Review Article

绿原酸:一种具有良好药物治疗潜力的膳食酚酸

卷 30, 期 34, 2023

发表于: 04 October, 2022

页: [3905 - 3926] 页: 22

弟呕挨: 10.2174/0929867329666220816154634

价格: $65

Open Access Journals Promotions 2
conference banner
摘要

酚酸作为普遍存在的人类膳食成分,现在受到极大的关注,这些成分对慢性和与年龄有关的疾病具有各种治疗应用。传统医学中使用的一种酚酸是绿原酸(CGA)。它是最容易获得的植物化学物质之一,可以从植物的叶子和果实中分离出来,例如咖啡豆(阿拉比卡咖啡L.),苹果(Malus spp.),朝鲜蓟(Cynara cardunculus L.),胡萝卜(Daucus carota L.),槟榔(Piper betle L.),牛蒡(Arctium spp.)等。尽管CGA的口服生物利用度较低(约33%),但由于其广泛的生物活性和众多的分子靶标,CGA引起了相当大的关注。一些研究报告说,CGA的抗氧化和抗炎潜力主要解释了其广谱药理学特性。CGA被认为通过鼓励有益肠道微生物的生长来发挥对生态失调的有益作用。在生化水平上,其治疗作用由自由基清除功效,葡萄糖和脂质代谢的调节,促炎细胞因子的下调介导,例如肿瘤坏死因子-α(TNF-α),白细胞介素-6(IL-6),IL-1β和干扰素-γ(IFN-γ),核因子红系2相关因子2(Nrf-2)的上调和核因子-κβ(NF-κβ)的活性抑制, 从而有助于管理糖尿病,心血管疾病,神经退行性疾病,癌症,高血压等。本综述重点介绍了CGA的天然来源,其生物利用度,代谢,药物治疗潜力以及CGA在健康障碍管理中的临床实用性的潜在作用机制。

关键词: 酚酸,绿原酸,咖啡酸,神经保护,抗癌,天然产物。

[1]
Călinoiu, L.F.; Vodnar, D.C. Whole grains and phenolic acids: A review on bioactivity, functionality, health benefits and bioavailability. Nutrients, 2018, 10(11), 1615.
[http://dx.doi.org/10.3390/nu10111615] [PMID: 30388881]
[2]
Li, L.; Su, C.; Chen, X.; Wang, Q.; Jiao, W.; Luo, H.; Tang, J.; Wang, W.; Li, S.; Guo, S. Chlorogenic acids in cardiovascular disease: A review of dietary consumption, pharmacology, and pharmacokinetics. J. Agric. Food Chem., 2020, 68(24), 6464-6484.
[http://dx.doi.org/10.1021/acs.jafc.0c01554] [PMID: 32441927]
[3]
Santana-Gálvez, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Chlorogenic acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules, 2017, 22(3), 358.
[http://dx.doi.org/10.3390/molecules22030358] [PMID: 28245635]
[4]
Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F.; WenHua, L.; XiaoHui, Z. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biochem. Pharmacol., 2018, 97, 67-74.
[http://dx.doi.org/10.1016/j.biopha.2017.10.064] [PMID: 29080460]
[5]
Tajik, N.; Tajik, M.; Mack, I.; Enck, P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature. Eur. J. Nutr., 2017, 56(7), 2215-2244.
[http://dx.doi.org/10.1007/s00394-017-1379-1] [PMID: 28391515]
[6]
Clifford, M.N.; Kerimi, A.; Williamson, G. Bioavailability and metabolism of chlorogenic acids (acyl-quinic acids) in humans. Compr. Rev. Food Sci. Food Saf., 2020, 19(4), 1299-1352.
[http://dx.doi.org/10.1111/1541-4337.12518] [PMID: 33337099]
[7]
Liang, N.; Kitts, D.D. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients, 2015, 8(1), E16.
[http://dx.doi.org/10.3390/nu8010016] [PMID: 26712785]
[8]
Farah, A.; Monteiro, M.; Donangelo, C.M.; Lafay, S. Chlorogenic acids from green coffee extract are highly bioavailable in humans. J. Nutr., 2008, 138(12), 2309-2315.
[http://dx.doi.org/10.3945/jn.108.095554] [PMID: 19022950]
[9]
Ye, H-Y.; Jin, J.; Jin, L-W.; Chen, Y.; Zhou, Z-H.; Li, Z-Y. Chlorogenic acid attenuates lipopolysaccharide-induced acute kidney injury by inhibiting TLR4/NF-κB signal pathway. Inflammation, 2017, 40(2), 523-529.
[http://dx.doi.org/10.1007/s10753-016-0498-9] [PMID: 28028753]
[10]
Hwang, S.J.; Kim, Y-W.; Park, Y.; Lee, H-J.; Kim, K-W. Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflamm. Res., 2014, 63(1), 81-90.
[http://dx.doi.org/10.1007/s00011-013-0674-4] [PMID: 24127072]
[11]
Shin, H.S.; Satsu, H.; Bae, M.-J.; Zhao, Z.; Ogiwara, H.; Totsuka, M.; Shimizu, M. Anti-inflammatory effect of chlorogenic acid on the {IL}-8 production in caco-2 cells and the dextran sulphate sodium-induced colitis symptoms in C57BL/6 mice. Food Chem., 2015, 168, 167-175.
[http://dx.doi.org/10.1016/j.foodchem.2014.06.100]
[12]
Shan, J.; Fu, J.; Zhao, Z.; Kong, X.; Huang, H.; Luo, L.; Yin, Z. Chlorogenic acid inhibits lipopolysaccharide-induced cyclooxygenase-2 expression in RAW264.7 cells through suppressing NF-kappaB and JNK/AP-1 activation. Int. Immunopharmacol., 2009, 9(9), 1042-1048.
[http://dx.doi.org/10.1016/j.intimp.2009.04.011] [PMID: 19393773]
[13]
Zeng, A.; Liang, X.; Zhu, S.; Liu, C.; Wang, S.; Zhang, Q.; Zhao, J.; Song, L. Chlorogenic acid induces apoptosis, inhibits metastasis and improves antitumor immunity in breast cancer via the NF-κB signaling pathway. Oncol. Rep., 2021, 45(2), 717-727.
[http://dx.doi.org/10.3892/or.2020.7891] [PMID: 33416150]
[14]
Lu, H.; Tian, Z.; Cui, Y.; Liu, Z.; Ma, X. Chlorogenic acid: A comprehensive review of the dietary sources, processing effects, bioavailability, beneficial properties, mechanisms of action, and future directions. Compr. Rev. Food Sci. Food Saf., 2020, 19(6), 3130-3158.
[http://dx.doi.org/10.1111/1541-4337.12620] [PMID: 33337063]
[15]
Changizi, Z.; Moslehi, A.; Rohani, A.H.; Eidi, A. Chlorogenic acid induces 4T1 breast cancer tumor’s apoptosis via p53, Bax, Bcl-2, and caspase-3 signaling pathways in BALB/c mice. J. Biochem. Mol. Toxicol., 2021, 35(2), e22642.
[http://dx.doi.org/10.1002/jbt.22642] [PMID: 33058431]
[16]
Rakshit, S.; Mandal, L.; Pal, B.C.; Bagchi, J.; Biswas, N.; Chaudhuri, J.; Chowdhury, A.A.; Manna, A.; Chaudhuri, U.; Konar, A.; Mukherjee, T.; Jaisankar, P.; Bandyopadhyay, S. Involvement of ROS in chlorogenic acid-induced apoptosis of Bcr-Abl+ CML cells. Biochem. Pharmacol., 2010, 80(11), 1662-1675.
[http://dx.doi.org/10.1016/j.bcp.2010.08.013] [PMID: 20832390]
[17]
Singh, A.K.; Rana, H.K.; Singh, V.; Chand Yadav, T.; Varadwaj, P.; Pandey, A.K. Evaluation of antidiabetic activity of dietary phenolic compound chlorogenic acid in streptozotocin induced diabetic rats: Molecular docking, molecular dynamics, in silico toxicity, in vitro and in vivo studies. Comput. Biol. Med., 2021, 134, 104462.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104462] [PMID: 34148008]
[18]
Kalita, D.; Holm, D.G.; LaBarbera, D.V.; Petrash, J.M.; Jayanty, S.S. Inhibition of α-glucosidase, α-amylase, and aldose reductase by potato polyphenolic compounds. PLoS One, 2018, 13(1), e0191025.
[http://dx.doi.org/10.1371/journal.pone.0191025] [PMID: 29370193]
[19]
Oboh, G.; Ademiluyi, A.O.; Akinyemi, A.J.; Henle, T.; Saliu, J.A.; Schwarzenbolz, U. Inhibitory effect of polyphenol-rich extracts of jute leaf (Corchorus olitorius) on key enzyme linked to type 2 diabetes (α-Amylase and α-Glucosidase) and hypertension (Angiotensin I converting) in vitro. J. Funct. Foods, 2012, 4(2), 450-458.
[http://dx.doi.org/10.1016/j.jff.2012.02.003]
[20]
Oboh, G.; Agunloye, O.M.; Adefegha, S.A.; Akinyemi, A.J.; Ademiluyi, A.O. Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): A comparative study. J. Basic Clin. Physiol. Pharmacol., 2015, 26(2), 165-170.
[http://dx.doi.org/10.1515/jbcpp-2013-0141] [PMID: 24825096]
[21]
Lukitasari, M.; Nugroho, D.A.; Rohman, M.S.; Widodo, N.; Farmawati, A.; Hastuti, P. Beneficial effects of green coffee and green tea extract combination on metabolic syndrome improvement by affecting AMPK and PPAR-α gene expression. J. Adv. Pharm. Technol. Res., 2020, 11(2), 81-85.
[http://dx.doi.org/10.4103/japtr.JAPTR_116_19] [PMID: 32587821]
[22]
Ong, K.W.; Hsu, A.; Tan, B.K.H. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochem. Pharmacol., 2013, 85(9), 1341-1351.
[http://dx.doi.org/10.1016/j.bcp.2013.02.008] [PMID: 23416115]
[23]
Karunanidhi, A.; Thomas, R.; van Belkum, A.; Neela, V. In vitro antibacterial and antibiofilm activities of chlorogenic acid against clinical isolates of Stenotrophomonas maltophilia including the trimethoprim/sulfamethoxazole resistant strain. BioMed Res. Int., 2013, 2013, 392058.
[http://dx.doi.org/10.1155/2013/392058] [PMID: 23509719]
[24]
Lou, Z.; Wang, H.; Zhu, S.; Ma, C.; Wang, Z. Antibacterial activity and mechanism of action of chlorogenic acid. J. Food Sci., 2011, 76(6), M398-M403.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02213.x] [PMID: 22417510]
[25]
Fiamegos, Y.C.; Kastritis, P.L.; Exarchou, V.; Han, H.; Bonvin, A.M.J.J.; Vervoort, J.; Lewis, K.; Hamblin, M.R.; Tegos, G.P. Antimicrobial and efflux pump inhibitory activity of caffeoylquinic acids from Artemisia absinthium against gram-positive pathogenic bacteria. PLoS One, 2011, 6(4), e18127.
[http://dx.doi.org/10.1371/journal.pone.0018127] [PMID: 21483731]
[26]
Heitman, E.; Ingram, D.K. Cognitive and neuroprotective effects of chlorogenic acid. Nutr. Neurosci., 2017, 20(1), 32-39.
[http://dx.doi.org/10.1179/1476830514Y.0000000146] [PMID: 25130715]
[27]
Gupta, A.; Singh, A.K.; Kumar, R.; Jamieson, S.; Pandey, A.K.; Bishayee, A. Neuroprotective potential of ellagic acid: A critical review. Adv. Nutr., 2021, 12(4), 1211-1238.
[http://dx.doi.org/10.1093/advances/nmab007] [PMID: 33693510]
[28]
Han, J.; Miyamae, Y.; Shigemori, H.; Isoda, H. Neuroprotective effect of 3,5-di-O-caffeoylquinic acid on SH-SY5Y cells and senescence-accelerated-prone mice 8 through the up-regulation of phosphoglycerate kinase-1. Neuroscience, 2010, 169(3), 1039-1045.
[http://dx.doi.org/10.1016/j.neuroscience.2010.05.049] [PMID: 20570715]
[29]
Kwon, S-H.; Lee, H-K.; Kim, J-A.; Hong, S-I.; Kim, H-C.; Jo, T-H.; Park, Y-I.; Lee, C-K.; Kim, Y-B.; Lee, S-Y.; Jang, C.G. Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur. J. Pharmacol., 2010, 649(1-3), 210-217.
[http://dx.doi.org/10.1016/j.ejphar.2010.09.001] [PMID: 20854806]
[30]
Jang, Y.J.; Kim, J.; Shim, J.; Kim, C-Y.; Jang, J-H.; Lee, K.W.; Lee, H.J. Decaffeinated coffee prevents scopolamine-induced memory impairment in rats. Behav. Brain Res., 2013, 245, 113-119.
[http://dx.doi.org/10.1016/j.bbr.2013.02.003] [PMID: 23415910]
[31]
Balzan, S.; Hernandes, A.; Reichert, C.L.; Donaduzzi, C.; Pires, V.A.; Gasparotto, A., Jr; Cardozo, E.L., Jr Lipid-lowering effects of standardized extracts of Ilex paraguariensis in high-fat-diet rats. Fitoterapia, 2013, 86, 115-122.
[http://dx.doi.org/10.1016/j.fitote.2013.02.008] [PMID: 23422228]
[32]
Zhang, J.; Liang, R.; Wang, L.; Yan, R.; Hou, R.; Gao, S.; Yang, B. Effects of an aqueous extract of Crataegus pinnatifida Bge. var. major N.E.Br. fruit on experimental atherosclerosis in rats. J. Ethanopharmacology, 2013, 148(2), 563-569.
[http://dx.doi.org/10.1016/j.jep.2013.04.053] [PMID: 23685195]
[33]
Gordon, M.H.; Wishart, K. Effects of chlorogenic acid and bovine serum albumin on the oxidative stability of low density lipoproteins in vitro. J. Agric. Food Chem., 2010, 58(9), 5828-5833.
[http://dx.doi.org/10.1021/jf100106e] [PMID: 20387813]
[34]
Suzuki, A.; Yamamoto, N.; Jokura, H.; Yamamoto, M.; Fujii, A.; Tokimitsu, I.; Saito, I. Chlorogenic acid attenuates hypertension and improves endothelial function in spontaneously hypertensive rats. J. Hypertens., 2006, 24(6), 1065-1073.
[http://dx.doi.org/10.1097/01.hjh.0000226196.67052.c0] [PMID: 16685206]
[35]
Watanabe, T.; Arai, Y.; Mitsui, Y.; Kusaura, T.; Okawa, W.; Kajihara, Y.; Saito, I. The blood pressure-lowering effect and safety of chlorogenic acid from green coffee bean extract in essential hypertension. Clin. Exp. Hypertens., 2006, 28(5), 439-449.
[http://dx.doi.org/10.1080/10641960600798655] [PMID: 16820341]
[36]
Kozuma, K.; Tsuchiya, S.; Kohori, J.; Hase, T.; Tokimitsu, I. Antihypertensive effect of green coffee bean extract on mildly hypertensive subjects. Hypertens. Res., 2005, 28(9), 711-718.
[http://dx.doi.org/10.1291/hypres.28.711] [PMID: 16419643]
[37]
Mills, C.E.; Tzounis, X.; Oruna-Concha, M.-J.; Mottram, D.S.; Gibson, G.R.; Spencer, J.P.E. In vitro colonic metabolism of coffee and chlorogenic acid results in selective changes in human faecal microbiota growth. Br. J. Nutr., 2015, 113, 1220-1227.
[http://dx.doi.org/10.1017/S0007114514003948]
[38]
Zhang, Y.; Wang, Y.; Chen, D.; Yu, B.; Zheng, P.; Mao, X.; Luo, Y.; Li, Y.; He, J. Dietary chlorogenic acid supplementation affects gut morphology, antioxidant capacity and intestinal selected bacterial populations in weaned piglets. Food Funct., 2018, 9(9), 4968-4978.
[http://dx.doi.org/10.1039/C8FO01126E] [PMID: 30183786]
[39]
Wang, Z.; Lam, K.L.; Hu, J.; Ge, S.; Zhou, A.; Zheng, B.; Zeng, S.; Lin, S. Chlorogenic acid alleviates obesity and modulates gut microbiota in high-fat-fed mice. Food Sci. Nutr., 2019, 7(2), 579-588.
[http://dx.doi.org/10.1002/fsn3.868] [PMID: 30847137]
[40]
Song, J.; Zhou, N.; Ma, W.; Gu, X.; Chen, B.; Zeng, Y.; Yang, L.; Zhou, M. Modulation of gut microbiota by chlorogenic acid pretreatment on rats with adrenocorticotropic hormone induced depression-like behavior. Food Funct., 2019, 10(5), 2947-2957.
[http://dx.doi.org/10.1039/C8FO02599A] [PMID: 31073553]
[41]
Ruan, Z.; Liu, S.; Zhou, Y.; Mi, S.; Liu, G.; Wu, X.; Yao, K.; Assaad, H.; Deng, Z.; Hou, Y.; Wu, G.; Yin, Y. Chlorogenic acid decreases intestinal permeability and increases expression of intestinal tight junction proteins in weaned rats challenged with LPS. PLoS One, 2014, 9(6), e97815.
[http://dx.doi.org/10.1371/journal.pone.0097815] [PMID: 24887396]
[42]
Gupta, A.; Singh, A.K.; Loka, M.; Pandey, A.K.; Bishayee, A. Ferulic acid-mediated modulation of apoptotic signaling pathways in cancer. Adv. Protein Chem. Struct. Biol., 2021, 125, 215-257.
[http://dx.doi.org/10.1016/bs.apcsb.2020.12.005]
[43]
Nabavi, S.F.; Tejada, S.; Setzer, W.N.; Gortzi, O.; Sureda, A.; Braidy, N.; Daglia, M.; Manayi, A.; Nabavi, S.M. Chlorogenic acid and mental diseases: From chemistry to medicine. Curr. Neuropharmacol., 2017, 15(4), 471-479.
[http://dx.doi.org/10.2174/1570159X14666160325120625] [PMID: 27012954]
[44]
Clifford, M.N. Chlorogenic acids and other cinnamates – nature, occurrence and dietary burden. J. Sci. Food Agric., 1999, 79(3), 362-372.
[http://dx.doi.org/10.1002/(SICI)1097-0010(19990301)79:3<362::AID-JSFA256>3.0.CO;2-D]
[45]
Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79(5), 727-747.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[46]
Farah, A.; Lima, J. Chlorogenic acids: Daily consumption through coffee, metabolism and potential health effects. Comp. Rev., 2019, 19(6), 364-415.
[47]
Lafay, S.; Gil-Izquierdo, A.; Manach, C.; Morand, C.; Besson, C.; Scalbert, A. Chlorogenic acid is absorbed in its intact form in the stomach of rats. J. Nutr., 2006, 136(5), 1192-1197.
[http://dx.doi.org/10.1093/jn/136.5.1192] [PMID: 16614403]
[48]
Couteau, D.; McCartney, A.L.; Gibson, G.R.; Williamson, G.; Faulds, C.B. Isolation and characterization of human colonic bacteria able to hydrolyse chlorogenic acid. J. Appl. Microbiol., 2001, 90(6), 873-881.
[http://dx.doi.org/10.1046/j.1365-2672.2001.01316.x] [PMID: 11412317]
[49]
Renouf, M.; Marmet, C.; Giuffrida, F.; Lepage, M.; Barron, D.; Beaumont, M.; Williamson, G.; Dionisi, F. Dose-response plasma appearance of coffee chlorogenic and phenolic acids in adults. Mol. Nutr. Food Res., 2014, 58(2), 301-309.
[http://dx.doi.org/10.1002/mnfr.201300349] [PMID: 24039147]
[50]
Stalmach, A.; Mullen, W.; Barron, D.; Uchida, K.; Yokota, T.; Cavin, C.; Steiling, H.; Williamson, G.; Crozier, A. Metabolite profiling of hydroxycinnamate derivatives in plasma and urine after the ingestion of coffee by humans: Identification of biomarkers of coffee consumption. Drug Metab. Dispos., 2009, 37(8), 1749-1758.
[http://dx.doi.org/10.1124/dmd.109.028019] [PMID: 19460943]
[51]
Monteiro, M.; Farah, A.; Perrone, D.; Trugo, L.C.; Donangelo, C. Chlorogenic acid compounds from coffee are differentially absorbed and metabolized in humans. J. Nutr., 2007, 137(10), 2196-2201.
[http://dx.doi.org/10.1093/jn/137.10.2196] [PMID: 17884997]
[52]
Tomas-Barberan, F.; García-Villalba, R.; Quartieri, A.; Raimondi, S.; Amaretti, A.; Leonardi, A.; Rossi, M. In vitro transformation of chlorogenic acid by human gut microbiota. Mol. Nutr. Food Res., 2014, 58(5), 1122-1131.
[http://dx.doi.org/10.1002/mnfr.201300441] [PMID: 24550206]
[53]
Stalmach, A.; Steiling, H.; Williamson, G.; Crozier, A. Bioavailability of chlorogenic acids following acute ingestion of coffee by humans with an ileostomy. Arch. Biochem. Biophys., 2010, 501(1), 98-105.
[http://dx.doi.org/10.1016/j.abb.2010.03.005] [PMID: 20226754]
[54]
Williamson, G.; Stalmach, A. Absorption and metabolism of dietary chlorogenic acids and procyanidins. In: Recent Advances in Polyphenol Research; John Wiley & Sons, Ltd., 2012; pp. 209-222.
[http://dx.doi.org/10.1002/9781118299753.ch9]
[55]
Bajko, E.; Kalinowska, M.; Borowski, P.; Siergiejczyk, L.; Lewandowski, W. 5-O-caffeoylquinic acid: A spectroscopic study and biological screening for antimicrobial activity. Lebensm. Wiss. Technol., 2016, 65, 471-479.
[http://dx.doi.org/10.1016/j.lwt.2015.08.024]
[56]
Li, G.; Wang, X.; Xu, Y.; Zhang, B.; Xia, X. Antimicrobial effect and mode of action of chlorogenic acid on Staphylococcus aureus. Eur. Food Res. Technol., 2013, 238(4), 589-596.
[http://dx.doi.org/10.1007/s00217-013-2140-5]
[57]
Muthuswamy, S.; Vasantha Rupasinghe, H.P. Fruit phenolics as natural antimicrobial agents: Selective antimicrobial activity of catechin, chlorogenic acid and phloridzin. J. Food Agric. Environ., 2007, 5, 81-85.
[58]
Luís, Â.; Silva, F.; Sousa, S.; Duarte, A.P.; Domingues, F. Antistaphylococcal and biofilm inhibitory activities of gallic, caffeic, and chlorogenic acids. Biofouling, 2014, 30(1), 69-79.
[http://dx.doi.org/10.1080/08927014.2013.845878] [PMID: 24228999]
[59]
Sung, W.S.; Lee, D.G. Antifungal action of chlorogenic acid against pathogenic fungi, mediated by membrane disruption. Pure Appl. Chem., 2010, 82(1), 219-226.
[http://dx.doi.org/10.1351/PAC-CON-09-01-08]
[60]
Parcheta, M.; Świsłocka, R.; Orzechowska, S.; Akimowicz, M.; Choińska, R.; Lewandowski, W. Recent developments in effective antioxidants: The structure and antioxidant properties. Materials, 2021, 14, 1984.
[http://dx.doi.org/10.3390/ma14081984]
[61]
Chen, J.; Yu, B.; Chen, D.; Zheng, P.; Luo, Y.; Huang, Z.; Luo, J.; Mao, X.; Yu, J.; He, J. Changes of porcine gut microbiota in response to dietary chlorogenic acid supplementation. Appl. Microbiol. Biotechnol., 2019, 103(19), 8157-8168.
[http://dx.doi.org/10.1007/s00253-019-10025-8] [PMID: 31401751]
[62]
Cheng, D.; Li, H.; Zhou, J.; Wang, S. Chlorogenic acid relieves lead-induced cognitive impairments and hepato-renal damage via regulating the dysbiosis of the gut microbiota in mice. Food Funct., 2019, 10(2), 681-690.
[http://dx.doi.org/10.1039/C8FO01755G] [PMID: 30657151]
[63]
Zeng, J.; Zhang, D.; Wan, X.; Bai, Y.; Yuan, C.; Wang, T.; Yuan, D.; Zhang, C.; Liu, C. Chlorogenic acid suppresses miR-155 and ameliorates ulcerative colitis through the NF-κB/NLRP3 inflammasome pathway. Mol. Nutr. Food Res., 2020, 64(23), e2000452.
[http://dx.doi.org/10.1002/mnfr.202000452] [PMID: 33078870]
[64]
Farzaei, M.H.; Singh, A.K.; Kumar, R.; Croley, C.R.; Pandey, A.K.; Coy-Barrera, E.; Kumar Patra, J.; Das, G.; Kerry, R.G.; Annunziata, G.; Tenore, G.C.; Khan, H.; Micucci, M.; Budriesi, R.; Momtaz, S.; Nabavi, S.M.; Bishayee, A. Targeting inflammation by flavonoids: Novel therapeutic strategy for metabolic disorders. Int. J. Mol. Sci., 2019, 20(19), E4957.
[http://dx.doi.org/10.3390/ijms20194957] [PMID: 31597283]
[65]
Zang, L.Y.; Cosma, G.; Gardner, H.; Castranova, V.; Vallyathan, V. Effect of chlorogenic acid on hydroxyl radical. Mol. Cell. Biochem., 2003, 247(1-2), 205-210.
[http://dx.doi.org/10.1023/A:1024103428348] [PMID: 12841649]
[66]
Cha, J.W.; Piao, M.J.; Kim, K.C.; Yao, C.W.; Zheng, J.; Kim, S.M.; Hyun, C.L.; Ahn, Y.S.; Hyun, J.W. The polyphenol chlorogenic acid attenuates UVB-mediated oxidative stress in human HaCaT keratinocytes. Biomol. Ther. (Seoul), 2014, 22(2), 136-142.
[http://dx.doi.org/10.4062/biomolther.2014.006] [PMID: 24753819]
[67]
Nenadis, N.; Wang, L.F.; Tsimidou, M.; Zhang, H.Y. Estimation of scavenging activity of phenolic compounds using the ABTS(*+) assay. J. Agric. Food Chem., 2004, 52(15), 4669-4674.
[http://dx.doi.org/10.1021/jf0400056] [PMID: 15264898]
[68]
Kono, Y.; Kobayashi, K.; Tagawa, S.; Adachi, K.; Ueda, A.; Sawa, Y.; Shibata, H. Antioxidant activity of polyphenolics in diets. Rate constants of reactions of chlorogenic acid and caffeic acid with reactive species of oxygen and nitrogen. Biochim. Biophys. Acta, 1997, 1335(3), 335-342.
[http://dx.doi.org/10.1016/S0304-4165(96)00151-1] [PMID: 9202196]
[69]
Apak, R.; Güçlü, K.; Demirata, B.; Ozyürek, M.; Çelik, S.E.; Bektaşoğlu, B.; Berker, K.I.; Özyurt, D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules, 2007, 12(7), 1496-1547.
[http://dx.doi.org/10.3390/12071496] [PMID: 17909504]
[70]
Hynes, M.J.; O’Coinceanainn, M. The kinetics and mechanisms of reactions of iron(III) with caffeic acid, chlorogenic acid, sinapic acid, ferulic acid and naringin. J. Inorg. Biochem., 2004, 98(8), 1457-1464.
[http://dx.doi.org/10.1016/j.jinorgbio.2004.05.009] [PMID: 15271524]
[71]
Fan, G.J.; Jin, X.L.; Qian, Y.P.; Wang, Q.; Yang, R.T.; Dai, F.; Tang, J.J.; Shang, Y.J.; Cheng, L.X.; Yang, J.; Zhou, B. Hydroxycinnamic acids as DNA-cleaving agents in the presence of Cu(II) ions: Mechanism, structure-activity relationship, and biological implications. Chemistry, 2009, 15(46), 12889-12899.
[http://dx.doi.org/10.1002/chem.200901627] [PMID: 19847825]
[72]
Shibata, H.; Sakamoto, Y.; Oka, M.; Kono, Y. Natural antioxidant, chlorogenic acid, protects against DNA breakage caused by monochloramine. Biosci. Biotechnol. Biochem., 1999, 63(7), 1295-1297.
[http://dx.doi.org/10.1271/bbb.63.1295] [PMID: 10478457]
[73]
Tomac, I.; Šeruga, M.; Labuda, J. Evaluation of antioxidant activity of chlorogenic acids and coffee extracts by an electrochemical DNA-based biosensor. Food Chem., 2020, 325, 126787.
[http://dx.doi.org/10.1016/j.foodchem.2020.126787] [PMID: 32387938]
[74]
Xu, J.G.; Hu, Q.P.; Liu, Y. Antioxidant and DNA-protective activities of chlorogenic acid isomers. J. Agric. Food Chem., 2012, 60(46), 11625-11630.
[http://dx.doi.org/10.1021/jf303771s] [PMID: 23134416]
[75]
Kim, J.; Lee, S.; Shim, J.; Kim, H.W.; Kim, J.; Jang, Y.J.; Yang, H.; Park, J.; Choi, S.H.; Yoon, J.H.; Lee, K.W.; Lee, H.J. Caffeinated coffee, decaffeinated coffee, and the phenolic phytochemical chlorogenic acid up-regulate NQO1 expression and prevent H2O2-induced apoptosis in primary cortical neurons. Neurochem. Int., 2012, 60(5), 466-474.
[http://dx.doi.org/10.1016/j.neuint.2012.02.004] [PMID: 22353630]
[76]
Pavlica, S.; Gebhardt, R. Protective effects of ellagic and chlorogenic acids against oxidative stress in PC12 cells. Free Radic. Res., 2005, 39(12), 1377-1390.
[http://dx.doi.org/10.1080/09670260500197660] [PMID: 16298868]
[77]
Koriem, K.M.M.; Soliman, R.E. Chlorogenic and caftaric acids in liver toxicity and oxidative stress induced by methamphetamine. J. Toxicol., 2014, 2014, 583494.
[http://dx.doi.org/10.1155/2014/583494] [PMID: 25136360]
[78]
Hao, M.L.; Pan, N.; Zhang, Q.H.; Wang, X.H. Therapeutic efficacy of chlorogenic acid on cadmium-induced oxidative neuropathy in a murine model. Exp. Ther. Med., 2015, 9(5), 1887-1894.
[http://dx.doi.org/10.3892/etm.2015.2367] [PMID: 26136910]
[79]
Gupta, A.; Kumar, R.; Ganguly, R.; Singh, A.K.; Rana, H.K.; Pandey, A.K. Antioxidant, anti-inflammatory and hepatoprotective activities of Terminalia bellirica and its bioactive component ellagic acid against diclofenac induced oxidative stress and hepatotoxicity. Toxicol. Rep., 2020, 8, 44-52.
[http://dx.doi.org/10.1016/j.toxrep.2020.12.010] [PMID: 33391996]
[80]
Melillo de Magalhães, P.; Dupont, I.; Hendrickx, A.; Joly, A.; Raas, T.; Dessy, S.; Sergent, T.; Schneider, Y-J. Anti-inflammatory effect and modulation of cytochrome P450 activities by Artemisia annua tea infusions in human intestinal Caco-2 cells. Food Chem., 2012, 134(2), 864-871.
[http://dx.doi.org/10.1016/j.foodchem.2012.02.195] [PMID: 23107701]
[81]
Zatorski, H.; Sałaga, M.; Zielińska, M.; Piechota-Polańczyk, A.; Owczarek, K.; Kordek, R.; Lewandowska, U.; Chen, C.; Fichna, J. Experimental colitis in mice is attenuated by topical administration of chlorogenic acid. Naunyn Schmiedebergs Arch. Pharmacol., 2015, 388(6), 643-651.
[http://dx.doi.org/10.1007/s00210-015-1110-9] [PMID: 25743575]
[82]
Chauhan, P.S.; Satti, N.K.; Sharma, P.; Sharma, V.K.; Suri, K.A.; Bani, S. Differential effects of chlorogenic acid on various immunological parameters relevant to rheumatoid arthritis. Phytother. Res., 2012, 26(8), 1156-1165.
[http://dx.doi.org/10.1002/ptr.3684] [PMID: 22180146]
[83]
Bagdas, D.; Cinkilic, N.; Ozboluk, H.Y.; Ozyigit, M.O.; Gurun, M.S. Antihyperalgesic activity of chlorogenic acid in experimental neuropathic pain. J. Nat. Med., 2013, 67(4), 698-704.
[http://dx.doi.org/10.1007/s11418-012-0726-z] [PMID: 23203628]
[84]
Yun, N.; Kang, J-W.; Lee, S-M. Protective effects of chlorogenic acid against ischemia/reperfusion injury in rat liver: Molecular evidence of its antioxidant and anti-inflammatory properties. J. Nutr. Biochem., 2012, 23(10), 1249-1255.
[http://dx.doi.org/10.1016/j.jnutbio.2011.06.018] [PMID: 22209001]
[85]
Shi, H.; Dong, L.; Bai, Y.; Zhao, J.; Zhang, Y.; Zhang, L. Chlorogenic acid against carbon tetrachloride-induced liver fibrosis in rats. Eur. J. Pharmacol., 2009, 623(1-3), 119-124.
[http://dx.doi.org/10.1016/j.ejphar.2009.09.026] [PMID: 19786014]
[86]
dos Santos, M.D.; Almeida, M.C.; Lopes, N.P.; de Souza, G.E.P. Evaluation of the anti-inflammatory, analgesic and antipyretic activities of the natural polyphenol chlorogenic acid. Biol. Pharm. Bull., 2006, 29(11), 2236-2240.
[http://dx.doi.org/10.1248/bpb.29.2236] [PMID: 17077520]
[87]
Moreira, M.E. de C.; Pereira, R.G.F.A.; Dias, D.F.; Gontijo, V.S.; Vilela, F.C.; de Moraes, G. de O.I.; Giusti-Paiva, A.; dos Santos, M.H. Anti-inflammatory effect of aqueous extracts of roasted and green Coffea arabica L. J. Funct. Foods, 2013, 5(1), 466-474.
[http://dx.doi.org/10.1016/j.jff.2012.12.002]
[88]
Wu, C.; Luan, H.; Zhang, X.; Wang, S.; Zhang, X.; Sun, X.; Guo, P. Chlorogenic acid protects against atherosclerosis in ApoE-/- mice and promotes cholesterol efflux from RAW264.7 macrophages. PLoS One, 2014, 9(9), e95452.
[http://dx.doi.org/10.1371/journal.pone.0095452] [PMID: 25187964]
[89]
Xie, L.; Gu, Y.; Wen, M.; Zhao, S.; Wang, W.; Ma, Y.; Meng, G.; Han, Y.; Wang, Y.; Liu, G.; Moore, P.K.; Wang, X.; Wang, H.; Zhang, Z.; Yu, Y.; Ferro, A.; Huang, Z.; Ji, Y. Hydrogen sulfide induces keap1 S-sulfhydration and suppresses diabetes-accelerated atherosclerosis via Nrf2 activation. Diabetes, 2016, 65(10), 3171-3184.
[http://dx.doi.org/10.2337/db16-0020] [PMID: 27335232]
[90]
Obermayer, G.; Afonyushkin, T.; Binder, C.J. Oxidized low-density lipoprotein in inflammation-driven thrombosis. J. Thromb. Haemost., 2018, 16(3), 418-428.
[http://dx.doi.org/10.1111/jth.13925] [PMID: 29316215]
[91]
Yu, X-H.; Zhang, D-W.; Zheng, X-L.; Tang, C-K. Cholesterol transport system: An integrated cholesterol transport model involved in atherosclerosis. Prog. Lipid Res., 2019, 73, 65-91.
[http://dx.doi.org/10.1016/j.plipres.2018.12.002] [PMID: 30528667]
[92]
Yukawa, G.S.; Mune, M.; Otani, H.; Tone, Y.; Liang, X-M.; Iwahashi, H.; Sakamoto, W. Effects of coffee consumption on oxidative susceptibility of low-density lipoproteins and serum lipid levels in humans. Biochemistry (Mosc.), 2004, 69(1), 70-74.
[http://dx.doi.org/10.1023/B:BIRY.0000016354.05438.0f] [PMID: 14972021]
[93]
Natella, F.; Nardini, M.; Belelli, F.; Scaccini, C. Coffee drinking induces incorporation of phenolic acids into LDL and increases the resistance of LDL to ex vivo oxidation in humans. Am. J. Clin. Nutr., 2007, 86(3), 604-609.
[http://dx.doi.org/10.1093/ajcn/86.3.604] [PMID: 17823423]
[94]
Nardini, M.; D’Aquino, M.; Tomassi, G.; Gentili, V.; Di Felice, M.; Scaccini, C. Inhibition of human low-density lipoprotein oxidation by caffeic acid and other hydroxycinnamic acid derivatives. Free Radic. Biol. Med., 1995, 19(5), 541-552.
[http://dx.doi.org/10.1016/0891-5849(95)00052-Y] [PMID: 8529913]
[95]
Roland, A.; Patterson, R.A.; Leake, D.S. Measurement of copper-binding sites on low density lipoprotein. Arterioscler. Thromb. Vasc. Biol., 2001, 21(4), 594-602.
[http://dx.doi.org/10.1161/01.ATV.21.4.594] [PMID: 11304478]
[96]
Aviram, M. HDL--associated paraoxonase 1 (PON1) and dietary antioxidants attenuate lipoprotein oxidation, macrophage foam cells formation and atherosclerosis development. Pathophysiol. Haemost. Thromb., 2006, 35(1-2), 146-151.
[http://dx.doi.org/10.1159/000093558] [PMID: 16855361]
[97]
Gugliucci, A.; Bastos, D.H.M. Chlorogenic acid protects paraoxonase 1 activity in high density lipoprotein from inactivation caused by physiological concentrations of hypochlorite. Fitoterapia, 2009, 80(2), 138-142.
[http://dx.doi.org/10.1016/j.fitote.2009.01.001] [PMID: 19248222]
[98]
Tsai, K-L.; Hung, C-H.; Chan, S-H.; Hsieh, P-L.; Ou, H-C.; Cheng, Y-H.; Chu, P-M. Chlorogenic acid protects against oxLDL-induced oxidative damage and mitochondrial dysfunction by modulating SIRT1 in endothelial cells. Mol. Nutr. Food Res., 2018, 62(11), e1700928.
[http://dx.doi.org/10.1002/mnfr.201700928] [PMID: 29656453]
[99]
Li, H.; Horke, S.; Förstermann, U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis, 2014, 237(1), 208-219.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.09.001] [PMID: 25244505]
[100]
Donato, A.J.; Morgan, R.G.; Walker, A.E.; Lesniewski, L.A. Cellular and molecular biology of aging endothelial cells. J. Mol. Cell. Cardiol., 2015, 89(Pt B), 122-135.
[http://dx.doi.org/10.1016/j.yjmcc.2015.01.021] [PMID: 25655936]
[101]
Jung, H-J.; Im, S.S.; Song, D.K.; Bae, J.H. Effects of chlorogenic acid on intracellular calcium regulation in lysophosphatidylcholine-treated endothelial cells. BMB Rep., 2017, 50(6), 323-328.
[http://dx.doi.org/10.5483/BMBRep.2017.50.6.182] [PMID: 28088946]
[102]
Steinbacher, P.; Eckl, P. Impact of oxidative stress on exercising skeletal muscle. Biomolecules, 2015, 5(2), 356-377.
[http://dx.doi.org/10.3390/biom5020356] [PMID: 25866921]
[103]
Joris, I.; Zand, T.; Nunnari, J.J.; Krolikowski, F.J.; Majno, G. Studies on the pathogenesis of atherosclerosis. I. Adhesion and emigration of mononuclear cells in the aorta of hypercholesterolemic rats. Am. J. Pathol., 1983, 113(3), 341-358.
[PMID: 6650664]
[104]
Tabas, I.; Williams, K.J.; Borén, J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: Update and therapeutic implications. Circulation, 2007, 116(16), 1832-1844.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.676890] [PMID: 17938300]
[105]
Chang, W-C.; Chen, C-H.; Lee, M-F.; Chang, T.; Yu, Y-M. Chlorogenic acid attenuates adhesion molecules upregulation in IL-1beta-treated endothelial cells. Eur. J. Nutr., 2010, 49(5), 267-275.
[http://dx.doi.org/10.1007/s00394-009-0083-1] [PMID: 19937041]
[106]
Lee, S-M.; Moon, J.; Cho, Y.; Chung, J.H.; Shin, M-J. Quercetin up-regulates expressions of peroxisome proliferator-activated receptor γ, liver X receptor α, and ATP binding cassette transporter A1 genes and increases cholesterol efflux in human macrophage cell line. Nutr. Res., 2013, 33(2), 136-143.
[http://dx.doi.org/10.1016/j.nutres.2012.11.010] [PMID: 23399664]
[107]
Bergmeier, W.; Hynes, R.O. Extracellular matrix proteins in hemostasis and thrombosis. Cold Spring Harb. Perspect. Biol., 2012, 4(2), a005132.
[http://dx.doi.org/10.1101/cshperspect.a005132] [PMID: 21937733]
[108]
Shen, W.; Qi, R.; Zhang, J.; Wang, Z.; Wang, H.; Hu, C.; Zhao, Y.; Bie, M.; Wang, Y.; Fu, Y.; Chen, M.; Lu, D. Chlorogenic acid inhibits LPS-induced microglial activation and improves survival of dopaminergic neurons. Brain Res. Bull., 2012, 88(5), 487-494.
[http://dx.doi.org/10.1016/j.brainresbull.2012.04.010] [PMID: 22580132]
[109]
Suzuki, A.; Kagawa, D.; Ochiai, R.; Tokimitsu, I.; Saito, I. Green coffee bean extract and its metabolites have a hypotensive effect in spontaneously hypertensive rats. Hypertens. Res., 2002, 25(1), 99-107.
[http://dx.doi.org/10.1291/hypres.25.99] [PMID: 11924733]
[110]
Yamaguchi, T.; Chikama, A.; Mori, K.; Watanabe, T.; Shioya, Y.; Katsuragi, Y.; Tokimitsu, I. Hydroxyhydroquinone-free coffee: A double-blind, randomized controlled dose-response study of blood pressure. Nutr. Metab. Cardiovasc. Dis., 2008, 18(6), 408-414.
[http://dx.doi.org/10.1016/j.numecd.2007.03.004] [PMID: 17951035]
[111]
Zhao, Y.; Wang, J.; Ballevre, O.; Luo, H.; Zhang, W. Antihypertensive effects and mechanisms of chlorogenic acids. Hypertens. Res., 2012, 35(4), 370-374.
[http://dx.doi.org/10.1038/hr.2011.195] [PMID: 22072103]
[112]
Geleijnse, J.M. Habitual coffee consumption and blood pressure: An epidemiological perspective. Vasc. Health Risk Manag., 2008, 4(5), 963-970.
[http://dx.doi.org/10.2147/VHRM.S3055] [PMID: 19183744]
[113]
Kumar, R.; Gupta, A.; Singh, A.K.; Bishayee, A.; Pandey, A.K. The antioxidant and antihyperglycemic activities of bottlebrush plant (Callistemon lanceolatus) stem extracts. Medicines, 2020, 7, E11.
[http://dx.doi.org/10.3390/medicines7030011]
[114]
Gupta, A.; Kumar, R.; Pandey, A.K. Antioxidant and antidiabetic activities of terminalia bellirica fruit in alloxan induced diabetic rats. S. Afr. J. Bot., 2020, 130, 308-315.
[http://dx.doi.org/10.1016/j.sajb.2019.12.010]
[115]
Joshi, T.; Singh, A.K.; Haratipour, P.; Sah, A.N.; Pandey, A.K.; Naseri, R.; Juyal, V.; Farzaei, M.H. Targeting AMPK signaling pathway by natural products for treatment of diabetes mellitus and its complications. J. Cell. Physiol., 2019, 234(10), 17212-17231.
[http://dx.doi.org/10.1002/jcp.28528] [PMID: 30916407]
[116]
McCarty, M.F. A chlorogenic acid-induced increase in GLP-1 production may mediate the impact of heavy coffee consumption on diabetes risk. Med. Hypotheses, 2005, 64(4), 848-853.
[http://dx.doi.org/10.1016/j.mehy.2004.03.037] [PMID: 15694706]
[117]
Richter, E.A.; Hargreaves, M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol. Rev., 2013, 93(3), 993-1017.
[http://dx.doi.org/10.1152/physrev.00038.2012] [PMID: 23899560]
[118]
Egawa, T.; Hamada, T.; Ma, X.; Karaike, K.; Kameda, N.; Masuda, S.; Iwanaka, N.; Hayashi, T. Caffeine activates preferentially α1-isoform of 5'AMP-activated protein kinase in rat skeletal muscle. Acta Physiol. (Oxf.), 2011, 201(2), 227-238.
[http://dx.doi.org/10.1111/j.1748-1716.2010.02169.x] [PMID: 21241457]
[119]
Bassoli, B.K.; Cassolla, P.; Borba-Murad, G.R.; Constantin, J.; Salgueiro-Pagadigorria, C.L.; Bazotte, R.B.; da Silva, R.S. dos S.F.; de Souza, H.M. Chlorogenic acid reduces the plasma glucose peak in the oral glucose tolerance test: Effects on hepatic glucose release and glycaemia. Cell Biochem. Funct., 2008, 26(3), 320-328.
[http://dx.doi.org/10.1002/cbf.1444] [PMID: 17990295]
[120]
Tousch, D.; Lajoix, A-D.; Hosy, E.; Azay-Milhau, J.; Ferrare, K.; Jahannault, C.; Cros, G.; Petit, P. Chicoric acid, a new compound able to enhance insulin release and glucose uptake. Biochem. Biophys. Res. Commun., 2008, 377(1), 131-135.
[http://dx.doi.org/10.1016/j.bbrc.2008.09.088] [PMID: 18834859]
[121]
Hsu, F.L.; Chen, Y.C.; Cheng, J.T. Caffeic acid as active principle from the fruit of Xanthium strumarium to lower plasma glucose in diabetic rats. Planta Med., 2000, 66(3), 228-230.
[http://dx.doi.org/10.1055/s-2000-8561] [PMID: 10821047]
[122]
Meng, S.; Cao, J.; Feng, Q.; Peng, J.; Hu, Y. Roles of chlorogenic acid on regulating glucose and lipids metabolism: A review. Evid. Based Complement. Alternat. Med., 2013, 2013, 801457.
[http://dx.doi.org/10.1155/2013/801457] [PMID: 24062792]
[123]
Karthikesan, K.; Pari, L.; Menon, V.P. Combined treatment of tetrahydrocurcumin and chlorogenic acid exerts potential antihyperglycemic effect on streptozotocin-nicotinamide-induced diabetic rats. Gen. Physiol. Biophys., 2010, 29(1), 23-30.
[http://dx.doi.org/10.4149/gpb_2010_01_23] [PMID: 20371877]
[124]
Hikino, H.; Mizuno, T. Hypoglycemic actions of some heteroglycans of Ganoderma lucidum fruit bodies. Planta Med., 1989, 55(4), 385.
[http://dx.doi.org/10.1055/s-2006-962033] [PMID: 2813573]
[125]
Johnston, K.L.; Clifford, M.N.; Morgan, L.M. Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: Glycemic effects of chlorogenic acid and caffeine. Am. J. Clin. Nutr., 2003, 78(4), 728-733.
[http://dx.doi.org/10.1093/ajcn/78.4.728] [PMID: 14522730]
[126]
Ahrens, M.J.; Thompson, D.L. Effect of emulin on blood glucose in type 2 diabetics. J. Med. Food, 2013, 16(3), 211-215.
[http://dx.doi.org/10.1089/jmf.2012.0069] [PMID: 23444965]
[127]
Thom, E. The effect of chlorogenic acid enriched coffee on glucose absorption in healthy volunteers and its effect on body mass when used long-term in overweight and obese people. J. Int. Med. Res., 2007, 35(6), 900-908.
[http://dx.doi.org/10.1177/147323000703500620] [PMID: 18035001]
[128]
van Dijk, A.E.; Olthof, M.R.; Meeuse, J.C.; Seebus, E.; Heine, R.J.; van Dam, R.M. Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care, 2009, 32(6), 1023-1025.
[http://dx.doi.org/10.2337/dc09-0207] [PMID: 19324944]
[129]
Iwai, K.; Narita, Y.; Fukunaga, T.; Nakagiri, O.; Kamiya, T.; Ikeguchi, M.; Kikuchi, Y. Study on the postprandial glucose responses to a chlorogenic acid-rich extract of decaffeinated green coffee beans in rats and healthy human subjects. Food Sci. Technol. Res., 2012, 18(6), 849-860.
[http://dx.doi.org/10.3136/fstr.18.849]
[130]
Kumar, G.; Paliwal, P.; Mukherjee, S.; Patnaik, N.; Krishnamurthy, S.; Patnaik, R. Pharmacokinetics and brain penetration study of chlorogenic acid in rats. Xenobiotica, 2019, 49(3), 339-345.
[http://dx.doi.org/10.1080/00498254.2018.1445882] [PMID: 29480050]
[131]
Ohnishi, R.; Ito, H.; Iguchi, A.; Shinomiya, K.; Kamei, C.; Hatano, T.; Yoshida, T. Effects of chlorogenic acid and its metabolites on spontaneous locomotor activity in mice. Biosci. Biotechnol. Biochem., 2006, 70(10), 2560-2563.
[http://dx.doi.org/10.1271/bbb.60243] [PMID: 17031047]
[132]
Bouayed, J.; Rammal, H.; Dicko, A.; Younos, C.; Soulimani, R. Chlorogenic acid, a polyphenol from Prunus domestica (Mirabelle), with coupled anxiolytic and antioxidant effects. J. Neurol. Sci., 2007, 262(1-2), 77-84.
[http://dx.doi.org/10.1016/j.jns.2007.06.028] [PMID: 17698084]
[133]
Cho, E.S.; Jang, Y.J.; Hwang, M.K.; Kang, N.J.; Lee, K.W.; Lee, H.J. Attenuation of oxidative neuronal cell death by coffee phenolic phytochemicals. Mutat. Res., 2008, 661, 18-24.
[http://dx.doi.org/10.1016/j.mrfmmm.2008.10.021]
[134]
Park, J.B. Isolation and quantification of major chlorogenic acids in three major instant coffee brands and their potential effects on H2O2-induced mitochondrial membrane depolarization and apoptosis in PC-12 cells. Food Funct., 2013, 4(11), 1632-1638.
[http://dx.doi.org/10.1039/c3fo60138b] [PMID: 24061869]
[135]
Gao, L.; Li, X.; Meng, S.; Ma, T.; Wan, L.; Xu, S. Chlorogenic Acid Alleviates Aβ25-35-Induced Autophagy and Cognitive Impairment via the mTOR/TFEB Signaling Pathway. Drug Des. Devel. Ther., 2020, 14, 1705-1716.
[http://dx.doi.org/10.2147/DDDT.S235969] [PMID: 32440096]
[136]
Oboh, G.; Agunloye, O.M.; Akinyemi, A.J.; Ademiluyi, A.O.; Adefegha, S.A. Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer’s disease and some pro-oxidant induced oxidative stress in rats’ brain-in vitro. Neurochem. Res., 2013, 38(2), 413-419.
[http://dx.doi.org/10.1007/s11064-012-0935-6] [PMID: 23184188]
[137]
Teraoka, M.; Nakaso, K.; Kusumoto, C.; Katano, S.; Tajima, N.; Yamashita, A.; Zushi, T.; Ito, S.; Matsura, T. Cytoprotective effect of chlorogenic acid against α-synuclein-related toxicity in catecholaminergic PC12 cells. J. Clin. Biochem. Nutr., 2012, 51(2), 122-127.
[http://dx.doi.org/10.3164/jcbn.D-11-00030] [PMID: 22962530]
[138]
Wang, X.; Fan, X.; Yuan, S.; Jiao, W.; Liu, B.; Cao, J.; Jiang, W. Chlorogenic acid protects against aluminium-induced cytotoxicity through chelation and antioxidant actions in primary hippocampal neuronal cells. Food Funct., 2017, 8(8), 2924-2934.
[http://dx.doi.org/10.1039/C7FO00659D] [PMID: 28745369]
[139]
Jang, H.; Ahn, H.R.; Jo, H.; Kim, K-A.; Lee, E.H.; Lee, K.W.; Jung, S.H.; Lee, C.Y. Chlorogenic acid and coffee prevent hypoxia-induced retinal degeneration. J. Agric. Food Chem., 2014, 62(1), 182-191.
[http://dx.doi.org/10.1021/jf404285v] [PMID: 24295042]
[140]
Mikami, Y.; Yamazawa, T. Chlorogenic acid, a polyphenol in coffee, protects neurons against glutamate neurotoxicity. Life Sci., 2015, 139, 69-74.
[http://dx.doi.org/10.1016/j.lfs.2015.08.005] [PMID: 26285175]
[141]
Lee, K.; Lee, J-S.; Jang, H-J.; Kim, S-M.; Chang, M.S.; Park, S.H.; Kim, K.S.; Bae, J.; Park, J-W.; Lee, B.; Choi, H.Y.; Jeong, C.H.; Bu, Y. Chlorogenic acid ameliorates brain damage and edema by inhibiting matrix metalloproteinase-2 and 9 in a rat model of focal cerebral ischemia. Eur. J. Pharmacol., 2012, 689(1-3), 89-95.
[http://dx.doi.org/10.1016/j.ejphar.2012.05.028] [PMID: 22659584]
[142]
Liu, D.; Wang, H.; Zhang, Y.; Zhang, Z. Protective effects of chlorogenic acid on cerebral ischemia/reperfusion injury rats by regulating oxidative stress-related Nrf2 pathway. Drug Des. Devel. Ther., 2020, 14, 51-60.
[http://dx.doi.org/10.2147/DDDT.S228751] [PMID: 32021091]
[143]
Hermawati, E.; Arfian, N.; Mustofa, M.; Partadiredja, G. Chlorogenic acid ameliorates memory loss and hippocampal cell death after transient global ischemia. Eur. J. Neurosci., 2020, 51(2), 651-669.
[http://dx.doi.org/10.1111/ejn.14556] [PMID: 31437868]
[144]
Kushwaha, P.P.; Kumar, R.; Neog, P.R.; Behara, M.R.; Singh, P.; Kumar, A.; Prajapati, K.S.; Singh, A.K.; Shuaib, M.; Sharma, A.K.; Pandey, A.K.; Kumar, S. Characterization of phytochemicals and validation of antioxidant and anticancer activity in some Indian polyherbal ayurvedic products. Vegetos, 2021, 34(2), 286-299.
[http://dx.doi.org/10.1007/s42535-021-00205-1]
[145]
Kumar, R.; Singh, A.K.; Pandey, A.K. Phenolics. Secondary Metabolite and Functional Food Components: Role in Health and Disease; Nova Science Publishers, Inc., 2018, pp. 13-32.
[146]
Singh, A.K.; Kumar, R.; Pandey, A.K. Hepatocellular carcinoma: Causes, mechanism of progression and biomarkers. Curr. Chem. Genomics Transl. Med., 2018, 12(1), 9-26.
[http://dx.doi.org/10.2174/2213988501812010009] [PMID: 30069430]
[147]
Singh, A.K.; Bishayee, A.; Pandey, A.K. Targeting histone deacetylases with natural and synthetic agents: An emerging anticancer strategy. Nutrients, 2018, 10(6), E731.
[http://dx.doi.org/10.3390/nu10060731] [PMID: 29882797]
[148]
Yang, H.; Said, A.M.; Huang, H.; Papa, A.P.D.; Jin, G.; Wu, S.; Ma, N.; Lan, L.; Shangguan, F.; Zhang, Q. Chlorogenic acid depresses cellular bioenergetics to suppress pancreatic carcinoma through modulating c-Myc-TFR1 axis. Phytother. Res., 2021, 35(4), 2200-2210.
[http://dx.doi.org/10.1002/ptr.6971] [PMID: 33258205]
[149]
Ayouaz, S.; Oliveira-Alves, S.C.; Lefsih, K.; Serra, A.T.; Bento da Silva, A.; Samah, M.; Karczewski, J.; Madani, K.; Bronze, M.R. Phenolic compounds from Nerium oleander leaves: Microwave assisted extraction, characterization, antiproliferative and cytotoxic activities. Food Funct., 2020, 11(7), 6319-6331.
[http://dx.doi.org/10.1039/D0FO01180K] [PMID: 32608462]
[150]
Li, Y.; Li, X.; Cuiping, C.; Pu, R.; Weihua, Y. Study on the anticancer effect of an astragaloside- and chlorogenic acid-containing herbal medicine (RLT-03) in breast cancer. Evid. Based Complement. Alternat. Med., 2020, 2020, 1515081.
[http://dx.doi.org/10.1155/2020/1515081] [PMID: 32595723]
[151]
Dexheimer, G.M.; Alves, J.; Reckziegel, L.; Lazzaretti, G.; Abujamra, A.L. DNA methylation events as markers for diagnosis and management of Acute myeloid leukemia and myelodysplastic syndrome. Dis. Markers, 2017, 2017, 5472893.
[http://dx.doi.org/10.1155/2017/5472893] [PMID: 29038614]
[152]
Lee, W.J.; Zhu, B.T. Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis, 2006, 27(2), 269-277.
[http://dx.doi.org/10.1093/carcin/bgi206] [PMID: 16081510]
[153]
Hernandes, L.C.; Machado, A.R.T.; Tuttis, K.; Ribeiro, D.L.; Aissa, A.F.; Dévoz, P.P.; Antunes, L.M.G. Caffeic acid and chlorogenic acid cytotoxicity, genotoxicity and impact on global DNA methylation in human leukemic cell lines. Genet. Mol. Biol., 2020, 43(3), e20190347.
[http://dx.doi.org/10.1590/1678-4685-gmb-2019-0347] [PMID: 32644097]
[154]
Hou, N.; Liu, N.; Han, J.; Yan, Y.; Li, J. Chlorogenic acid induces reactive oxygen species generation and inhibits the viability of human colon cancer cells. Anticancer Drugs, 2017, 28(1), 59-65.
[http://dx.doi.org/10.1097/CAD.0000000000000430] [PMID: 27603595]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy