Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Assessing the Influence of Salvia triloba on Memory Deficit Caused by Sleep Deprivation in the Context of Oxidative Stress

Author(s): Adnan M. Massadeh*, Karem H. Alzoubi, Amal M. Melhim and Abeer M. Rababa’h

Volume 19, Issue 6, 2022

Published on: 23 August, 2022

Page: [440 - 448] Pages: 9

DOI: 10.2174/1567205019666220805092450

Price: $65

conference banner
Abstract

Background: Learning and memory deficit has been reported to be correlated to oxidative mutilation in the hippocampus. Moreover, sleep deprivation (SD) mitigates memory via distressing oxidative stress balance. In the current report, the prospective neuroprotective role of oral sage (Salvia triloba) extract on cognitive impairment induced by chronic SD was investigated.

Methods: The SD was induced in adult male Wistar rats employing a modified multiple platform (8 h/day; for six weeks). Simultaneously, S. triloba extract (375 mg/kg, orally) was administered for six weeks. Thereafter, the Radial Arm Water Maze test was utilized to evaluate spatial learning and memory. Moreover, activities of different hippocampal antioxidant parameters: glutathione peroxidase (GPx), oxidized glutathione (GSSG), reduced glutathione (GSH), catalase, superoxide dismutase (SOD), and the thiobarbituric acid reactive substance (TBARS) were measured in rats’ hippocampus. Moreover, the level of brain derived neurotrophic factor (BDNF) was assessed.

Results: Current results illustrate that chronic SD significantly compromised both memories, shortand long-term, while sage extract inhibited these consequences. Moreover, sage extract remarkably stabilized the antioxidant enzyme levels, which were decreased by SD, such as: SOD, catalase, and GPx (P < 0.05), and remarkably augmented the GSH/GSSG ratio in SD rats (P < 0.05). However, no substantial alterations of GSH, TBARS or BDNF levels (P > 0.05) were seen with sage extract administration.

Conclusion: Chronic treatment with sage extract (S. Triloba) precluded SD-induced memory impairment by regularizing antioxidant parameters levels in rats’ hippocampus.

Keywords: Sage, catalase, maze, brain derived neurotrophic factor, glutathione, sleep deprivation.

