Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Application of Nano-based Drug Loading Systems in the Treatment of Neurological Infections: An Updated Review

Author(s): Saeed Sadigh-Eteghad, Shahriar Shahi, Javad Mahmoudi, Afsaneh Farjami, Ahad Bazmani, Behrooz Naghili, Solmaz Maleki Dizaj and Sara Salatin*

Volume 28, Issue 28, 2022

Published on: 15 August, 2022

Page: [2330 - 2342] Pages: 13

DOI: 10.2174/1381612828666220728092336

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Infection of the central nervous system (CNS) is a global healthcare concern with high rates of death and disease. CNS infections mainly include meningitis, encephalitis, and brain abscesses. Bacteria, viruses, fungi, protozoa, and parasites are the most common causes of neuroinfections. There are many types of medications used in the treatment of CNS infections, but drug delivery through the blood-brain barrier (BBB) is a major challenge to overcome. The BBB is a specialized multicellular barrier separating the neural tissue from the peripheral blood circulation. Unique characteristics of the BBB allow it to tightly control the movement of ions and molecules. Thus, there is a critical need to deal with these conditions with the aim of improving novel antimicrobial agents. Researchers are still struggling to find effective drugs to treat CNS infections. Nanoparticle (NP)-mediated drug delivery has been considered a profound substitute to solve this problem because NPs can be tailored to facilitate drug transport across the BBB. NPs are colloidal systems with a size range of 1-1000 nm, which can be used to encapsulate therapeutics, improve drug transport across the BBB, and target specific brain areas in CNS infections. A wide variety of NPs has been displayed for the CNS delivery of therapeutics, especially when their surfaces are coated with targeting moieties. This study aimed to review the available literature on the application of NPs in CNS infections.

Keywords: Central nervous system, blood-brain barrier, infection, meningitis, antimicrobial drug delivery, bacteria, nanoparticle.

[1]
Geyer S, Jacobs M, Hsu N-J. Immunity against bacterial infection of the central nervous system: An astrocyte perspective. Front Mol Neurosci 2019; 12(57): 57.
[http://dx.doi.org/10.3389/fnmol.2019.00057] [PMID: 30894799]
[2]
Kristensson K. Microbes’ roadmap to neurons. Nat Rev Neurosci 2011; 12(6): 345-57.
[http://dx.doi.org/10.1038/nrn3029] [PMID: 21587289]
[3]
Brouwer MC, Tunkel AR, van de Beek D. Epidemiology, diagnosis, and antimicrobial treatment of acute bacterial meningitis. Clin Microbiol Rev 2010; 23(3): 467-92.
[http://dx.doi.org/10.1128/CMR.00070-09] [PMID: 20610819]
[4]
Watanabe S, Shirogane Y, Sato Y, Hashiguchi T, Yanagi Y. New insights into measles virus brain infections. Trends Microbiol 2019; 27(2): 164-75.
[http://dx.doi.org/10.1016/j.tim.2018.08.010] [PMID: 30220445]
[5]
Cordeiro CN, Tsimis M, Burd I. Infections and brain development. Obstet Gynecol Surv 2015; 70(10): 644-55.
[http://dx.doi.org/10.1097/OGX.0000000000000236] [PMID: 26490164]
[6]
Chang JB, Wu H, Wang H, Ma BT, Wang RZ, Wei JJ. Prevalence and antibiotic resistance of bacteria isolated from the cerebrospinal fluid of neurosurgical patients at Peking Union Medical College Hospital. Antimicrob Resist Infect Control 2018; 7(1): 41.
[http://dx.doi.org/10.1186/s13756-018-0323-3] [PMID: 29568514]
[7]
Tan YC, Gill AK, Kim KS. Treatment strategies for central nervous system infections: An update. Expert Opin Pharmacother 2015; 16(2): 187-203.
[http://dx.doi.org/10.1517/14656566.2015.973851] [PMID: 25328149]
[8]
Zhang S, Chen Y, Liang J, Wang S, Liu L, Liu S. Nanoformulated antimicrobial agents for central nervous system infections. J Nanosci Nanotechnol 2017; 17(12): 8683-98.
[http://dx.doi.org/10.1166/jnn.2017.14693]
[9]
Al-Ghananeem AM, Saeed H, Florence R, Yokel RA, Malkawi AH. Intranasal drug delivery of didanosine-loaded chitosan nanoparticles for brain targeting; an attractive route against infections caused by AIDS viruses. J Drug Target 2010; 18(5): 381-8.
[http://dx.doi.org/10.3109/10611860903483396] [PMID: 20001275]
[10]
Salatin S. Nanoparticles as potential tools for improved antioxidant enzyme delivery. J Adv Chemical Pharm Mater 2018; 1(3): 65-6.
[11]
Shah P, Dubey P, Vyas B, et al. Lamotrigine loaded PLGA nanoparticles intended for direct nose to brain delivery in epilepsy: Pharmacokinetic, pharmacodynamic and scintigraphy study. Artif Cells Nanomed Biotechnol 2021; 49(1): 511-22.
[http://dx.doi.org/10.1080/21691401.2021.1939709] [PMID: 34151674]
[12]
Monge-Fuentes V, Biolchi Mayer A, Lima MR, et al. Dopamine-loaded nanoparticle systems circumvent the blood-brain barrier restoring motor function in mouse model for Parkinson’s disease. Sci Rep 2021; 11(1): 15185.
[http://dx.doi.org/10.1038/s41598-021-94175-8] [PMID: 34312413]
[13]
Ruan S, Hu C, Tang X, et al. Increased gold nanoparticle retention in brain tumors by in situ enzyme-induced aggregation. ACS Nano 2016; 10(11): 10086-98.
[http://dx.doi.org/10.1021/acsnano.6b05070] [PMID: 27934068]
[14]
Maghsoodi M, Rahmani M, Ghavimi H, et al. Fast dissolving sublingual films containing sumatriptan alone and combined with methoclopramide: Evaluation in vitro drug release and mucosal permeation. Ulum-i Daruyi 2016; 22(3): 153-63.
[http://dx.doi.org/10.15171/PS.2016.25]
[15]
Abdullahi W, Tripathi D, Ronaldson PT. Blood-brain barrier dysfunction in ischemic stroke: Targeting tight junctions and transporters for vascular protection. Am J Physiol Cell Physiol 2018; 315(3): C343-56.
[http://dx.doi.org/10.1152/ajpcell.00095.2018] [PMID: 29949404]
[16]
Chen J, Wang X, Hu J, et al. FGF20 protected against BBB disruption after traumatic brain injury by upregulating junction protein expression and inhibiting the inflammatory response. Front Pharmacol 2021; 11: 590669.
[http://dx.doi.org/10.3389/fphar.2020.590669] [PMID: 33568994]
[17]
Cain MD, Salimi H, Gong Y, et al. Virus entry and replication in the brain precedes blood-brain barrier disruption during intranasal alpha virus infection. J Neuroimmunol 2017; 308: 118-30.
[http://dx.doi.org/10.1016/j.jneuroim.2017.04.008] [PMID: 28501330]
[18]
Salimi H, Cain MD, Klein RS. Encephalitic arboviruses: Emergence, clinical presentation, and neuropathogenesis. Neurotherapeutics 2016; 13(3): 514-34.
[http://dx.doi.org/10.1007/s13311-016-0443-5] [PMID: 27220616]
[19]
Gralinski LE, Ashley SL, Dixon SD, Spindler KR. Mouse adenovirus type 1-induced breakdown of the blood-brain barrier. J Virol 2009; 83(18): 9398-410.
[http://dx.doi.org/10.1128/JVI.00954-09] [PMID: 19570856]
[20]
Erbar S, Maisner A. Nipah virus infection and glycoprotein targeting in endothelial cells. Virol J 2010; 7(1): 305.
[http://dx.doi.org/10.1186/1743-422X-7-305] [PMID: 21054904]
[21]
Lopez-Ramirez MA, Fischer R, Torres-Badillo CC, et al. Role of caspases in cytokine-induced barrier breakdown in human brain endothelial cells. J Immunol 2012; 189(6): 3130-9.
[http://dx.doi.org/10.4049/jimmunol.1103460] [PMID: 22896632]
[22]
Li F, Wang Y, Yu L, et al. Viral infection of the central nervous system and neuroinflammation precede blood-brain barrier disruption during Japanese encephalitis virus infection. J Virol 2015; 89(10): 5602-14.
[http://dx.doi.org/10.1128/JVI.00143-15] [PMID: 25762733]
[23]
Lu CT, Zhao YZ, Wong HL, Cai J, Peng L, Tian X-Q. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomedicine 2014; 9: 2241-57.
[http://dx.doi.org/10.2147/IJN.S61288] [PMID: 24872687]
[24]
Nair KGS, Ramaiyan V, Sukumaran SK. Enhancement of drug permeability across blood brain barrier using nanoparticles in meningitis. Inflammopharmacology 2018; 26(3): 675-84.
[http://dx.doi.org/10.1007/s10787-018-0468-y] [PMID: 29582240]
[25]
Hathout RM, Abdelhamid SG, El-Housseiny GS, Metwally AA. Comparing cefotaxime and ceftriaxone in combating meningitis through nose-to-brain delivery using bio/chemoinformatics tools. Sci Rep 2020; 10(1): 21250.
[http://dx.doi.org/10.1038/s41598-020-78327-w] [PMID: 33277611]
[26]
Tunkel AR, Scheld WM. Pathogenesis and pathophysiology of bacterial meningitis. Clin Microbiol Rev 1993; 6(2): 118-36.
[http://dx.doi.org/10.1128/CMR.6.2.118] [PMID: 8472245]
[27]
Yi SA, Nam KH, Yun J, et al. Infection of brain organoids and 2D cortical neurons with SARS-CoV-2 pseudovirus. Viruses 2020; 12(9): 1004.
[http://dx.doi.org/10.3390/v12091004] [PMID: 32911874]
[28]
Giovane RA, Lavender PD. Central nervous system infections. Prim Care 2018; 45(3): 505-18.
[http://dx.doi.org/10.1016/j.pop.2018.05.007] [PMID: 30115337]
[29]
Zhang SS, Asghar S, Ye JX, et al. A combination of receptor mediated transcytosis and photothermal effect promotes BBB permeability and the treatment of meningitis using itraconazole. Nanoscale 2020; 12(46): 23709-20.
[http://dx.doi.org/10.1039/D0NR04035E] [PMID: 33231242]
[30]
Vetter P, Schibler M, Herrmann JL, Boutolleau D. Diagnostic challenges of central nervous system infection: Extensive multiplex panels versus stepwise guided approach. Clin Microbiol Infect 2020; 26(6): 706-12.
[http://dx.doi.org/10.1016/j.cmi.2019.12.013] [PMID: 31899336]
[31]
Woehrl B, Klein M, Grandgirard D, Koedel U, Leib S. Bacterial meningitis: Current therapy and possible future treatment options. Expert Rev Anti Infect Ther 2011; 9(11): 1053-65.
[http://dx.doi.org/10.1586/eri.11.129] [PMID: 22029523]
[32]
Barani M, Mukhtar M, Rahdar A, Sargazi G, Thysiadou A, Kyzas GZ. Progress in the application of nanoparticles and graphene as drug carriers and on the diagnosis of brain infections. Molecules 2021; 26(1): 1-19.
[http://dx.doi.org/10.3390/molecules26010186] [PMID: 33401658]
[33]
Bernard-Valnet R, Pizzarotti B, Anichini A, et al. Two patients with acute meningoencephalitis concomitant with SARS-CoV-2 infection. Eur J Neurol 2020; 27(9): e43-4.
[http://dx.doi.org/10.1111/ene.14298] [PMID: 32383343]
[34]
Brook I. Microbiology and treatment of brain abscess. J Clin Neurosci 2017; 38: 8-12.
[http://dx.doi.org/10.1016/j.jocn.2016.12.035] [PMID: 28089421]
[35]
Velkov T, Dai C, Ciccotosto GD, Cappai R, Hoyer D, Li J. Polymyxins for CNS infections: Pharmacology and neurotoxicity. Pharmacol Ther 2018; 181: 85-90.
[http://dx.doi.org/10.1016/j.pharmthera.2017.07.012] [PMID: 28750947]
[36]
Seetharamsingh B, Ramesh R, Dange SS, et al. Design, synthesis, and identification of silicon incorporated oxazolidinone antibiotics with improved brain exposure. ACS Med Chem Lett 2015; 6(11): 1105-10.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00213] [PMID: 26617962]
[37]
Han Y, Liu Y, Ma X, et al. Antibiotics armed neutrophils as a potential therapy for brain fungal infection caused by chemotherapy-induced neutropenia. Biomaterials 2021; 274: 120849.
[http://dx.doi.org/10.1016/j.biomaterials.2021.120849] [PMID: 34022739]
[38]
Sun G, Zeng S, Liu X, et al. Synthesis and characterization of a silica-based drug delivery system for spinal cord injury therapy. Nano-Micro Lett 2019; 11(1): 23.
[http://dx.doi.org/10.1007/s40820-019-0252-6] [PMID: 34137964]
[39]
Eftekhari A, Ahmadian E, Salatin S, et al. Current analytical approaches in diagnosis of melanoma. Trends Analyt Chem 2019; 116: 122-35.
[http://dx.doi.org/10.1016/j.trac.2019.05.004]
[40]
Salatin S, Barar J, Barzegar-Jalali M, Adibkia K, Kiafar F, Jelvehgari M. An alternative approach for improved entrapment efficiency of hydrophilic drug substance in PLGA nanoparticles by interfacial polymer deposition following solvent displacement. Jundishapur J Nat Pharm Prod 2018; 13(4): 12873.
[http://dx.doi.org/10.5812/jjnpp.12873]
[41]
Sharifi S, Samani A, Ahmadian E, et al. Oral delivery of proteins and peptides by mucoadhesive nanoparticles. Biointerface Res Appl Chem 2019; 9(2): 3849-52.
[http://dx.doi.org/10.33263/BRIAC92.849852]
[42]
Alami-Milani M, Zakeri-Milani P, Valizadeh H, Sattari S, Salatin S, Jelvehgari M. Evaluation of anti-inflammatory impact of dexamethasone-loaded PCL-PEG-PCL micelles on endotoxin-induced uveitis in rabbits. Pharm Dev Technol 2019; 24(6): 680-8.
[http://dx.doi.org/10.1080/10837450.2019.1578370] [PMID: 30892119]
[43]
Cayero-Otero MD, Gomes MJ, Martins C, et al. In vivo biodistribution of venlafaxine-PLGA nanoparticles for brain delivery: Plain vs. functionalized nanoparticles. Expert Opin Drug Deliv 2019; 16(12): 1413-27.
[http://dx.doi.org/10.1080/17425247.2019.1690452] [PMID: 31694417]
[44]
Guo Z, Zhang P, Chakraborty S, et al. Biotransformation modulates the penetration of metallic nanomaterials across an artificial blood-brain barrier model. Proc Natl Acad Sci 2021; 118(28): e2105245118.
[http://dx.doi.org/10.1073/pnas.2105245118] [PMID: 34260400]
[45]
Saha S, Yakati V, Shankar G, et al. Amphetamine decorated cationic lipid nanoparticles cross the blood-brain barrier: Therapeutic promise for combating glioblastoma. J Mater Chem B Mater Biol Med 2020; 8(19): 4318-30.
[http://dx.doi.org/10.1039/C9TB02700A] [PMID: 32330214]
[46]
Rabanel JM, Piec PA, Landri S, Patten SA, Ramassamy C. Transport of PEGylated-PLA nanoparticles across a blood brain barrier model, entry into neuronal cells and in vivo brain bioavailability. J Control Release 2020; 328: 679-95.
[http://dx.doi.org/10.1016/j.jconrel.2020.09.042] [PMID: 32979453]
[47]
Da Silva-Candal A, Brown T, Krishnan V, et al. Shape effect in active targeting of nanoparticles to inflamed cerebral endothelium under static and flow conditions. J Control Release 2019; 309: 94-105.
[http://dx.doi.org/10.1016/j.jconrel.2019.07.026] [PMID: 31330214]
[48]
Zhang L, Fan J, Li G, Yin Z, Fu BM. Transcellular model for neutral and charged nanoparticles across an in vitro blood–brain barrier. Cardiovasc Eng Technol 2020; 11(6): 607-20.
[http://dx.doi.org/10.1007/s13239-020-00496-6] [PMID: 33113565]
[49]
Liang J, Gao C, Zhu Y, et al. Natural brain penetration enhancer-modified albumin nanoparticles for glioma targeting delivery. ACS Appl Mater Interfaces 2018; 10(36): 30201-13.
[http://dx.doi.org/10.1021/acsami.8b11782] [PMID: 30113810]
[50]
Hersh AM, Alomari S, Tyler BM. Crossing the blood-brain barrier: Advances in nanoparticle technology for drug delivery in neuro-oncology. Int J Mol Sci 2022; 23(8): 1-28.
[http://dx.doi.org/10.3390/ijms23084153] [PMID: 35456971]
[51]
Dos Santos Rodrigues B, Lakkadwala S, Kanekiyo T, Singh J. Development and screening of brain-targeted lipid-based nanoparticles with enhanced cell penetration and gene delivery properties. Int J Nanomedicine 2019; 14: 6497-517.
[http://dx.doi.org/10.2147/IJN.S215941] [PMID: 31616141]
[52]
Fonseca-Gomes J, Loureiro JA, Tanqueiro SR, et al. In vivo bio-distribution and toxicity evaluation of polymeric and lipid-based nanoparticles: A potential approach for chronic diseases treatment. Int J Nanomedicine 2020; 15: 8609-21.
[http://dx.doi.org/10.2147/IJN.S267007] [PMID: 33177821]
[53]
Mahmoud NN, Albasha A, Hikmat S, et al. Nanoparticle size and chemical modification play a crucial role in the interaction of nano gold with the brain: Extent of accumulation and toxicity. Biomater Sci 2020; 8(6): 1669-82.
[http://dx.doi.org/10.1039/C9BM02072A] [PMID: 31984985]
[54]
Brown TD, Habibi N, Wu D, Lahann J, Mitragotri S. Effect of nanoparticle composition, size, shape, and stiffness on penetration across the blood-brain barrier. ACS Biomater Sci Eng 2020; 6(9): 4916-28.
[http://dx.doi.org/10.1021/acsbiomaterials.0c00743] [PMID: 33455287]
[55]
Ahmadian E, Samiei M, Hasanzadeh A, et al. Monitoring of drug resistance towards reducing the toxicity of pharmaceutical compounds: Past, present and future. J Pharm Biomed Anal 2020; 186: 113265.
[http://dx.doi.org/10.1016/j.jpba.2020.113265] [PMID: 32283481]
[56]
Jiang Z, Dong X, Sun Y. Charge effects of self-assembled chitosan-hyaluronic acid nanoparticles on inhibiting amyloid β-protein aggregation. Carbohydr Res 2018; 461: 11-8.
[http://dx.doi.org/10.1016/j.carres.2018.03.001] [PMID: 29549749]
[57]
Su Y, Sun B, Gao X, et al. Intranasal delivery of targeted nanoparticles loaded with miR-132 to brain for the treatment of neurodegenerative diseases. Front Pharmacol 2020; 11: 1165-75.
[http://dx.doi.org/10.3389/fphar.2020.01165] [PMID: 32848773]
[58]
Sánchez-López E, Ettcheto M, Egea MA, et al. Memantine loaded PLGA PEGylated nanoparticles for Alzheimer’s disease: In vitro and in vivo characterization. J Nanobiotechnology 2018; 16(1): 32.
[http://dx.doi.org/10.1186/s12951-018-0356-z] [PMID: 29587747]
[59]
Sun Y, Du L, Yang M, et al. Brain-targeted drug delivery assisted by physical techniques and its potential applications in traditional Chinese medicine. J Tradit Chin Med Sci 2021; 8(3): 186-97.
[http://dx.doi.org/10.1016/j.jtcms.2021.07.003]
[60]
Feng Q, Liu Y, Huang J, Chen K, Huang J, Xiao K. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci Rep 2018; 8(1): 2082.
[http://dx.doi.org/10.1038/s41598-018-19628-z] [PMID: 29391477]
[61]
Tao X, Mao S, Zhang Q, et al. Brain-targeted polysorbate 80-emulsified donepezil drug-loaded nanoparticles for neuroprotection. Nanoscale Res Lett 2021; 16(1): 132.
[http://dx.doi.org/10.1186/s11671-021-03584-1] [PMID: 34406517]
[62]
Yusuf M, Khan M, Alrobaian MM, et al. Brain targeted polysorbate- 80 coated PLGA thymoquinone nanoparticles for the treatment of Alzheimer's disease, with biomechanistic insights. J Drug Deliv Sci Technol 2021; 61(2021): 102214.
[63]
Prabhakar K, Afzal SM, Surender G, Kishan V. Tween 80 containing lipid nanoemulsions for delivery of Indinavir to brain. Acta Pharm Sin B 2013; 3(5): 345-53.
[http://dx.doi.org/10.1016/j.apsb.2013.08.001]
[64]
Zhang Y, Guo P, Ma Z, Lu P, Kebebe D, Liu Z. Combination of cell-penetrating peptides with nanomaterials for the potential therapeutics of central nervous system disorders: A review. J Nanobiotechnology 2021; 19(1): 255.
[http://dx.doi.org/10.1186/s12951-021-01002-3] [PMID: 34425832]
[65]
Kirtane AR, Verma M, Karandikar P, Furin J, Langer R, Traverso G. Nanotechnology approaches for global infectious diseases. Nat Nanotechnol 2021; 16(4): 369-84.
[http://dx.doi.org/10.1038/s41565-021-00866-8] [PMID: 33753915]
[66]
Saqib M, Ali Bhatti AS, Ahmad NM, et al. Amphotericin B loaded polymeric nanoparticles for treatment of leishmania infections. Nanomaterials 2020; 10(6): 1-16.
[http://dx.doi.org/10.3390/nano10061152] [PMID: 32545473]
[67]
Salatin S, Lotfipour F, Jelvehgari M. A brief overview on nano-sized materials used in the topical treatment of skin and soft tissue bacterial infections. Expert Opin Drug Deliv 2019; 16(12): 1313-31.
[http://dx.doi.org/10.1080/17425247.2020.1693998] [PMID: 31738622]
[68]
Salatin S, Jelvehgari M. Desirability function approach for development of a thermosensitive and bioadhesive nanotransfersome-hydrogel hybrid system for enhanced skin bioavailability and antibacterial activity of cephalexin. Drug Dev Ind Pharm 2020; 46(8): 1318-33.
[http://dx.doi.org/10.1080/03639045.2020.1788068] [PMID: 32598186]
[69]
Yu H, Ma Z, Meng S, et al. A novel nanohybrid antimicrobial based on chitosan nanoparticles and antimicrobial peptide microcin J25 with low toxicity. Carbohydr Polym 2021; 253: 117309.
[http://dx.doi.org/10.1016/j.carbpol.2020.117309] [PMID: 33278958]
[70]
Padhi S, Mazumder R, Bisth S. Development and application of lipid nanotechnology on infectious diseases of CNS-current scenario. Ind J Pharm Educ Res 2019; 53(3): 355-65.
[http://dx.doi.org/10.5530/ijper.53.3.69]
[71]
Leibovitch EC, Jacobson S. Vaccinations for neuroinfectious disease: A global health priority. Neurotherapeutics 2016; 13(3): 562-70.
[http://dx.doi.org/10.1007/s13311-016-0453-3] [PMID: 27365085]
[72]
Kempe K, Nicolazzo JA. Biodegradable polymeric nanoparticles for brain-targeted drug delivery. In:Nanomedicines for Brain Drug Delivery Humana, New York, NY 2021; pp. 1-27.
[73]
Salatin S, Alami-Milani M, Jelvehgari M. Expert design and optimization of a novel buccoadhesive blend film impregnated with metformin nanoparticles. Ther Deliv 2020; 11(9): 573-90.
[http://dx.doi.org/10.4155/tde-2020-0066] [PMID: 32873189]
[74]
Salatin S, Alami-Milani M, Daneshgar R, Jelvehgari M. Box-Behnken experimental design for preparation and optimization of the intranasal gels of selegiline hydrochloride. Drug Dev Ind Pharm 2018; 44(10): 1613-21.
[http://dx.doi.org/10.1080/03639045.2018.1483387] [PMID: 29932793]
[75]
Lotfipour F, Alami-Milani M, Salatin S, Hadavi A, Jelvehgari M. Freeze-thaw-induced cross-linked PVA/chitosan for oxytetracycline-loaded wound dressing: The experimental design and optimization. Res Pharm Sci 2019; 14(2): 175-89.
[http://dx.doi.org/10.4103/1735-5362.253365] [PMID: 31620194]
[76]
Salatin S, Lotfipour F, Jelvehgari M. Preparation and characterization of a novel thermosensitive and bioadhesive cephalexin nanohydrogel: A promising platform for topical antibacterial delivery. Expert Opin Drug Deliv 2020; 17(6): 881-93.
[http://dx.doi.org/10.1080/17425247.2020.1764530] [PMID: 32441175]
[77]
Kakad SP, Kshirsagar SJ. Neuro-AIDS: Current status and challenges to antiretroviral drug therapy (ART) for its treatment. Curr Drug Ther 2020; 15(5): 469-81.
[http://dx.doi.org/10.2174/1574885515666200604123046]
[78]
Gong Y, Chowdhury P, Nagesh PKB, et al. Novel elvitegravir nanoformulation for drug delivery across the blood-brain barrier to achieve HIV-1 suppression in the CNS macrophages. Sci Rep 2020; 10(1): 3835.
[http://dx.doi.org/10.1038/s41598-020-60684-1] [PMID: 32123217]
[79]
Zhang J, Sun H, Gao C, et al. Development of a chitosan-modified PLGA nanoparticle vaccine for protection against Escherichia coli K1 caused meningitis in mice. J Nanobiotechnology 2021; 19(1): 69.
[http://dx.doi.org/10.1186/s12951-021-00812-9] [PMID: 33673858]
[80]
Thammasit P, Tharinjaroen CS, Tragoolpua Y, et al. Targeted propolis-loaded poly (butyl) cyanoacrylate nanoparticles: An alternative drug delivery tool for the treatment of cryptococcal meningitis. Front Pharmacol 2021; 12(2198): 723727.
[http://dx.doi.org/10.3389/fphar.2021.723727] [PMID: 34489710]
[81]
Surnar B, Shah AS, Park M, et al. Brain-accumulating nanoparticles for assisting astrocytes to reduce human immunodeficiency virus and drug abuse-induced neuroinflammation and oxidative stress. ACS Nano 2021; 15(10): 15741-53.
[http://dx.doi.org/10.1021/acsnano.0c09553] [PMID: 34355558]
[82]
Yu Y, Peng L, Liao G, Chen Z, Li C. Noncovalent complexation of amphotericin B with poly (β-amino ester) derivates for treatment of C. neoformans infection. Polymers 2019; 11(2): 1-13.
[http://dx.doi.org/10.3390/polym11020270] [PMID: 30960254]
[83]
Stewart ER, Eldridge ML, McHardy I, Cohen SH, Thompson GR III. Liposomal amphotericin B as monotherapy in relapsed coccidioidal meningitis. Mycopathologia 2018; 183(3): 619-22.
[http://dx.doi.org/10.1007/s11046-017-0240-7] [PMID: 29340909]
[84]
Xie H, Luo P, Li Z, Li R, Sun H, Wu D. Continuous intrathecal administration of liposomal amphotericin B for treatment of refractory Cryptococcus neoformans encephalitis: A case report. Exp Ther Med 2017; 14(1): 780-4.
[http://dx.doi.org/10.3892/etm.2017.4554] [PMID: 28672999]
[85]
Nasiri M, Azadi A, Zanjani MRS, Hamidi M. Indinavir-loaded nanostructured lipid carriers to brain drug delivery: Optimization, characterization and neuropharmacokinetic evaluation. Curr Drug Deliv 2019; 16(4): 341-54.
[http://dx.doi.org/10.2174/1567201816666190123124429] [PMID: 30674257]
[86]
Luo Y, Friese OV, Runnels HA, et al. The dual role of lipids of the lipoproteins in trumenba, a self-adjuvanting vaccine against meningococcal meningitis B disease. AAPS J 2016; 18(6): 1562-75.
[http://dx.doi.org/10.1208/s12248-016-9979-x] [PMID: 27604766]
[87]
Musa SH, Basri M, Masoumi HRF, et al. Formulation optimization of palm kernel oil esters nanoemulsion-loaded with chloramphenicol suitable for meningitis treatment. Colloids Surf B Biointerfaces 2013; 112: 113-9.
[http://dx.doi.org/10.1016/j.colsurfb.2013.07.043] [PMID: 23974000]
[88]
Rodriguez-Izquierdo I, Serramia MJ, Gomez R, De La Mata FJ, Bullido MJ, Muñoz-Fernández M. Gold nanoparticles crossing blood-brain barrier prevent HSV-1 infection and reduce herpes associated amyloid-βsecretion. J Clin Med 2020; 9(1): 155.
[89]
Chen H-H, Lin C-J, Anand A, et al. Development of antiviral carbon quantum dots that target the Japanese encephalitis virus envelope protein. J Biol Chem 2022; 298(6): 101957.
[http://dx.doi.org/10.1016/j.jbc.2022.101957] [PMID: 35452675]
[90]
Wang H, Xu K, Liu L, et al. The efficacy of self-assembled cationic antimicrobial peptide nanoparticles against Cryptococcus neoformans for the treatment of meningitis. Biomaterials 2010; 31(10): 2874-81.
[http://dx.doi.org/10.1016/j.biomaterials.2009.12.042] [PMID: 20044131]
[91]
He B, Ma S, Peng G, He D. TAT-modified self-assembled cationic peptide nanoparticles as an efficient antibacterial agent. Nanomedicine 2018; 14(2): 365-72.
[http://dx.doi.org/10.1016/j.nano.2017.11.002] [PMID: 29170111]
[92]
Hama KM, Khan D, Laouali B, et al. Pediatric bacterial meningitis surveillance in Niger: Increased importance of neisseria meningitidis serogroup C, and a decrease in streptococcus pneumoniae following 13-valent pneumococcal conjugate vaccine introduction. Clin Infect Dis 2019; 69(Suppl. 2): S133-9.
[http://dx.doi.org/10.1093/cid/ciz598] [PMID: 31505636]
[93]
Dizaj SM, Rad AA, Safaei N, et al. The application of nanomaterials in cardiovascular diseases: A review on drugs and devices. J Pharm Pharm Sci 2019; 22: 501-15.
[http://dx.doi.org/10.18433/jpps30456]
[94]
Zhang S, Asghar S, Yang L, et al. Borneol and poly (ethylene glycol) dual modified BSA nanoparticles as an itraconazole vehicle for brain targeting. Int J Pharm 2020; 575: 119002.
[http://dx.doi.org/10.1016/j.ijpharm.2019.119002] [PMID: 31893546]
[95]
Poinard B, Kamaluddin S, Tan AQQ, Neoh KG, Kah JCY. Polydopamine coating enhances mucopenetration and cell uptake of nanoparticles. ACS Appl Mater Interfaces 2019; 11(5): 4777-89.
[http://dx.doi.org/10.1021/acsami.8b18107] [PMID: 30694045]
[96]
Sidhaye AA, Bhuran KC, Zambare S, Abubaker M, Nirmalan N, Singh KK. Bio-inspired artemether-loaded human serum albumin nanoparticles for effective control of malaria-infected erythrocytes. Nanomedicine 2016; 11(21): 2809-28.
[http://dx.doi.org/10.2217/nnm-2016-0235] [PMID: 27759489]
[97]
Wang DY, van der Mei HC, Ren Y, Busscher HJ, Shi L. Lipid-based antimicrobial delivery-systems for the treatment of bacterial infections. Front Chem 2020; 7(872): 872.
[http://dx.doi.org/10.3389/fchem.2019.00872] [PMID: 31998680]
[98]
Liu C, Liu XN, Wang GL, et al. A dual-mediated liposomal drug delivery system targeting the brain: Rational construction, integrity evaluation across the blood-brain barrier, and the transporting mechanism to glioma cells. Int J Nanomedicine 2017; 12: 2407-25.
[http://dx.doi.org/10.2147/IJN.S131367] [PMID: 28405164]
[99]
Shi D, Mi G, Shen Y, Webster TJ. Glioma-targeted dual functionalized thermosensitive Ferri-liposomes for drug delivery through an in vitro blood-brain barrier. Nanoscale 2019; 11(32): 15057-71.
[http://dx.doi.org/10.1039/C9NR03931G] [PMID: 31369016]
[100]
Li SS, Tang XY, Zhang SG, Ni SL, Yang NB, Lu MQ. Voriconazole combined with low-dose amphotericin B liposome for treatment of cryptococcal meningitis. Infect Dis 2016; 48(7): 563-5.
[http://dx.doi.org/10.3109/23744235.2016.1157897] [PMID: 27044559]
[101]
Garvey EP, Sharp AD, Warn PA, Yates CM, Schotzinger RJ. The novel fungal CYP51 inhibitor VT-1598 is efficacious alone and in combination with liposomal amphotericin B in a murine model of cryptococcal meningitis. J Antimicrob Chemother 2018; 73(10): 2815-22.
[http://dx.doi.org/10.1093/jac/dky242] [PMID: 29947783]
[102]
Garcia BC, Shi D, Webster TJ. Tat-functionalized liposomes for the treatment of meningitis: An in vitro study. Int J Nanomedicine 2017; 12: 3009-21.
[http://dx.doi.org/10.2147/IJN.S130125] [PMID: 28442909]
[103]
Hady AM, Sayed OM, Akl MA. Brain uptake and accumulation of new levofloxacin-doxycycline combination through the use of solid lipid nanoparticles: Formulation; optimization and in-vivo evaluation. Colloids Surf B Biointerfaces 2020; 193: 111076.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111076] [PMID: 32408259]
[104]
Du W, Li H, Tian B, et al. Development of nose-to-brain delivery of ketoconazole by nanostructured lipid carriers against cryptococcal meningoencephalitis in mice. Colloids Surf B Biointerfaces 2019; 183: 110446.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110446] [PMID: 31465938]
[105]
Khan SA, Rehman S, Nabi B, et al. Boosting the brain delivery of atazanavir through nanostructured lipid carrier-based approach for mitigating neuroaids. Pharmaceutics 2020; 12(11): 1-26.
[http://dx.doi.org/10.3390/pharmaceutics12111059] [PMID: 33172119]
[106]
Yi Y, Lin G, Chen S, Liu J, Zhang H, Mi P. Polyester micelles for drug delivery and cancer theranostics: Current achievements, progresses and future perspectives. Mater Sci Eng C 2018; 83: 218-32.
[http://dx.doi.org/10.1016/j.msec.2017.10.004] [PMID: 29208282]
[107]
Naruphontjirakul P, Viravaidya-Pasuwat K. Development of anti-HER2-targeted doxorubicin-core-shell chitosan nanoparticles for the treatment of human breast cancer. Int J Nanomedicine 2019; 14: 4105-21.
[http://dx.doi.org/10.2147/IJN.S198552] [PMID: 31239670]
[108]
Zhou Q, Zhang L, Yang T, Wu H. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomedicine 2018; 13: 2921-42.
[http://dx.doi.org/10.2147/IJN.S158696] [PMID: 29849457]
[109]
Yin Y, Wang J, Yang M, et al. Penetration of the blood-brain barrier and the anti-tumour effect of a novel PLGA-lysoGM1/DOX micelle drug delivery system. Nanoscale 2020; 12(5): 2946-60.
[http://dx.doi.org/10.1039/C9NR08741A] [PMID: 31994576]
[110]
Liu L, Venkatraman SS, Yang YY, et al. Polymeric micelles anchored with TAT for delivery of antibiotics across the blood-brain barrier. Biopolymers 2008; 90(5): 617-23.
[http://dx.doi.org/10.1002/bip.20998] [PMID: 18412128]
[111]
Tang X, Liang Y, Zhu Y, et al. Anti-transferrin receptor-modified amphotericin B-loaded PLA-PEG nanoparticles cure Candidal meningitis and reduce drug toxicity. Int J Nanomedicine 2015; 10: 6227-41.
[http://dx.doi.org/10.2147/IJN.S84656] [PMID: 26491294]
[112]
Hong W, Zhang Z, Liu L, Zhao Y, Zhang D, Liu M. Brain-targeted delivery of PEGylated nano-bacitracin A against penicillin-sensitive and -resistant pneumococcal meningitis: Formulated with RVG29 and pluronic® P85 unimers. Drug Deliv 2018; 25(1): 1886-97.
[http://dx.doi.org/10.1080/10717544.2018.1486473] [PMID: 30404541]
[113]
Shao K, Zhang Y, Ding N, et al. Functionalized nanoscale micelles with brain targeting ability and intercellular microenvironment biosensitivity for anti-intracranial infection applications. Adv Healthc Mater 2015; 4(2): 291-300.
[http://dx.doi.org/10.1002/adhm.201400214] [PMID: 25124929]
[114]
Boche M, Pokharkar V. Quetiapine nanoemulsion for intranasal drug delivery: Evaluation of brain-targeting efficiency. AAPS PharmSciTech 2017; 18(3): 686-96.
[http://dx.doi.org/10.1208/s12249-016-0552-9] [PMID: 27207184]
[115]
Ahmad E, Feng Y, Qi J, et al. Evidence of nose-to-brain delivery of nanoemulsions: Cargoes but not vehicles. Nanoscale 2017; 9(3): 1174-83.
[http://dx.doi.org/10.1039/C6NR07581A] [PMID: 28009915]
[116]
Rinaldi F, Oliva A, Sabatino M, et al. Antimicrobial essential oil formulation: Chitosan coated nanoemulsions for nose to brain delivery. Pharmaceutics 2020; 12(7): 1-18.
[http://dx.doi.org/10.3390/pharmaceutics12070678] [PMID: 32709076]
[117]
Harun SN, Nordin SA, Gani SSA, Shamsuddin AF, Basri M, Basri HB. Development of nanoemulsion for efficient brain parenteral delivery of cefuroxime: Designs, characterizations, and pharmacokinetics. Int J Nanomedicine 2018; 13: 2571-84.
[http://dx.doi.org/10.2147/IJN.S151788] [PMID: 29731632]
[118]
Azami SJ, Teimouri A, Keshavarz H, et al. Curcumin nanoemulsion as a novel chemical for the treatment of acute and chronic toxoplasmosis in mice. Int J Nanomedicine 2018; 13: 7363-74.
[http://dx.doi.org/10.2147/IJN.S181896] [PMID: 30519020]
[119]
Vio V, Marchant MJ, Araya E, Kogan MJ. Metal nanoparticles for the treatment and diagnosis of neurodegenerative brain diseases. Curr Pharm Des 2017; 23(13): 1916-26.
[http://dx.doi.org/10.2174/1381612823666170105152948] [PMID: 28056734]
[120]
Sintov AC, Velasco-Aguirre C, Gallardo-Toledo E, Araya E, Kogan MJ. Metal nanoparticles as targeted carriers circumventing the blood-brain barrier. Int Rev Neurobiol 2016; 130: 199-227.
[http://dx.doi.org/10.1016/bs.irn.2016.06.007] [PMID: 27678178]
[121]
Dixit S, Novak T, Miller K, Zhu Y, Kenney ME, Broome A-M. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors. Nanoscale 2015; 7(5): 1782-90.
[http://dx.doi.org/10.1039/C4NR04853A] [PMID: 25519743]
[122]
Morshed RA, Muroski ME, Dai Q, et al. Cell-penetrating peptide-modified gold nanoparticles for the delivery of doxorubicin to brain metastatic breast cancer. Mol Pharm 2016; 13(6): 1843-54.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00004] [PMID: 27169484]
[123]
Prades R, Guerrero S, Araya E, et al. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials 2012; 33(29): 7194-205.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.063] [PMID: 22795856]
[124]
Khongkow M, Yata T, Boonrungsiman S, Ruktanonchai UR, Graham D, Namdee K. Surface modification of gold nanoparticles with neuron-targeted exosome for enhanced blood-brain barrier penetration. Sci Rep 2019; 9(1): 8278.
[http://dx.doi.org/10.1038/s41598-019-44569-6] [PMID: 31164665]
[125]
Chintalacharuvu KR, Matolek ZA, Pacheco B, Carriera EM, Beenhouwer DO. Complexing amphotericin B with gold nanoparticles improves fungal clearance from the brains of mice infected with Cryptococcal neoformans. Med Mycol 2021; 59(11): 1085-91.
[http://dx.doi.org/10.1093/mmy/myab042] [PMID: 34332505]
[126]
Rajendran K, Anwar A, Khan NA, Shah MR, Siddiqui R. trans-Cinnamic acid conjugated gold nanoparticles as potent therapeutics against brain-eating amoeba Naegleria fowleri. ACS Chem Neurosci 2019; 10(6): 2692-6.
[http://dx.doi.org/10.1021/acschemneuro.9b00111] [PMID: 30970208]
[127]
Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 2016; 17(9): 1-10.
[http://dx.doi.org/10.3390/ijms17091534] [PMID: 27649147]
[128]
Elrod N, Brady J, Rathburn H, Speshock J. Alteration of cytokine profiles inhibits efficacy of silver nanoparticle-based neutralization of arenaviruses. Toxicol Open Access 2017; 3(2): 1-6.
[http://dx.doi.org/10.4172/2476-2067.1000124]
[129]
Rajendran K, Anwar A, Khan NA, Siddiqui R. Brain-eating amoebae: Silver nanoparticle conjugation enhanced efficacy of anti-amoebic drugs against Naegleria fowleri. ACS Chem Neurosci 2017; 8(12): 2626-30.
[http://dx.doi.org/10.1021/acschemneuro.7b00430] [PMID: 29206032]
[130]
Anwar A, Mungroo MR, Anwar A, Sullivan WJ Jr, Khan NA, Siddiqui R. Repositioning of guanabenz in conjugation with gold and silver nanoparticles against pathogenic amoebae Acanthamoeba castellanii and Naegleria fowleri. ACS Infect Dis 2019; 5(12): 2039-46.
[http://dx.doi.org/10.1021/acsinfecdis.9b00263] [PMID: 31612700]
[131]
Anwar A, Masri A, Rao K, et al. Antimicrobial activities of green synthesized gums-stabilized nanoparticles loaded with flavonoids. Sci Rep 2019; 9(1): 3122.
[http://dx.doi.org/10.1038/s41598-019-39528-0] [PMID: 30816269]
[132]
Kutchy NA, Peeples ES, Sil S, et al. Extracellular vesicles in viral infections of the nervous system. Viruses 2020; 12(7): 1-28.
[http://dx.doi.org/10.3390/v12070700] [PMID: 32605316]
[133]
Zhang L, Wen Z, Lin J, et al. Improving the immunogenicity of a trivalent Neisseria meningitidis native outer membrane vesicle vaccine by genetic modification. Vaccine 2016; 34(35): 4250-6.
[http://dx.doi.org/10.1016/j.vaccine.2016.05.049] [PMID: 27269057]
[134]
Beernink PT, Ispasanie E, Lewis LA, Ram S, Moe GR, Granoff DM. A meningococcal native outer membrane vesicle vaccine with attenuated endotoxin and overexpressed factor H binding protein elicits gonococcal bactericidal antibodies. J Infect Dis 2019; 219(7): 1130-7.
[http://dx.doi.org/10.1093/infdis/jiy609] [PMID: 30346576]
[135]
Dou H, Grotepas CB, McMillan JM, et al. Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J Immunol 2009; 183(1): 661-9.
[http://dx.doi.org/10.4049/jimmunol.0900274] [PMID: 19535632]
[136]
Alexander A, Agrawal M, Uddin A, et al. Recent expansions of novel strategies towards the drug targeting into the brain. Int J Nanomedicine 2019; 14: 5895-909.
[http://dx.doi.org/10.2147/IJN.S210876] [PMID: 31440051]
[137]
Ribovski L, de Jong E, Mergel O, et al. Low nanogel stiffness favors nanogel transcytosis across an in vitro blood-brain barrier. Nanomedicine 2021; 34: 102377.
[http://dx.doi.org/10.1016/j.nano.2021.102377] [PMID: 33621652]
[138]
Gerson T, Makarov E, Senanayake TH, Gorantla S, Poluektova LY, Vinogradov SV. Nano-NRTIs demonstrate low neurotoxicity and high antiviral activity against HIV infection in the brain. Nanomedicine 2014; 10(1): 177-85.
[http://dx.doi.org/10.1016/j.nano.2013.06.012] [PMID: 23845925]
[139]
Gauro R, Nandave M, Jain VK, Jain K. Advances in dendrimer-mediated targeted drug delivery to the brain. J Nanopart Res 2021; 23(3): 1-9.
[http://dx.doi.org/10.1007/s11051-021-05175-8]
[140]
Singh AK, Gothwal A, Rani S, et al. Dendrimer donepezil conjugates for improved brain delivery and better in vivo pharmacokinetics. ACS Omega 2019; 4(3): 4519-29.
[http://dx.doi.org/10.1021/acsomega.8b03445] [PMID: 31459646]
[141]
Ribes S, Riegelmann J, Redlich S, et al. Multivalent choline dendrimers increase phagocytosis of Streptococcus pneumoniae R6 by microglial cells. Chemotherapy 2013; 59(2): 138-42.
[http://dx.doi.org/10.1159/000353439] [PMID: 24051739]
[142]
Ullas PT, Madhusudana SN, Desai A, et al. Enhancement of immunogenicity and efficacy of a plasmid DNA rabies vaccine by nanoformulation with a fourth-generation amine-terminated poly(ether imine) dendrimer. Int J Nanomedicine 2014; 9: 627-34.
[PMID: 24501540]
[143]
Wagner AM, Knipe JM, Orive G, Peppas NA. Quantum dots in biomedical applications. Acta Biomater 2019; 94: 44-63.
[http://dx.doi.org/10.1016/j.actbio.2019.05.022] [PMID: 31082570]
[144]
Hettiarachchi SD, Graham RM, Mintz KJ, et al. Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors. Nanoscale 2019; 11(13): 6192-205.
[http://dx.doi.org/10.1039/C8NR08970A] [PMID: 30874284]
[145]
Lin CJ, Chang L, Chu HW, et al. High amplification of the antiviral activity of curcumin through transformation into carbon quantum dots. Small 2019; 15(41): e1902641.
[http://dx.doi.org/10.1002/smll.201902641] [PMID: 31468672]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy