhabdomyosarcoma cells. Cell Death Dis., 2017, 8(6), e2879.
[http://dx.doi.org/10.1038/cddis.2017.239] [PMID: 28617441]
[99]
Fiskus, W.; Sharma, S.; Shah, B.; Portier, B.P.; Devaraj, S.G.T.; Liu, K.; Iyer, S.P.; Bearss, D.; Bhalla, K.N. Highly effective combination of LSD1 (KDM1A) antagonist and pan-histone deacetylase inhibitor against human AML cells. Leukemia, 2017, 31(7), 1658.
[http://dx.doi.org/10.1038/leu.2017.77] [PMID: 28322226]
[100]
Duan, Y.C.; Ma, Y.C.; Qin, W.P.; Ding, L.N.; Zheng, Y.C.; Zhu, Y.L.; Zhai, X.Y.; Yang, J.; Ma, C.Y.; Guan, Y.Y. Design and synthesis of tranylcypromine derivatives as novel LSD1/HDACs dual inhibitors for cancer treatment. Eur. J. Med. Chem., 2017, 140, 392-402.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.038] [PMID: 28987602]
[101]
Kalin, J.H.; Wu, M.; Gomez, A.V.; Song, Y.; Das, J.; Hayward, D.; Adejola, N.; Wu, M.; Panova, I.; Chung, H.J.; Kim, E.; Roberts, H.J.; Roberts, J.M.; Prusevich, P.; Jeliazkov, J.R.; Roy Burman, S.S.; Fairall, L.; Milano, C.; Eroglu, A.; Proby, C.M.; Dinkova-Kostova, A.T.; Hancock, W.W.; Gray, J.J.; Bradner, J.E.; Valente, S.; Mai, A.; Anders, N.M.; Rudek, M.A.; Hu, Y.; Ryu, B.; Schwabe, J.W.R.; Mattevi, A.; Alani, R.M.; Cole, P.A. Targeting the CoREST complex with dual histone deacetylase and demethylase inhibitors. Nat. Commun., 2018, 9(1), 53.
[http://dx.doi.org/10.1038/s41467-017-02242-4] [PMID: 29302039]
[102]
Wu, M.; Hayward, D.; Kalin, J.H.; Song, Y.; Schwabe, J.W.; Cole, P.A. Lysine-14 acetylation of histone H3 in chromatin confers resistance to the deacetylase and demethylase activities of an epigenetic silencing complex. eLife, 2018, 7, 7.
[http://dx.doi.org/10.7554/eLife.37231] [PMID: 29869982]
[103]
Wagner, T.; Greschik, H.; Burgahn, T.; Schmidtkunz, K.; Schott, A.K.; McMillan, J. Baranauskienė L.; Xiong, Y.; Fedorov, O.; Jin, J.; Oppermann, U.; Matulis, D.; Schüle, R.; Jung, M. Identification of a small-molecule ligand of the epigenetic reader protein Spindlin1 via a versatile screening platform. Nucleic Acids Res., 2016, 44(9), e88.
[http://dx.doi.org/10.1093/nar/gkw089] [PMID: 26893353]
[104]
Liu, Z.; Wang, P.; Chen, H.; Wold, E.A.; Tian, B.; Brasier, A.R.; Zhou, J. Drug discovery targeting bromodomain-containing protein 4. J. Med. Chem., 2017, 60(11), 4533-4558.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01761] [PMID: 28195723]
[105]
Filippakopoulos, P.; Qi, J.; Picaud, S.; Shen, Y.; Smith, W.B.; Fedorov, O.; Morse, E.M.; Keates, T.; Hickman, T.T.; Felletar, I.; Philpott, M.; Munro, S.; McKeown, M.R.; Wang, Y.; Christie, A.L.; West, N.; Cameron, M.J.; Schwartz, B.; Heightman, T.D.; La Thangue, N.; French, C.A.; Wiest, O.; Kung, A.L.; Knapp, S.; Bradner, J.E. Selective inhibition of BET bromodomains. Nature, 2010, 468(7327), 1067-1073.
[http://dx.doi.org/10.1038/nature09504] [PMID: 20871596]
[106]
Nicodeme, E.; Jeffrey, K.L.; Schaefer, U.; Beinke, S.; Dewell, S.; Chung, C.W.; Chandwani, R.; Marazzi, I.; Wilson, P.; Coste, H.; White, J.; Kirilovsky, J.; Rice, C.M.; Lora, J.M.; Prinjha, R.K.; Lee, K.; Tarakhovsky, A. Suppression of inflammation by a synthetic histone mimic. Nature, 2010, 468(7327), 1119-1123.
[http://dx.doi.org/10.1038/nature09589] [PMID: 21068722]
[107]
Wang, L.; Pratt, J.K.; Soltwedel, T.; Sheppard, G.S.; Fidanze, S.D.; Liu, D.; Hasvold, L.A.; Mantei, R.A.; Holms, J.H.; McClellan, W.J.; Wendt, M.D.; Wada, C.; Frey, R.; Hansen, T.M.; Hubbard, R.; Park, C.H.; Li, L.; Magoc, T.J.; Albert, D.H.; Lin, X.; Warder, S.E.; Kovar, P.; Huang, X.; Wilcox, D.; Wang, R.; Rajaraman, G.; Petros, A.M.; Hutchins, C.W.; Panchal, S.C.; Sun, C.; Elmore, S.W.; Shen, Y.; Kati, W.M.; McDaniel, K.F. Fragment-based, structure-enabled discovery of novel pyridones and pyridone macrocycles as potent bromodomain and extra-terminal domain (BET) family bromodomain inhibitors. J. Med. Chem., 2017, 60(9), 3828-3850.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00017] [PMID: 28368119]
[108]
Chan, K.H.; Zengerle, M.; Testa, A.; Ciulli, A. Impact of target warhead and linkage vector on inducing protein degradation: Comparison of Bromodomain and Extra-Terminal (BET) degraders derived from triazolodiazepine (JQ1) and tetrahydroquinoline (I-BET726) BET inhibitor scaffolds. J. Med. Chem., 2018, 61(2), 504-513.
[109]
Chesi, M.; Matthews, G.M.; Garbitt, V.M.; Palmer, S.E.; Shortt, J.; Lefebure, M.; Stewart, A.K.; Johnstone, R.W.; Bergsagel, P.L. Drug response in a genetically engineered mouse model of multiple myeloma is predictive of clinical efficacy. Blood, 2012, 120(2), 376-385.
[http://dx.doi.org/10.1182/blood-2012-02-412783] [PMID: 22451422]
[110]
Bhadury, J.; Nilsson, L.M.; Muralidharan, S.V.; Green, L.C.; Li, Z.; Gesner, E.M.; Hansen, H.C.; Keller, U.B.; McLure, K.G.; Nilsson, J.A. BET and HDAC inhibitors induce similar genes and biological effects and synergize to kill in Myc-induced murine lymphoma. Proc. Natl. Acad. Sci. USA, 2014, 111(26), E2721-E2730.
[http://dx.doi.org/10.1073/pnas.1406722111] [PMID: 24979794]
[111]
Heinemann, A.; Cullinane, C.; De Paoli-Iseppi, R.; Wilmott, J.S.; Gunatilake, D.; Madore, J.; Strbenac, D.; Yang, J.Y.; Gowrishankar, K.; Tiffen, J.C.; Prinjha, R.K.; Smithers, N.; McArthur, G.A.; Hersey, P.; Gallagher, S.J. Combining BET and HDAC inhibitors synergistically induces apoptosis of melanoma and suppresses AKT and YAP signaling. Oncotarget, 2015, 6(25), 21507-21521.
[http://dx.doi.org/10.18632/oncotarget.4242] [PMID: 26087189]
[112]
Borbely, G.; Haldosen, L.A.; Dahlman-Wright, K.; Zhao, C. Induction of USP17 by combining BET and HDAC inhibitors in breast cancer cells. Oncotarget, 2015, 6(32), 33623-33635.
[http://dx.doi.org/10.18632/oncotarget.5601] [PMID: 26378038]
[113]
Atkinson, S.J.; Soden, P.E.; Angell, D.C.; Bantscheff, M.; Chung, C-w.; Giblin, K.A.; Smithers, N.; Furze, R.C.; Gordon, L.; Drewes, G.; Rioja, I.; Witherington, J.; Parr, N.J.; Prinjha, R.K. The structure based design of dual HDAC/BET inhibitors as novel epigenetic probes. MedChemComm, 2014, 5(3), 342.
[http://dx.doi.org/10.1039/C3MD00285C]
[114]
Zhang, Z.; Hou, S.; Chen, H.; Ran, T.; Jiang, F.; Bian, Y.; Zhang, D.; Zhi, Y.; Wang, L.; Zhang, L.; Li, H.; Zhang, Y.; Tang, W.; Lu, T.; Chen, Y. Targeting epigenetic reader and eraser: Rational design, synthesis and in vitro evaluation of dimethylisoxazoles derivatives as BRD4/HDAC dual inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(12), 2931-2935.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.034] [PMID: 27142751]
[115]
Hewings, D.S.; Fedorov, O.; Filippakopoulos, P.; Martin, S.; Picaud, S.; Tumber, A.; Wells, C.; Olcina, M.M.; Freeman, K.; Gill, A.; Ritchie, A.J.; Sheppard, D.W.; Russell, A.J.; Hammond, E.M.; Knapp, S.; Brennan, P.E.; Conway, S.J. Optimization of 3,5-dimethylisoxazole derivatives as potent bromodomain ligands. J. Med. Chem., 2013, 56(8), 3217-3227.
[http://dx.doi.org/10.1021/jm301588r] [PMID: 23517011]
[116]
Noguchi-Yachide, T.; Sakai, T.; Hashimoto, Y.; Yamaguchi, T. Discovery and structure-activity relationship studies of N6-benzoyladenine derivatives as novel BRD4 inhibitors. Bioorg. Med. Chem., 2015, 23(5), 953-959.
[http://dx.doi.org/10.1016/j.bmc.2015.01.022] [PMID: 25678016]
[117]
Amemiya, S.; Yamaguchi, T.; Sakai, T.; Hashimoto, Y.; Noguchi-Yachide, T. Structure-activity relationship study of N(6)-Benzoyladenine-type BRD4 inhibitors and their effects on cell differentiation and TNF-α production. Chem. Pharm. Bull. (Tokyo), 2016, 64(9), 1378-1383.
[http://dx.doi.org/10.1248/cpb.c16-00410] [PMID: 27581642]
[118]
Amemiya, S.; Yamaguchi, T.; Hashimoto, Y.; Noguchi-Yachide, T. Synthesis and evaluation of novel dual BRD4/HDAC inhibitors. Bioorg. Med. Chem., 2017, 25(14), 3677-3684.
[http://dx.doi.org/10.1016/j.bmc.2017.04.043] [PMID: 28549889]
[119]
Picaud, S.; Wells, C.; Felletar, I.; Brotherton, D.; Martin, S.; Savitsky, P.; Diez-Dacal, B.; Philpott, M.; Bountra, C.; Lingard, H.; Fedorov, O.; Müller, S.; Brennan, P.E.; Knapp, S.; Filippakopoulos, P. RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain. Proc. Natl. Acad. Sci. USA, 2013, 110(49), 19754-19759.
[http://dx.doi.org/10.1073/pnas.1310658110] [PMID: 24248379]
[120]
Shao, M.; He, L.; Zheng, L.; Huang, L.; Zhou, Y.; Wang, T.; Chen, Y.; Shen, M.; Wang, F.; Yang, Z.; Chen, L. Structure-based design, synthesis and in vitro antiproliferative effects studies of novel dual BRD4/HDAC inhibitors. Biorg. Med. Chem. Lett., 2017, 27(17), 4051-4055.
[121]
He, S.; Dong, G.; Li, Y.; Wu, S.; Wang, W.; Sheng, C. Potent dual BET/HDAC inhibitors for efficient treatment of pancreatic cancer. Angew. Chem. Int. Ed. Engl., 2020, 59(8), 3028-3032.
[http://dx.doi.org/10.1002/anie.201915896] [PMID: 31943585]
[122]
Kumar, S.; Singh, R.K.; Bhardwaj, T.R. Therapeutic role of nitric oxide as emerging molecule. Biomed. Pharmacother., 2017, 85, 182-201.
[http://dx.doi.org/10.1016/j.biopha.2016.11.125] [PMID: 27940398]
[123]
Coulter, J.A.; McCarthy, H.O.; Xiang, J.; Roedl, W.; Wagner, E.; Robson, T.; Hirst, D.G. Nitric oxide--a novel therapeutic for cancer. Nitric Oxide, 2008, 19(2), 192-198.
[http://dx.doi.org/10.1016/j.niox.2008.04.023] [PMID: 18485922]
[124]
Riganti, C.; Miraglia, E.; Viarisio, D.; Costamagna, C.; Pescarmona, G.; Ghigo, D.; Bosia, A. Nitric oxide reverts the resistance to doxo-rubicin in human colon cancer cells by inhibiting the drug efflux. Cancer Res., 2005, 65(2), 516-525.
[PMID: 15695394]
[125]
Rajendra Prasad, V.V.; Deepak Reddy, G.; Kathmann, I.; Amareswararao, M.; Peters, G.J. Nitric oxide releasing acridone carboxamide derivatives as reverters of doxorubicin resistance in MCF7/Dx cancer cells. Bioorg. Chem., 2016, 64, 51-58.
[http://dx.doi.org/10.1016/j.bioorg.2015.11.007] [PMID: 26657603]
[126]
Rothkamm, K.; Burdak-Rothkamm, S. Ionizing radiation-induced DNA strand breaks and γ-H2AXγ-H2AX foci in cells exposed to nitric oxide. Methods Mol. Biol., 2011, 704, 17-25.
[http://dx.doi.org/10.1007/978-1-61737-964-2_2] [PMID: 21161626]
[127]
Mikhailenko, V.M.; Muzalov, I.I. Exogenous nitric oxide potentiate DNA damage and alter DNA repair in cells exposed to ionising radiation. Exp. Oncol., 2013, 35(4), 318-324.
[PMID: 24382445]
[128]
Sun, H.; Gutierrez, P.; Jackson, M.J.; Kundu, N.; Fulton, A.M. Essential role of nitric oxide and interferon-gamma for tumor immunotherapy with interleukin-10. J. Immunother., 2000, 23(2), 208-214.
[http://dx.doi.org/10.1097/00002371-200003000-00005] [PMID: 10746547]
[129]
Huerta, S.; Chilka, S.; Bonavida, B. Nitric oxide donors: Novel cancer therapeutics (review). Int. J. Oncol., 2008, 33(5), 909-927.
[PMID: 18949354]
[130]
Riganti, C.; Rolando, B.; Kopecka, J.; Campia, I.; Chegaev, K.; Lazzarato, L.; Federico, A.; Fruttero, R.; Ghigo, D. Mitochondrial-targeting nitrooxy-doxorubicin: A new approach to overcome drug resistance. Mol. Pharm., 2013, 10(1), 161-174.
[http://dx.doi.org/10.1021/mp300311b] [PMID: 23186264]
[131]
Maciag, A.E.; Nandurdikar, R.S.; Hong, S.Y.; Chakrapani, H.; Diwan, B.; Morris, N.L.; Shami, P.J.; Shiao, Y.H.; Anderson, L.M.; Keefer, L.K.; Saavedra, J.E. Activation of the c-Jun N-terminal kinase/activating transcription factor 3 (ATF3) pathway characterizes effective arylated diazeniumdiolate-based nitric oxide-releasing anticancer prodrugs. J. Med. Chem., 2011, 54(22), 7751-7758.
[http://dx.doi.org/10.1021/jm2004128] [PMID: 22003962]
[132]
Maciag, A.E.; Holland, R.J.; Kim, Y.; Kumari, V.; Luthers, C.E.; Sehareen, W.S.; Biswas, D.; Morris, N.L.; Ji, X.; Anderson, L.M.; Saavedra, J.E.; Keefer, L.K. Nitric oxide (NO) releasing poly ADP-ribose polymerase 1 (PARP-1) inhibitors targeted to glutathione S-transferase P1-overexpressing cancer cells. J. Med. Chem., 2014, 57(6), 2292-2302.
[http://dx.doi.org/10.1021/jm401550d] [PMID: 24521039]
[133]
Wang, P.G.; Xian, M.; Tang, X.; Wu, X.; Wen, Z.; Cai, T.; Janczuk, A.J. Nitric oxide donors: Chemical activities and biological applications. Chem. Rev., 2002, 102(4), 1091-1134.
[http://dx.doi.org/10.1021/cr000040l] [PMID: 11942788]
[134]
Bao, N.; Ou, J.; Xu, M.; Guan, F.; Shi, W.; Sun, J.; Chen, L. Novel NO-releasing plumbagin derivatives: Design, synthesis and evaluation of antiproliferative activity. Eur. J. Med. Chem., 2017, 137, 88-95.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.046] [PMID: 28558333]
[135]
Fruttero, R.; Crosetti, M.; Chegaev, K.; Guglielmo, S.; Gasco, A.; Berardi, F.; Niso, M.; Perrone, R.; Panaro, M.A.; Colabufo, N.A. Phenylsulfonylfuroxans as modulators of multidrug-resistance-associated protein-1 and P-glycoprotein. J. Med. Chem., 2010, 53(15), 5467-5475.
[http://dx.doi.org/10.1021/jm100066y] [PMID: 20684594]
[136]
Chen, L.; Zhang, Y.; Kong, X.; Lan, E.; Huang, Z.; Peng, S.; Kaufman, D.L.; Tian, J. Design, synthesis, and antihepatocellular carcinoma activity of nitric oxide releasing derivatives of oleanolic acid. J. Med. Chem., 2008, 51(15), 4834-4838.
[http://dx.doi.org/10.1021/jm800167u] [PMID: 18598019]
[137]
Gu, X.; Huang, Z.; Ren, Z.; Tang, X.; Xue, R.; Luo, X.; Peng, S.; Peng, H.; Lu, B.; Tian, J.; Zhang, Y. Potent inhibition of nitric oxide-releasing bifendate derivatives against drug-resistant K562/A02 cells in vitro and in vivo. J. Med. Chem., 2017, 60(3), 928-940.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01075] [PMID: 28068095]
[138]
Huang, Z.; Fu, J.; Zhang, Y. Nitric oxide donor-based cancer therapy: Advances and prospects. J. Med. Chem., 2017, 60(18), 7617-7635.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01672] [PMID: 28505442]
[139]
Borretto, E.; Lazzarato, L.; Spallotta, F.; Cencioni, C.; D’Alessandra, Y.; Gaetano, C.; Fruttero, R.; Gasco, A. Synthesis and biological evaluation of the first example of NO-donor histone deacetylase inhibitor. ACS Med. Chem. Lett., 2013, 4(10), 994-999.
[http://dx.doi.org/10.1021/ml400289e] [PMID: 24900596]
[140]
Tu, S.; Yuan, H.; Hu, J.; Zhao, C.; Chai, R.; Cao, H. Design, synthesis and biological evaluation of nitro oxide donating N-hydroxycinnamamide derivatives as histone deacetylase inhibitors. Chem. Pharm. Bull. (Tokyo), 2014, 62(12), 1185-1191.
[http://dx.doi.org/10.1248/cpb.c14-00449] [PMID: 25450627]
[141]
Duan, W.; Li, J.; Inks, E.S.; Chou, C.J.; Jia, Y.; Chu, X.; Li, X.; Xu, W.; Zhang, Y. Design, synthesis, and antitumor evaluation of novel histone deacetylase inhibitors equipped with a phenylsulfonylfuroxan module as a nitric oxide donor. J. Med. Chem., 2015, 58(10), 4325-4338.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00317] [PMID: 25906087]
[142]
Borgini, M.; Zamperini, C.; Poggialini, F.; Ferrante, L.; Summa, V.; Botta, M.; Fabio, R.D. Synthesis and antiproliferative activity of nitric oxide-donor largazole prodrugs. ACS Med. Chem. Lett., 2020, 11(5), 846-851.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00643] [PMID: 32435394]
[143]
Bhat, R.; Tummalapalli, S.R.; Rotella, D.P. Progress in the discovery and development of heat shock protein 90 (Hsp90) inhibitors. J. Med. Chem., 2014, 57(21), 8718-8728.
[http://dx.doi.org/10.1021/jm500823a] [PMID: 25141341]
[144]
Li, L.; Wang, L.; You, Q.D.; Xu, X.L. Heat shock protein 90 inhibitors: An update on achievements, challenges, and future directions. J. Med. Chem., 2020, 63(5), 1798-1822.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00940] [PMID: 31663736]
[145]
Bali, P.; Pranpat, M.; Bradner, J.; Balasis, M.; Fiskus, W.; Guo, F.; Rocha, K.; Kumaraswamy, S.; Boyapalle, S.; Atadja, P.; Seto, E.; Bhalla, K. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: A novel basis for antileukemia activity of histone deacetylase inhibitors. J. Biol. Chem., 2005, 280(29), 26729-26734.
[http://dx.doi.org/10.1074/jbc.C500186200] [PMID: 15937340]
[146]
Kim, S.H.; Kang, J.G.; Kim, C.S.; Ihm, S.H.; Choi, M.G.; Yoo, H.J.; Lee, S.J. Novel heat shock protein 90 inhibitor NVP-AUY922 synergizes with the histone deacetylase inhibitor PXD101 in induction of death of anaplastic thyroid carcinoma cells. J. Clin. Endocrinol. Metab., 2015, 100(2), E253-E261.
[http://dx.doi.org/10.1210/jc.2014-3101] [PMID: 25389633]
[147]
Nguyen, A.; Su, L.; Campbell, B.; Poulin, N.M.; Nielsen, T.O. Synergism of heat shock protein 90 and histone deacetylase inhibitors in synovial sarcoma. Sarcoma, 2009, 2009, 794901.
[http://dx.doi.org/10.1155/2009/794901] [PMID: 19325926]
[148]
George, P.; Bali, P.; Annavarapu, S.; Scuto, A.; Fiskus, W.; Guo, F.; Sigua, C.; Sondarva, G.; Moscinski, L.; Atadja, P.; Bhalla, K. Combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3. Blood, 2005, 105(4), 1768-1776.
[http://dx.doi.org/10.1182/blood-2004-09-3413] [PMID: 15514006]
[149]
Ojha, R.; Huang, H.L. HuangFu, W.C.; Wu, Y.W.; Nepali, K.; Lai, M.J.; Su, C.J.; Sung, T.Y.; Chen, Y.L.; Pan, S.L.; Liou, J.P. 1-Aroylindoline-hydroxamic acids as anticancer agents, inhibitors of HSP90 and HDAC. Eur. J. Med. Chem., 2018, 150, 667-677.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.006] [PMID: 29567459]
[150]
Mehndiratta, S.; Lin, M.H.; Wu, Y.W.; Chen, C.H.; Wu, T.Y.; Chuang, K.H.; Chao, M.W.; Chen, Y.Y.; Pan, S.L.; Chen, M.C.; Liou, J.P. N-alkyl-hydroxybenzoyl anilide hydroxamates as dual inhibitors of HDAC and HSP90, downregulating IFN-γ induced PD-L1 expression. Eur. J. Med. Chem., 2020, 185, 111725.
[http://dx.doi.org/10.1016/j.ejmech.2019.111725] [PMID: 31655430]
[151]
Ojha, R.; Nepali, K.; Chen, C.H.; Chuang, K.H.; Wu, T.Y.; Lin, T.E.; Hsu, K.C.; Chao, M.W.; Lai, M.J.; Lin, M.H.; Huang, H.L.; Chang, C.D.; Pan, S.L.; Chen, M.C.; Liou, J.P. Isoindoline scaffold-based dual inhibitors of HDAC6 and HSP90 suppressing the growth of lung cancer in vitro and in vivo. Eur. J. Med. Chem., 2020, 190, 112086.
[http://dx.doi.org/10.1016/j.ejmech.2020.112086] [PMID: 32058238]
[152]
Sharp, S.Y.; Prodromou, C.; Boxall, K.; Powers, M.V.; Holmes, J.L.; Box, G.; Matthews, T.P.; Cheung, K.M.; Kalusa, A.; James, K.; Hayes, A.; Hardcastle, A.; Dymock, B.; Brough, P.A.; Barril, X.; Cansfield, J.E.; Wright, L.; Surgenor, A.; Foloppe, N.; Hubbard, R.E.; Aherne, W.; Pearl, L.; Jones, K.; McDonald, E.; Raynaud, F.; Eccles, S.; Drysdale, M.; Workman, P. Inhibition of the heat shock protein 90 molecular chaperone in vitro and in vivo by novel, synthetic, potent resorcinylic pyrazole/isoxazole amide analogues. Mol. Cancer Ther., 2007, 6(4), 1198-1211.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0149] [PMID: 17431102]
[153]
Woodhead, A.J.; Angove, H.; Carr, M.G.; Chessari, G.; Congreve, M.; Coyle, J.E.; Cosme, J.; Graham, B.; Day, P.J.; Downham, R.; Fazal, L.; Feltell, R.; Figueroa, E.; Frederickson, M.; Lewis, J.; McMenamin, R.; Murray, C.W.; O’Brien, M.A.; Parra, L.; Patel, S.; Phillips, T.; Rees, D.C.; Rich, S.; Smith, D.M.; Trewartha, G.; Vinkovic, M.; Williams, B.; Woolford, A.J. Discovery of (2,4-dihydroxy-5-isopropylphenyl)-[5-(4-methylpiperazin-1-ylmethyl)-1,3-dihydroisoindol-2-yl]methanone (AT13387), a novel inhibitor of the molecular chaperone Hsp90 by fragment based drug design. J. Med. Chem., 2010, 53(16), 5956-5969.
[http://dx.doi.org/10.1021/jm100060b] [PMID: 20662534]
[154]
Patel, K.; Gadewar, M.; Tripathi, R.; Prasad, S.K.; Patel, D.K. A review on medicinal importance, pharmacological activity and bioanalytical aspects of beta-carboline alkaloid “Harmine”. Asian Pac. J. Trop. Biomed., 2012, 2(8), 660-664.
[http://dx.doi.org/10.1016/S2221-1691(12)60116-6] [PMID: 23569990]
[155]
Shankaraiah, N.; Siraj, K.P.; Nekkanti, S.; Srinivasulu, V.; Sharma, P.; Senwar, K.R.; Sathish, M.; Vishnuvardhan, M.V.; Ramakrishna, S.; Jadala, C.; Nagesh, N.; Kamal, A. DNA-binding affinity and anticancer activity of β-carboline-chalcone conjugates as potential DNA intercalators: Molecular modelling and synthesis. Bioorg. Chem., 2015, 59, 130-139.
[http://dx.doi.org/10.1016/j.bioorg.2015.02.007] [PMID: 25771335]
[156]
Wang, K.B.; Li, D.H.; Hu, P.; Wang, W.J.; Lin, C.; Wang, J.; Lin, B.; Bai, J.; Pei, Y.H.; Jing, Y.K.; Li, Z.L.; Yang, D.; Hua, H.M. A series of β-carboline alkaloids from the seeds of peganum harmala show G-quadruplex interactions. Org. Lett., 2016, 18(14), 3398-3401.
[http://dx.doi.org/10.1021/acs.orglett.6b01560] [PMID: 27340903]
[157]
Sobhani, A.M.; Ebrahimi, S.A.; Mahmoudian, M. An in vitro evaluation of human DNA topoisomerase I inhibition by Peganum har-mala L. seeds extract and its beta-carboline alkaloids. J. Pharm. Pharm. Sci., 2002, 5(1), 19-23.
[PMID: 12042115]
[158]
Kamal, A.; Sathish, M.; Nayak, V.L.; Srinivasulu, V.; Kavitha, B.; Tangella, Y.; Thummuri, D.; Bagul, C.; Shankaraiah, N.; Nagesh, N. Design and synthesis of dithiocarbamate linked β-carboline derivatives: DNA topoisomerase II inhibition with DNA binding and apoptosis inducing ability. Bioorg. Med. Chem., 2015, 23(17), 5511-5526.
[http://dx.doi.org/10.1016/j.bmc.2015.07.037] [PMID: 26264845]
[159]
Li, Y.; Liang, F.; Jiang, W.; Yu, F.; Cao, R.; Ma, Q.; Dai, X.; Jiang, J.; Wang, Y.; Si, S. DH334, a beta-carboline anti-cancer drug, inhibits the CDK activity of budding yeast. Cancer Biol. Ther., 2007, 6(8), 1193-1199.
[http://dx.doi.org/10.4161/cbt.6.8.4382] [PMID: 17622795]
[160]
Herraiz, T. Identification and occurrence of beta-carboline alkaloids in raisins and inhibition of monoamine oxidase (MAO). J. Agric. Food Chem., 2007, 55(21), 8534-8540.
[http://dx.doi.org/10.1021/jf0719151] [PMID: 17883257]
[161]
Herraiz, T.; González, D.; Ancín-Azpilicueta, C.; Arán, V.J.; Guillén, H. beta-Carboline alkaloids in Peganum harmala and inhibition of human monoamine oxidase (MAO). Food Chem. Toxicol., 2010, 48(3), 839-845.
[http://dx.doi.org/10.1016/j.fct.2009.12.019] [PMID: 20036304]
[162]
Ling, Y.; Xu, C.; Luo, L.; Cao, J.; Feng, J.; Xue, Y.; Zhu, Q.; Ju, C.; Li, F.; Zhang, Y.; Zhang, Y.; Ling, X. Novel β-Carboline/Hydroxamic acid hybrids targeting both histone deacetylase and DNA display high anticancer activity via regulation of the p53 signaling pathway. J. Med. Chem., 2015, 58(23), 9214-9227.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01052] [PMID: 26555243]
[163]
Liu, J.; Wang, T.; Wang, X.; Luo, L.; Guo, J.; Peng, Y.; Xu, Q.; Miao, J.; Zhang, Y.; Ling, Y. Development of novel β-carboline-based hydroxamate derivatives as HDAC inhibitors with DNA damage and apoptosis inducing abilities. Med. Chem. Commun, 2017, 8, 1213-1219.
[http://dx.doi.org/10.1039/C6MD00681G]
[164]
Bezerra, D.P.; Pessoa, C.; de Moraes, M.O.; Saker-Neto, N.; Silveira, E.R.; Costa-Lotufo, L.V. Overview of the therapeutic potential of piplartine (piperlongumine). Eur. J. Pharm. Sci., 2013, 48(3), 453-463.
[http://dx.doi.org/10.1016/j.ejps.2012.12.003] [PMID: 23238172]
[165]
Raj, L.; Ide, T.; Gurkar, A.U.; Foley, M.; Schenone, M.; Li, X.; Tolliday, N.J.; Golub, T.R.; Carr, S.A.; Shamji, A.F.; Stern, A.M.; Mandinova, A.; Schreiber, S.L.; Lee, S.W. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature, 2011, 475(7355), 231-234.
[http://dx.doi.org/10.1038/nature10167] [PMID: 21753854]
[166]
Liao, Y.; Niu, X.; Chen, B.; Edwards, H.; Xu, L.; Xie, C.; Lin, H.; Polin, L.; Taub, J.W.; Ge, Y.; Qin, Z. Synthesis and antileukemic activities of piperlongumine and HDAC inhibitor hybrids against acute myeloid leukemia cells. J. Med. Chem., 2016, 59(17), 7974-7990.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00772] [PMID: 27505848]
[167]
Tatsuzaki, J.; Taniguchi, M.; Bastow, K.F.; Nakagawa-Goto, K.; Morris-Natschke, S.L.; Itokawa, H.; Baba, K.; Lee, K.H. Anti-tumor agents 255: Novel glycyrrhetinic acid-dehydrozingerone conjugates as cytotoxic agents. Bioorg. Med. Chem., 2007, 15(18), 6193-6199.
[http://dx.doi.org/10.1016/j.bmc.2007.06.027] [PMID: 17591444]
[168]
Kallepu, S.; Neeli, P.K.; Mallappa, S.; Nagendla, N.K.; Reddy Mudiam, M.K.; Mainkar, P.S.; Kotamraju, S.; Chandrasekhar, S. sp3 -rich glycyrrhetinic acid analogues using late-stage functionalization as potential breast tumor regressing agents. ChemMedChem, 2020, 15(19), 1826-1833.
[http://dx.doi.org/10.1002/cmdc.202000400] [PMID: 32893968]
[169]
Huang, M.; Xie, X.; Gong, P.; Wei, Y.; Du, H.; Xu, Y.; Xu, Q.; Jing, Y.; Zhao, L.A. 18β-glycyrrhetinic acid conjugate with Vorinostat degrades HDAC3 and HDAC6 with improved antitumor effects. Eur. J. Med. Chem., 2020, 188, 111991.
[http://dx.doi.org/10.1016/j.ejmech.2019.111991] [PMID: 31883490]
[170]
Obeid, S.; Alen, J.; Nguyen, V.H.; Pham, V.C.; Meuleman, P.; Pannecouque, C.; Le, T.N.; Neyts, J.; Dehaen, W.; Paeshuyse, J. Artemisinin analogues as potent inhibitors of in vitro hepatitis C virus replication. PLoS One, 2013, 8(12), e81783.
[http://dx.doi.org/10.1371/journal.pone.0081783] [PMID: 24349127]
[171]
Wang, Y.; Wang, Y.; You, F.; Xue, J. Novel use for old drugs: The emerging role of artemisinin and its derivatives in fibrosis. Pharmacol. Res., 2020, 157, 104829.
[http://dx.doi.org/10.1016/j.phrs.2020.104829] [PMID: 32360483]
[172]
Kiani, B.H.; Kayani, W.K.; Khayam, A.U.; Dilshad, E.; Ismail, H.; Mirza, B. Artemisinin and its derivatives: A promising cancer therapy. Mol. Biol. Rep., 2020, 47(8), 6321-6336.
[http://dx.doi.org/10.1007/s11033-020-05669-z] [PMID: 32710388]
[173]
Ha, V.T.; Kien, V.T.; Binh, H.; Tien, V.D.; My, N.T.; Nam, N.H.; Baltas, M.; Hahn, H.; Han, B.W.; Thao, T.; Vu, T.K. Design, synthesis and biological evaluation of novel hydroxamic acids bearing artemisinin skeleton. Bioorg. Chem., 2016, 66, 63-71.
[http://dx.doi.org/10.1016/j.bioorg.2016.03.008] [PMID: 27018835]
[174]
Raji, I.; Yadudu, F.; Janeira, E.; Fathi, S.; Szymczak, L.; Kornacki, J.R.; Komatsu, K.; Li, J.D.; Mrksich, M.; Oyelere, A.K. Bifunctional conjugates with potent inhibitory activity towards cyclooxygenase and histone deacetylase. Bioorg. Med. Chem., 2017, 25(3), 1202-1218.
[http://dx.doi.org/10.1016/j.bmc.2016.12.032] [PMID: 28057407]
[175]
Dong, G.; Chen, W.; Wang, X.; Yang, X.; Xu, T.; Wang, P.; Zhang, W.; Rao, Y.; Miao, C.; Sheng, C. Small molecule inhibitors simultaneously targeting cancer metabolism and epigenetics: Discovery of novel nicotinamide phosphoribosyltransferase (NAMPT) and histone deacetylase (HDAC) dual inhibitors. J. Med. Chem., 2017, 60(19), 7965-7983.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00467] [PMID: 28885834]
[176]
Chhabra, S. Novel proteasome inhibitors and histone deacetylase inhibitors: Progress in myeloma therapeutics. Pharmaceuticals (Basel), 2017, 10(2), E40.
[http://dx.doi.org/10.3390/ph10020040] [PMID: 28398261]
[177]
Hideshima, T.; Bradner, J.E.; Wong, J.; Chauhan, D.; Richardson, P.; Schreiber, S.L.; Anderson, K.C. Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc. Natl. Acad. Sci. USA, 2005, 102(24), 8567-8572.
[http://dx.doi.org/10.1073/pnas.0503221102] [PMID: 15937109]
[178]
Mishima, Y.; Santo, L.; Eda, H.; Cirstea, D.; Nemani, N.; Yee, A.J.; O’Donnell, E.; Selig, M.K.; Quayle, S.N.; Arastu-Kapur, S.; Kirk, C.; Boise, L.H.; Jones, S.S.; Raje, N. Ricolinostat (ACY-1215) induced inhibition of aggresome formation accelerates carfilzomib-induced multiple myeloma cell death. Br. J. Haematol., 2015, 169(3), 423-434.
[http://dx.doi.org/10.1111/bjh.13315] [PMID: 25709080]
[179]
Vogl, D.T.; Raje, N.; Jagannath, S.; Richardson, P.; Hari, P.; Orlowski, R.; Supko, J.G.; Tamang, D.; Yang, M.; Jones, S.S.; Wheeler, C.; Markelewicz, R.J.; Lonial, S. Ricolinostat, the first selective histone deacetylase 6 inhibitor, in combination with bortezomib and dexamethasone for relapsed or refractory multiple myeloma. Clin. Cancer Res., 2017, 23(13), 3307-3315.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2526] [PMID: 28053023]
[180]
Bhatia, S.; Krieger, V.; Groll, M.; Osko, J.D.; Reßing, N.; Ahlert, H.; Borkhardt, A.; Kurz, T.; Christianson, D.W.; Hauer, J.; Hansen, F.K. Discovery of the first-in-class dual histone deacetylase-proteasome inhibitor. J. Med. Chem., 2018, 61(22), 10299-10309.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01487] [PMID: 30365892]
[181]
Marei, H.E.; Althani, A.; Afifi, N.; Hasan, A.; Caceci, T.; Pozzoli, G.; Morrione, A.; Giordano, A.; Cenciarelli, C. p53 signaling in cancer progression and therapy. Cancer Cell Int., 2021, 21(1), 703.
[http://dx.doi.org/10.1186/s12935-021-02396-8] [PMID: 34952583]
[182]
He, S.; Dong, G.; Wu, S.; Fang, K.; Miao, Z.; Wang, W.; Sheng, C. Small molecules simultaneously inhibiting p53-murine double minute 2 (MDM2) interaction and histone deacetylases (HDACs): Discovery of novel multitargeting antitumor agents. J. Med. Chem., 2018, 61(16), 7245-7260.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00664] [PMID: 30045621]
[183]
Edderkaoui, M.; Chheda, C.; Soufi, B.; Zayou, F.; Hu, R.W.; Ramanujan, V.K.; Pan, X.; Boros, L.G.; Tajbakhsh, J.; Madhav, A.; Bhowmick, N.A.; Wang, Q.; Lewis, M.; Tuli, R.; Habtezion, A.; Murali, R.; Pandol, S.J. An inhibitor of GSK3B and HDACs kills pancreatic cancer cells and slows pancreatic tumor growth and metastasis in mice. Gastroenterology, 2018, 155(6), 1985-1998.
[184]
Taylan, E.; Zayou, F.; Murali, R.; Karlan, B.Y.; Pandol, S.J.; Edderkaoui, M.; Orsulic, S. Dual targeting of GSK3B and HDACs reduces tumor growth and improves survival in an ovarian cancer mouse model. Gynecol. Oncol., 2020, 159(1), 277-284.
[http://dx.doi.org/10.1016/j.ygyno.2020.07.005] [PMID: 32698955]
[185]
Liu, G.; Yin, T.; Kim, H.; Ding, C.; Yu, Z.; Wang, H.; Chen, H.; Yan, R.; Wold, E.A.; Zou, H.; Liu, X.; Ding, Y.; Shen, Q.; Zhou, J. Structure-activity relationship studies on Bax activator SMBA1 for the treatment of ER-positive and triple-negative breast cancer. Eur. J. Med. Chem., 2019, 178, 589-605.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.004] [PMID: 31220676]
[186]
Reyna, D.E.; Garner, T.P.; Lopez, A.; Kopp, F.; Choudhary, G.S.; Sridharan, A.; Narayanagari, S.R.; Mitchell, K.; Dong, B.; Bartholdy, B.A.; Walensky, L.D.; Verma, A.; Steidl, U.; Gavathiotis, E. Direct activation of BAX by BTSA1 overcomes apoptosis resistance in acute Myeloid leukemia. Cancer Cell, 2017, 32(4), 490-505.e10.
[http://dx.doi.org/10.1016/j.ccell.2017.09.001] [PMID: 29017059]
[187]
Liang, T.; Zhou, Y.; Elhassan, R.M.; Hou, X.; Yang, X.; Fang, H. HDAC-Bax multiple ligands enhance Bax-dependent apoptosis in HeLa cells. J. Med. Chem., 2020, 63(20), 12083-12099.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01454] [PMID: 33021789]
[188]
Shimizu, T.; LoRusso, P.M.; Papadopoulos, K.P.; Patnaik, A.; Beeram, M.; Smith, L.S.; Rasco, D.W.; Mays, T.A.; Chambers, G.; Ma, A.; Wang, J.; Laliberte, R.; Voi, M.; Tolcher, A.W. Phase I first-in-human study of CUDC-101, a multitargeted inhibitor of HDACs, EGFR, and HER2 in patients with advanced solid tumors. Clin. Cancer Res., 2014, 20(19), 5032-5040.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0570] [PMID: 25107918]
[189]
Galloway, T.J.; Wirth, L.J.; Colevas, A.D.; Gilbert, J.; Bauman, J.E.; Saba, N.F.; Raben, D.; Mehra, R.; Ma, A.W.; Atoyan, R.; Wang, J.; Burtness, B.; Jimeno, A. A phase I study of CUDC-101, a multitarget inhibitor of HDACs, EGFR, and HER2, in combination with chemoradiation in patients with head and neck squamous cell carcinoma. Clin. Cancer Res., 2015, 21(7), 1566-1573.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2820] [PMID: 25573383]
[190]
Younes, A.; Berdeja, J.G.; Patel, M.R.; Flinn, I.; Gerecitano, J.F.; Neelapu, S.S.; Kelly, K.R.; Copeland, A.R.; Akins, A.; Clancy, M.S.; Gong, L.; Wang, J.; Ma, A.; Viner, J.L.; Oki, Y. Safety, tolerability, and preliminary activity of CUDC-907, a first-in-class, oral, dual inhibitor of HDAC and PI3K, in patients with relapsed or refractory lymphoma or multiple myeloma: An open-label, dose-escalation, phase 1 trial. Lancet Oncol., 2016, 17(5), 622-631.
[http://dx.doi.org/10.1016/S1470-2045(15)00584-7] [PMID: 27049457]
[191]
Luan, Y.; Li, J.; Bernatchez, J.A.; Li, R. Kinase and histone deacetylase hybrid inhibitors for cancer therapy. J. Med. Chem., 2019, 62(7), 3171-3183.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00189] [PMID: 30418766]
[192]
Zhao, C.; Dong, H.; Xu, Q.; Zhang, Y. Histone deacetylase (HDAC) inhibitors in cancer: A patent review (2017-present). Expert Opin. Ther. Pat., 2020, 30(4), 263-274.
[http://dx.doi.org/10.1080/13543776.2020.1725470] [PMID: 32008402]
[193]
Tavares, M.T.; Kozikowski, A.P.; Shen, S. Mercaptoacetamide: A promising zinc-binding group for the discovery of selective histone deacetylase 6 inhibitors. Eur. J. Med. Chem., 2021, 209, 112887.
[http://dx.doi.org/10.1016/j.ejmech.2020.112887] [PMID: 33035922]
[194]
McClure, J.J.; Zhang, C.; Inks, E.S.; Peterson, Y.K.; Li, J.; Chou, C.J. Development of allosteric hydrazide-containing class I histone deacetylase inhibitors for use in acute myeloid leukemia. J. Med. Chem., 2016, 59(21), 9942-9959.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01385] [PMID: 27754681]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy