Generic placeholder image

Venoms and Toxins

Editor-in-Chief

ISSN (Print): 2666-1217
ISSN (Online): 2666-1225

Research Article

Substances of Milky Juice of Genus Lactarius Fungi: Chemical and Toxicological Characteristics

Author(s): Volodymyr O. Antonyuk*, Lydia V. Panchak, Mariana V. Tsivinska and Rostyslav S. Stoika

Volume 3, 2023

Published on: 23 September, 2022

Article ID: e220822207860 Pages: 13

DOI: 10.2174/2666121702666220822125947

Open Access Journals Promotions 2
conference banner
Abstract

Background: Fungi of the genus Lactarius Pers. before the maturation of spores are not damaged by microorganisms, insects, mollusks, and animals. Such resistance correlates with the period when the basidiomes of these fungi are filled with milky juice, which contains substances of various chemical nature that provide their protection.

Objective: The aim of our work is to present the results of our recent and previously published studies on the identification and toxicological characteristics of substances available in the milky juice of fungi of the genus Lactarius Pers and used for protection against predator and parasite organisms. The possibility of using these substances to suppress tumor cells is also discussed.

Methods: The biological effect of the juice of L. pergamenus, L. quietus, and L. volemus, as well as methylene chloride, extracts obtained from fresh, frozen and dried basidiomes of L. pergamenus was studied. Purification of individual fractions of hexane extract from the basidiomes was performed by chromatography on a silica gel column and their analysis by done by thin layer chromatography and gas chromatography mass spectrometry.

Results: The sesquiterpene aldehydes were shown to be the main component of the chemical protection system of Lactarius. These agents are present in the milky juice of the Lactarius fungi, and they are easily oxidized by oxygen in the air. The milky juice of these mushrooms is also rich in higher fatty acids and phthalates. Phthalates possess an insecticidal effect, while higher fatty acids are capable of forming adducts with sesquiterpenes that provide emulsion stability. Water-soluble substances, in particular, the polyphenol oxidase enzyme, whose activity correlates with the content of milky juice in basidiomes, also play a protective role.

Conclusion: Milky juice of mushrooms of Lactarius Pers. genus is a stable balanced emulsion containing a large number of substances. One part is responsible for the toxic effects on other organisms, while the other part determines the chemical stability of the emulsion. Altogether, they create an effective system of protection of fungi of the Lactarius genus against microorganisms, insects, mollusks, and animals.

Keywords: Lactarius Pers., sesquiterpenes, phthalates, polyphenol oxidase, fatty acids, chromatography, gas-chromatography, mass spectrometry.

[1]
Bessette AE, Harris DB, Bessette AR. Milky Mushrooms of North America: A Field Identification Guide to the Genus Lactarius. Syracuse, New York: Syracuse University Press 2009.
[2]
Gad HA, Ramadan GRM, El-Bakry AM, Abdelgaleil SAM. Monoterpenes: Promising natural products for public health insect control- A review. Int J Trop Insect Sci 2022; 42: 1059-75.
[http://dx.doi.org/10.1007/s42690-021-00692-4]
[3]
De Bernardi M, Garlaschelli L, Toma L, Vidari G, Vita-Finzi P. The chemical basis of hot-tasting and yellowing of the mushrooms Lactarius chrysorrheus and L. scrobiculatus. Tetrahedron 1993; 49(7): 1489-504.
[http://dx.doi.org/10.1016/S0040-4020(01)90201-7]
[4]
Sterner O, Bergmann R, Kihlberg J, Wickberg B. The sesquiterpenes of Lactarius vellereus and their role in a proposed chemical defense system. J Nat Prod 1985; 48(2): 279-88.
[http://dx.doi.org/10.1021/np50038a013]
[5]
Kramer R, Abraham W-R. Volatile sesquiterpenes from fungi: What are they good for? Phytochem Rev 2012; 11(1): 15-37.
[http://dx.doi.org/10.1007/s11101-011-9216-2]
[6]
Gustinasari K, Sługocki Ł, Czerniawski R, Pandebesie ES, Hermana J. Acute toxicity and morphology alterations of glyphosate-based herbicides to Daphnia magna and Cyclops vicinus. Toxicol Res 2020; 37(2): 197-207.
[http://dx.doi.org/10.1007/s43188-020-00054-1] [PMID: 33868977]
[7]
U.S. Environmental Protection Agency. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. (6th ed.), Washington 2002.
[8]
Tsivinska MV, Antonyuk VO, Panchak LV, Klyuchivska OYu, Stoika RS. Biologically active substances of methanol extracts of dried Lactarius quietus and Lactarius volemus basidiomes mushrooms: Identification and potential functions. Biotechnol Acta 2015; 2(2): 58-68.
[http://dx.doi.org/10.15407/biotech8.02.058]
[9]
Vidari G, Vita-Finzi P. Sesquiterpenes and other secondary metabolites of genus Lactarius (Basidiomycetes): Chemistry and biological activity. Stud Nat Prod Chem 1995; 17: 153-206.
[http://dx.doi.org/10.1016/S1572-5995(05)80084-5]
[10]
Jonassohn M. Sesquiterpenoid unsaturated dialdehydes Structural properties that affect reactivity and bioactivity. Department of Organic Chemistry, Lund University, Sweden, 1996; p. 80. Available from: https://www.elibrary.ru/item.asp?id=6877787
[11]
Luo DQ, Wang F, Bian XY, Liu JK. Rufuslactone, a new antifungal sesquiterpene from the fruiting bodies of the basidiomycete Lactarius rufus. J Antibiot 2005; 58(7): 456-9.
[http://dx.doi.org/10.1038/ja.2005.60] [PMID: 16161484]
[12]
Tsivinska MV, Panchak LV, Stoika RS, Antonyuk VO. Isolation, characteristics, and antioxidant activity of low volecular compounds of fruit bodies Lactarius pergamenus (Fr.) Fr mushrooms. J Adv Biol 2015; 6(3): 1023-35.
[13]
Tsivinska MV, Panchak LV, Stoika RS, Antonyuk VO. Identification of componentsof the milky juice of Lactarius pergamenus (Fr.) Fr fungi by gas-liquid chromatography/mass-spectrometry. Ukr Biochem J 2013; 85(5): 170-6.
[http://dx.doi.org/10.15407/ubj85.05.170]
[14]
Panchak LV, Tsivinska MV, Antonyuk VO, Stoika RS. Chemical composition of the frozen methanol extracts from genuine mushrooms basidiomes. Biotechnology (Kyiv) 2011; 4(5): 90-6.
[15]
Panchak LV, Antonyuk VO. Standartization of Lactarius pergamenus (Fr.)Fr raw matherial and biological active substance. Phytother Chasopys 2014; 2: 45-8.
[16]
Panchak LV, Klyuchivska OY, Tsivinska MV, Stoika RS, Lesyk RB, Antonyuk VO. The chemical composition and antiproliferative activity of fraction of the methanol extract from the basidiomes of Lactarius pergamenus (Fr.) Fr. Biotechnology 2012; 5(1): 78-85.
[17]
Panchak LV, Antonyuk VO. Purification of a lectin from fruit bodies of Lactarius pergamenus (Fr.) Fr. and studies of its properties. Biochemistry 2011; 76(4): 438-49.
[http://dx.doi.org/10.1134/S0006297911040067] [PMID: 21585319]
[18]
List PH, Hackenberg H. Velleral und iso- velleral, scharf schmeckende stoffe aus lactarius vellereus fries. Arch Pharm 1969; 302(2): 125-43.
[http://dx.doi.org/10.1002/ardp.19693020208]
[19]
Antonyuk VO, Panchak LV, Tsivinska MV, Stoika RS. Biologically active aldehydes in extracts of Lactarius pergamenus (Fr.) Fr fresh fruiting bodies. Methods Objects Chem Analy 2020; 15(3): 125-31.
[http://dx.doi.org/10.17721/moca.2020.125-131]
[20]
Guo C, Zhang S, Teng S, Niu K. Simultaneous determination of sesquiterpene lactones isoalantolactone and alantolactone isomers in rat plasma by liquid chromatography with tandem mass spectrometry: Application to a pharmacokinetic study. J Sep Sci 2014; 37(8): 950-6.
[http://dx.doi.org/10.1002/jssc.201400119] [PMID: 24520052]
[21]
Hansson T, Pang Z, Sterner O, et al. The conversion of [12-2H3]-labelled velutinal in injured fruit bodies of Lactarius vellereus. Further insight into the biosynthesis of the Russulaceae sesquiterpenes. Acta Chem Scand 1993; 47: 403-5.
[http://dx.doi.org/10.3891/acta.chem.scand.47-0403]
[22]
Tsivinska MV, Antonyuk VO, Stoika RS. Isolation and properties of polyphenol oxidase from basidiocarps of Lactarius pergamenus Fr. (Fr.) fungi. Ukr Biochem J 2015; 87(2): 56-65.
[http://dx.doi.org/10.15407/ubj87.02.056] [PMID: 26255339]
[23]
Clericuzio M, Han F, Pan F, Pang Z, Sterner O. The sesquiterpenoid contents of fruit bodies of Russula delica. Acta Chem Scand 1998; 52: 1333-7.
[http://dx.doi.org/10.3891/acta.chem.scand.52-1333]
[24]
Velhsek J, Cejpek K. Pigments of higher fungi: A review. Czech J Food Sci 2011; 29(2): 87-102.
[http://dx.doi.org/10.17221/524/2010-CJFS]
[25]
Feussi Tala M, Qin J, Ndongo JT, Laatsch H. New azulene-type sesquiterpenoids from the fruiting bodies of Lactarius deliciosus. Nat Prod Bioprospect 2017; 7(3): 269-73.
[http://dx.doi.org/10.1007/s13659-017-0130-1] [PMID: 28493207]
[26]
Favre-Bonvin J, Gluchoff-Flasson K, Bernillon J. Structure du stearyl-velutinal, sequiterpenoide naturel de Lactarius velutinus bert. Tetrahedron Lett 1982; 23(18): 1907-8.
[http://dx.doi.org/10.1016/S0040-4039(00)87218-4]
[27]
Hansson T, Sterne rO, Strid A. Chemotaxonomic evidence for a division of Lactarius vellereus and L. bertillonii as different species. Phytochemistry 1995; 39(2): 363-5.
[http://dx.doi.org/10.1016/0031-9422(94)00875-T]
[28]
Roel PLB. Total synthesis of lactarane and marasmane sesquiterpenes. 2000; p. 119. Available from: https://edepot.wur.nl/121247
[29]
Marszałek R, Paradowska K, Wawer I. Biologically active compounds of mushrooms genus Lactarius. Herbalism 2018; 1(4): 65-73.
[http://dx.doi.org/10.32094/HERB-2018-06]
[30]
Daniewski WM, Gumulka M, Przesmycka D, Ptaszyńska K, Błoszyk E, Droźdź B. Sesquiterpenes of Lactarius origin, antifeedant structure-activity relationships. Phytochemistry 1995; 38(5): 1161-8.
[http://dx.doi.org/10.1016/0031-9422(94)00781-N]
[31]
Hanson JR. Pseudo-natural products, some artefacts formed during the isolation of terpenoids. J Chem Res 2017; 41(9): 497-503.
[http://dx.doi.org/10.3184/174751917X15021050367558]
[32]
Opender K. Insect antifeedants. Boca Raton, Florida: CRC Press LLC 2005.
[http://dx.doi.org/10.1201/9780203414569]
[33]
Paruch E. Natural and synthetic insect antifidants (Part 1). Chemical News 2001; 55(1-2): 93-118. Available from: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztecharticle-BUS1-0010-0005
[34]
Paruch E. Natural and synthetic insect antifidants (Part 2). Chemical News 2001; 55(1-2): 119-49. Available from: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztecharticle-BUS1-0010-0006
[35]
Olatunji TL, Odebunmi CA, Adetunji AE. Biological activities of limonoids in the Genus Khaya (Meliaceae): A review. Fut J Pharm Sci 2021; 7(1): 74.
[http://dx.doi.org/10.1186/s43094-021-00197-4]
[36]
Pridgeon JW, Bernier UR, Becnel JJ. Toxicity comparison of eight repellents against four species of female mosquitoes. J Am Mosq Control Assoc 2009; 25(2): 168-73.
[http://dx.doi.org/10.2987/08-5837.1] [PMID: 19653498]
[37]
Ramalakshmi S, Muthuchelian K. Anlaysis of bioactive constituents from the leaves of Mallotus tetracoccus (Roxb.) Kurz by gas chromatography-mass spectrometry. Int J Pharm Sci Res 2011; 2(6): 1449-54.
[38]
Habib MR, Karim MR. Antimicrobial and cytotoxic activity of di-(2-ethylhexyl) phthalate and anhydrosophoradiol- 3-acetate Isolated from Calotropis gigantea (Linn.) flower. Mycobiology 2009; 37(1): 31-6.
[http://dx.doi.org/10.4489/MYCO.2009.37.1.031] [PMID: 23983504]
[39]
Landkocz Y, Poupin P, Atienzar F, Vasseur P. Transcriptomic effects of di-(2-ethylhexyl)-phthalate in Syrian hamster embryo cells: An important role of early cytoskeleton disturbances in carcinogenesis? BMC Genomics 2011; 12(2): 524-40.
[http://dx.doi.org/10.1186/1471-2164-12-524] [PMID: 22026506]
[40]
Volcão LM, Halicki PCB, Christ-Ribeiro A, et al. Mushroom extract of Lactarius deliciosus (L.) Sf. Gray as biopesticide: Antifungal activity and toxicological analysis. J Toxicol Environ Health A 2022; 85(2): 43-55.
[http://dx.doi.org/10.1080/15287394.2021.1970065] [PMID: 34459359]
[41]
Mayer AM. Polyphenol oxidases in plants and fungi: Going places? A review. Phytochemistry 2006; 67(21): 2318-31.
[http://dx.doi.org/10.1016/j.phytochem.2006.08.006] [PMID: 16973188]
[42]
Flurkey WH, Inlow JK. Proteolytic processing of polyphenol oxidase from plants and fungi. J Inorg Biochem 2008; 102(12): 2160-70.
[http://dx.doi.org/10.1016/j.jinorgbio.2008.08.007] [PMID: 18829115]
[43]
Grams G, Günther Th, Fritsche W. Spot tests for oxidative enzymes in ectomycorrhizal, wood-, and litter decaying fungi. Mycol Res 1998; 102(1): 67-72.
[http://dx.doi.org/10.1017/S095375629700436X]

© 2024 Bentham Science Publishers | Privacy Policy