[1]
Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: The evidence. CMAJ 2006; 174(6): 801-9.
[http://dx.doi.org/10.1503/cmaj.051351] [PMID: 16534088]
[2]
Ohlmann KK, O'Sullivan MI. The costs of short sleep. AAOHN J 2009; 57(9): 381-5.
[3]
Ellenbogen JM. Cognitive benefits of sleep and their loss due to sleep deprivation. Neurology 2005; 64(7): E25-7.
[http://dx.doi.org/10.1212/01.wnl.0000164850.68115.81] [PMID: 15824327]
[4]
Robertson EM, Pascual-Leone A, Press DZ. Awareness modifies the skill-learning benefits of sleep. Curr Biol 2004; 14(3): 208-12.
[http://dx.doi.org/10.1016/j.cub.2004.01.027] [PMID: 14761652]
[5]
Alzoubi KH, Khabour OF, Rashid BA, Damaj IM, Salah HA. The neuroprotective effect of vitamin E on chronic sleep deprivation-induced memory impairment: The role of oxidative stress. Behav Brain Res 2012; 226(1): 205-10.
[http://dx.doi.org/10.1016/j.bbr.2011.09.017] [PMID: 21944940]
[6]
Silva RH, Abílio VC, Takatsu AL, et al. Role of hippocampal oxidative stress in memory deficits induced by sleep deprivation in mice. Neuropharmacology 2004; 46(6): 895-903.
[http://dx.doi.org/10.1016/j.neuropharm.2003.11.032] [PMID: 15033349]
[7]
Alzoubi KH, Rababa’h AM, Owaisi A, Khabour OF. L-carnitine prevents memory impairment induced by chronic REM-sleep deprivation. Brain Res Bull 2017; 131: 176-82.
[http://dx.doi.org/10.1016/j.brainresbull.2017.04.004] [PMID: 28433816]
[8]
Patel AK, Reddy V, Araujo JF. Physiology, sleep stages. Treasure Island, FL: StatPearls 2021.
[9]
Dement W. The occurrence of low voltage, fast, electroencephalogram patterns during behavioral sleep in the cat. Electroencephalogr Clin Neurophysiol 1958; 10(2): 291-6.
[http://dx.doi.org/10.1016/0013-4694(58)90037-3] [PMID: 13548075]
[10]
Jouvet D, Valatx JL. Polygraphic study of sleep in lambs. C R Seances Soc Biol Fil 1962; 156: 1411-4.
[PMID: 13965002]
[11]
Silber MH, Ancoli-Israel S, Bonnet MH, et al. The visual scoring of sleep in adults. J Clin Sleep Med 2007; 3(2): 121-31.
[12]
McCarley RW. Neurobiology of REM and NREM sleep. Sleep Med 2007; 8(4): 302-30.
[http://dx.doi.org/10.1016/j.sleep.2007.03.005] [PMID: 17468046]
[13]
Greene R, Siegel J. Sleep: A functional enigma. Neuromolecular Med 2004; 5(1): 59-68.
[http://dx.doi.org/10.1385/NMM:5:1:059] [PMID: 15001813]
[14]
Izac SM, Eeg TR. Basic anatomy and physiology of sleep. Am J Electroneurodiagn Technol 2006; 46(1): 18-38.
[http://dx.doi.org/10.1080/1086508X.2006.11079555] [PMID: 16605170]
[15]
Jawabri KH, Raja A. Physiology, sleep patterns. StatPearls, Treasure Island, (FL) 2021.
[16]
Benca RM, Teodorescu M. Sleep physiology and disorders in aging and dementia. Handb Clin Neurol 2019; 167: 477-93.
[http://dx.doi.org/10.1016/B978-0-12-804766-8.00026-1] [PMID: 31753150]
[17]
Harrison Y, Horne JA. Sleep loss and temporal memory. Q J Exp Psychol A 2000; 53(1): 271-9.
[http://dx.doi.org/10.1080/713755870] [PMID: 10718074]
[18]
McDermott CM, Hardy MN, Bazan NG, Magee JC. Sleep deprivation-induced alterations in excitatory synaptic transmission in the CA1 region of the rat hippocampus. J Physiol 2006; 570(Pt 3): 553-65.
[http://dx.doi.org/10.1113/jphysiol.2005.093781] [PMID: 16322058]
[19]
Rababa’h AM, Alzoubi KH, Atmeh A. Levosimendan enhances memory through antioxidant effect in rat model: Behavioral and molecular study. Behav Pharmacol 2018; 29(4): 344-50.
[http://dx.doi.org/10.1097/FBP.0000000000000362] [PMID: 29176443]
[20]
Abuirmeileh AN, Alzoubi KH, Rababa’h AM. The effect of levosimendan on two distinct rodent models of Parkinson’s disease. Curr Alzheimer Res 2020; 17(11): 1043-51.
[http://dx.doi.org/10.2174/1567205017666201218102724] [PMID: 33342412]
[21]
Alzoubi KH, Aburashed ZO, Mayyas F. Edaravone protects from memory impairment induced by chronic L-methionine administration. Naunyn Schmiedebergs Arch Pharmacol 2020; 393(7): 1221-8.
[http://dx.doi.org/10.1007/s00210-020-01827-z] [PMID: 31989235]
[22]
Lee S, Lim JS, Yun HS, et al. Dietary supplementation with Ceriporia lacerata improves learning and memory in a scopolamine-induced amnesia mouse model. Food Sci Biotechnol 2021; 30(8): 1107-16.
[http://dx.doi.org/10.1007/s10068-021-00945-5] [PMID: 34471564]
[23]
Amin A, Hamza AA. Hepatoprotective effects of Hibiscus, Rosmarinus and Salvia on azathioprine-induced toxicity in rats. Life Sci 2005; 77(3): 266-78.
[http://dx.doi.org/10.1016/j.lfs.2004.09.048] [PMID: 15878355]
[24]
Ali MS, Dardass AK, Ahmad S, Saleem M, Firdous S, Ahmad VU. Two new diterpenoids from Salvia triloba. Fitoterapia 2000; 71(4): 347-52.
[http://dx.doi.org/10.1016/S0367-326X(99)00173-2] [PMID: 10925002]
[25]
Esquivel B, Méndez A, Ortega AR, Soriano-garcia M, Toscano A, Rodriguez-hahn L. Neo-clerodane-type diterpenoids from Salvia keerlii. Phytochemistry 1985; 24: 1769-72.
[http://dx.doi.org/10.1016/S0031-9422(00)82548-0]
[26]
Valverde S, Escudero J, Cristóbal López J, Ma Rabanal R. Two terpenoids from Salvia bicolor. Phytochemistry 1985; 24(1): 111-3.
[http://dx.doi.org/10.1016/S0031-9422(00)80817-1]
[27]
Abdel-Moneim FM, Elgamal MHA, Fayez MBE, Salam LAR. Constituents of local plants—XI.: The triterpenoid acids of Salvia lanigera Poir. and S. triloba L. Phytochemistry 1967; 6(7): 1035-6.
[http://dx.doi.org/10.1016/S0031-9422(00)86058-6]
[28]
Topçu G. Bioactive triterpenoids from Salvia species. J Nat Prod 2006; 69(3): 482-7.
[http://dx.doi.org/10.1021/np0600402] [PMID: 16562861]
[29]
Ulubelen A, Oztürk S, Iśildatici S. A new flavone from Salvia triloba L.f (Labiatae). J Pharm Sci 1968; 57(6): 1037-8.
[http://dx.doi.org/10.1002/jps.2600570630] [PMID: 5671324]
[30]
Lu Y, Foo LY. Flavonoid and phenolic glycosides from Salvia officinalis. Phytochemistry 2000; 55(3): 263-7.
[http://dx.doi.org/10.1016/S0031-9422(00)00309-5] [PMID: 11142853]
[31]
Ulubelen A. New Diterpenoids from the roots of Salvia triloba. Planta Med 1990; 56(1): 82-3.
[http://dx.doi.org/10.1055/s-2006-960890] [PMID: 17221372]
[32]
Imanshahidi M, Hosseinzadeh H. The pharmacological effects of Salvia species on the central nervous system. Phytother Res 2006; 20(6): 427-37.
[http://dx.doi.org/10.1002/ptr.1898] [PMID: 16619340]
[33]
Abu-Dahab R, Abdallah MR, Kasabri V, Mhaidat NM, Afifi FU. Mechanistic studies of antiproliferative effects of Salvia triloba and Salvia dominica (Lamiaceae) on breast cancer cell lines (MCF7 and T47D). Z Naturforsch C J Biosci 2014; 69(11-12): 443-51.
[PMID: 25854764]
[34]
Ahmed HH, Salem AM, Sabry GM, Husein AA, Kotob SE. Possible therapeutic uses of Salvia triloba and Piper nigrum in Alzheimer’s disease-induced rats. J Med Food 2013; 16(5): 437-46.
[http://dx.doi.org/10.1089/jmf.2012.0165] [PMID: 23631499]
[35]
Atmaca H, Bozkurt E. Apoptotic and anti-angiogenic effects of Salvia triloba extract in prostate cancer cell lines. Tumour Biol 2016; 37(3): 3639-46.
[http://dx.doi.org/10.1007/s13277-015-4208-2] [PMID: 26459311]
[36]
Clark JD, Gebhart GF, Gonder JC, Keeling ME, Kohn DF. The 1996 guide for the care and use of laboratory animals. ILAR J 1997; 38(1): 41-8.
[http://dx.doi.org/10.1093/ilar.38.1.41]
[37]
Aleisa AM, Alzoubi KH, Alkadhi KA. Post-learning REM sleep deprivation impairs long-term memory: Reversal by acute nicotine treatment. Neurosci Lett 2011; 499(1): 28-31.
[http://dx.doi.org/10.1016/j.neulet.2011.05.025] [PMID: 21624432]
[38]
Grahnstedt S, Ursin R. Platform sleep deprivation affects deep slow wave sleep in addition to REM sleep. Behav Brain Res 1985; 18(3): 233-9.
[http://dx.doi.org/10.1016/0166-4328(85)90031-2] [PMID: 4091961]
[39]
Axmacher N, Draguhn A, Elger CE, Fell J. Memory processes during sleep: Beyond the standard consolidation theory. Cell Mol Life Sci 2009; 66(14): 2285-97.
[http://dx.doi.org/10.1007/s00018-009-0019-1] [PMID: 19322518]
[40]
Whitney P, Hinson JM. Measurement of cognition in studies of sleep deprivation. Prog Brain Res 2010; 185: 37-48.
[http://dx.doi.org/10.1016/B978-0-444-53702-7.00003-8] [PMID: 21075232]
[41]
Montplaisir J, Petit D, Gauthier S, Gaudreau H, Décary A. Sleep disturbances and EEG slowing in Alzheimer’s disease. Sleep Res Online 1998; 1(4): 147-51.
[PMID: 11382871]
[42]
Smith C, Rose GM. Posttraining paradoxical sleep in rats is increased after spatial learning in the Morris water maze. Behav Neurosci 1997; 111(6): 1197-204.
[http://dx.doi.org/10.1037/0735-7044.111.6.1197] [PMID: 9438789]
[43]
Reimund E. The free radical flux theory of sleep. Med Hypotheses 1994; 43(4): 231-3.
[http://dx.doi.org/10.1016/0306-9877(94)90071-X] [PMID: 7838006]
[44]
Ramanathan L, Gulyani S, Nienhuis R, Siegel JM. Sleep deprivation decreases superoxide dismutase activity in rat hippocampus and brainstem. Neuroreport 2002; 13(11): 1387-90.
[http://dx.doi.org/10.1097/00001756-200208070-00007] [PMID: 12167758]
[45]
Fukui K, Omoi NO, Hayasaka T, et al. Cognitive impairment of rats caused by oxidative stress and aging, and its prevention by vitamin E. Ann N Y Acad Sci 2002; 959: 275-84.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb02099.x] [PMID: 11976202]
[46]
Alzoubi KH, Khabour OF, Salah HA, Hasan Z. Vitamin E prevents high-fat high-carbohydrates diet-induced memory impairment: The role of oxidative stress. Physiol Behav 2013; 119: 72-8.
[http://dx.doi.org/10.1016/j.physbeh.2013.06.011] [PMID: 23769690]
[47]
Eidi M, Eidi A, Bahar M. Effects of Salvia officinalis L. (sage) leaves on memory retention and its interaction with the cholinergic system in rats. Nutrition 2006; 22(3): 321-6.
[http://dx.doi.org/10.1016/j.nut.2005.06.010] [PMID: 16500558]
[48]
Tildesley NT, Kennedy DO, Perry EK, et al. Salvia lavandulaefolia (Spanish sage) enhances memory in healthy young volunteers. Pharmacol Biochem Behav 2003; 75(3): 669-74.
[http://dx.doi.org/10.1016/S0091-3057(03)00122-9] [PMID: 12895685]
[49]
Orhan I, Aslan M. Appraisal of scopolamine-induced antiamnesic effect in mice and in vitro antiacetylcholinesterase and antioxidant activities of some traditionally used Lamiaceae plants. J Ethnopharmacol 2009; 122(2): 327-32.
[http://dx.doi.org/10.1016/j.jep.2008.12.026] [PMID: 19162154]
[50]
Mahdy K, Shaker O, Wafay H, Nassar Y, Hassan H, Hussein A. Effect of some medicinal plant extracts on the oxidative stress status in Alzheimer’s disease induced in rats. Eur Rev Med Pharmacol Sci 2012; 16 (Suppl. 3): 31-42.
[PMID: 22957416]
[51]
Lantzouraki DZ, Tsiaka T, Soteriou N, et al. Antioxidant profiles of Vitis vinifera L. and Salvia triloba L. leaves using high-energy extraction methodologies. J AOAC Int 2020; 103(2): 413-21.
[http://dx.doi.org/10.5740/jaoacint.19-0261] [PMID: 31530341]
[52]
Yildirim A, Mavi A, Oktay M, Kara AA, Algur OF, Bilaloglu V. Comparison of antioxidant and antimicrobial activities of tilia (Tilia argentea Desf ex DC), sage (Salvia triloba l.), and black tea (Camellia sinensis) extracts. J Agric Food Chem 2000; 48(10): 5030-4.
[http://dx.doi.org/10.1021/jf000590k] [PMID: 11052773]
[53]
Shaffery JP, Lopez J, Roffwarg HP. Brain-derived neurotrophic factor (BDNF) reverses the effects of rapid eye movement sleep deprivation (REMSD) on developmentally regulated, long-term potentiation (LTP) in visual cortex slices. Neurosci Lett 2012; 513(1): 84-8.
[http://dx.doi.org/10.1016/j.neulet.2012.02.012] [PMID: 22361363]
[54]
Aicardi G, Argilli E, Cappello S, et al. Induction of long-term potentiation and depression is reflected by corresponding changes in secretion of endogenous brain-derived neurotrophic factor. Proc Natl Acad Sci USA 2004; 101(44): 15788-92.
[http://dx.doi.org/10.1073/pnas.0406960101] [PMID: 15505222]
[55]
Guzman-Marin R, Ying Z, Suntsova N, et al. Suppression of hippocampal plasticity-related gene expression by sleep deprivation in rats. J Physiol 2006; 575(Pt 3): 807-19.
[http://dx.doi.org/10.1113/jphysiol.2006.115287] [PMID: 16825295]
[56]
Hairston IS, Peyron C, Denning DP, et al. Sleep deprivation effects on growth factor expression in neonatal rats: A potential role for BDNF in the mediation of delta power. J Neurophysiol 2004; 91(4): 1586-95.
[http://dx.doi.org/10.1152/jn.00894.2003] [PMID: 14668298]
[57]
Massadeh AM, Alzoubi KH, Milhem AM, Rababa’h AM, Khabour OF. Evaluating the effect of selenium on spatial memory impairment induced by sleep deprivation. Physiol Behav 2022; 244: 113669.
[http://dx.doi.org/10.1016/j.physbeh.2021.113669] [PMID: 34871651]
[58]
Alzoubi KH, Khabour OF, Salah HA, Abu Rashid BE. The combined effect of sleep deprivation and Western diet on spatial learning and memory: Role of BDNF and oxidative stress. J Mol Neurosci 2013; 50(1): 124-33.
[http://dx.doi.org/10.1007/s12031-012-9881-7] [PMID: 22956188]
[59]
Alzoubi KH, Mayyas F, Abu Zamzam HI. Omega-3 fatty acids protects against chronic sleep-deprivation induced memory impairment. Life Sci 2019; 227: 1-7.
[http://dx.doi.org/10.1016/j.lfs.2019.04.028] [PMID: 30998938]
[60]
Tualeka AR, Martiana T, Ahsan A, Russeng SS, Meidikayanti W. Association between malondialdehyde and glutathione (L-gamma-glutamyl-cysteinyl-glycine/GSH) levels on workers exposed to benzene in Indonesia. Open Access Maced J Med Sci 2019; 7(7): 1198-202.
[http://dx.doi.org/10.3889/oamjms.2019.246] [PMID: 31049107]
[61]
Takimoto E, Kass DA. Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension 2007; 49(2): 241-8.
[http://dx.doi.org/10.1161/01.HYP.0000254415.31362.a7] [PMID: 17190878]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy