Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Role of Tyrosine Kinases and their Inhibitors in Cancer Therapy: A Comprehensive Review

Author(s): Vanktesh Kumar, Navjot Kaur, Sanjeev Sahu, Vikas Sharma*, Deepak Kumar, Ajit Sharma and Pankaj Wadhwa*

Volume 30, Issue 13, 2023

Published on: 09 September, 2022

Page: [1464 - 1481] Pages: 18

DOI: 10.2174/0929867329666220727122952

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Background: Cancer has been recognized as one of the non-communicable diseases with an increasing number of new cases, higher morbidity, and higher mortality rates at the global level. Thus, there is non-stop search for novel targets and small molecules to improve the chemotherapeutic outcomes concerning potency, selectivity, efficiency, affinity, ADMET, etc. Among anticancer therapeutic targets, tyrosine kinase has been documented well and approved as an important target with the development of various clinically used drugs. There are several structurally diverse small molecules in different preclinical and clinical stages of development that act by affecting tyrosine kinases in cancerous cells. Here, we have summarized different potent molecules acting against tyrosine kinases that can be considered as anticancer agents.

Objective: The current review focused on structural aspects of different chemical agents for inhibition of tyrosine kinases as anticancer agents.

Methods: The present study provides a summarized review of published information on tyrosine kinase inhibitors, their binding pattern, potencies, and structure-activity relationships. The review also highlighted the structural aspects of the interaction between inhibitors and amino acid residues of tyrosine kinases. Moreover, it also provided a summary of different types of cancers and the currently available options for treatment.

Results: Several studies are being conducted for the inhibition of different tyrosine kinases using small molecules for the treatment of cancer. Tyrosine kinases have been reported involving in routine cellular functions, growth, and division of cells through different pathways which depend on phosphorylation. The overexpression and uncontrolled activity of tyrosine kinases have been identified as an important feature of cancerous cells. Thus, various small molecules have been reported which inhibit tyrosine kinases to block the growth and division of cancer cells. Here, more than 30 highly potent inhibitors of tyrosine kinases are summarised, which consist of pyrimidine, pyrazole, triazine, quinazoline, quinoline, pyrazine, chromene, etc. rings as a basic skeleton with different substituents.

Conclusion: Inhibition of tyrosine kinases by different small molecules is an approved strategy for the development of novel anticancer agents. Several published reports have mentioned the characteristics of the different binding sites and crucial residues in tyrosine kinases for the design of novel molecular inhibitors. However, selectivity is an important criterion for the development of chemotherapeutic agents due to the existence of approximately 30 families of tyrosine kinases.

Keywords: Anticancer agents, ATP, cancer, inhibitors, phosphorylation, tyrosine kinase.

[1]
Yamashita, S.; Kishino, T.; Takahashi, T.; Shimazu, T.; Charvat, H.; Kakugawa, Y.; Nakajima, T.; Lee, Y-C.; Iida, N.; Maeda, M.; Hattori, N.; Takeshima, H.; Nagano, R.; Oda, I.; Tsugane, S.; Wu, M.S.; Ushijima, T. Genetic and epigenetic alterations in normal tissues have differential impacts on cancer risk among tissues. Proc. Natl. Acad. Sci. USA, 2018, 115(6), 1328-1333.
[http://dx.doi.org/10.1073/pnas.1717340115] [PMID: 29358395]
[2]
Takeshima, H.; Ushijima, T. Accumulation of genetic and epigenetic alterations in normal cells and cancer risk. NPJ Precis. Oncol., 2019, 3(1), 7.
[http://dx.doi.org/10.1038/s41698-019-0079-0] [PMID: 30854468]
[3]
Haran, M.; Kumar, G.D.; Garvin, A.F.; Ramesh, S. Hexagonal microstrip patch antenna for early stage skin cancer identification. Telecommun. Radiol. Eng., 2020, 79(7), 555-566.
[4]
Yamaguchi, H.; Wyckoff, J.; Condeelis, J. Cell migration in tumors. Curr. Opin. Cell Biol., 2005, 17(5), 559-564.
[http://dx.doi.org/10.1016/j.ceb.2005.08.002] [PMID: 16098726]
[5]
Bielenberg, D.R.; Zetter, B.R. The contribution of angiogenesis to the process of metastasis. Cancer J., 2015, 21(4), 267-273.
[http://dx.doi.org/10.1097/PPO.0000000000000138] [PMID: 26222078]
[6]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[7]
Thong, M.S.Y.; van Noorden, C.J.F.; Steindorf, K.; Arndt, V. Cancer-related fatigue: Causes and current treatment options. Curr. Treat. Options Oncol., 2020, 21(2), 17.
[http://dx.doi.org/10.1007/s11864-020-0707-5] [PMID: 32025928]
[8]
Leiter, U.; Keim, U.; Garbe, C. Epidemiology of skin cancer: Update 2019. Adv. Exp. Med. Biol., 2020, 1268, 123-139.
[9]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 2021, 149(4), 778-789.
[http://dx.doi.org/10.1002/ijc.33588] [PMID: 33818764]
[10]
Mizrahi, J.D.; Shroff, R.T. New treatment options for advanced biliary tract cancer. Curr. Treat. Options Oncol., 2020, 21(8), 63.
[http://dx.doi.org/10.1007/s11864-020-00767-3] [PMID: 32602010]
[11]
Stahler, A.; Heinemann, V.; Ricard, I.; von Einem, J.C.; Giessen-Jung, C.; Westphalen, C.B.; Michl, M.; Heinrich, K.; Miller-Phillips, L.; Jelas, I.; Stintzing, S.; Modest, D.P. Current treatment options in RAS mutant metastatic colorectal cancer patients: A meta-analysis of 14 randomized phase III trials. J. Cancer Res. Clin. Oncol., 2020, 146(8), 2077-2087.
[http://dx.doi.org/10.1007/s00432-020-03290-y] [PMID: 32561975]
[12]
Ahles, T.A.; Root, J.C. Cognitive effects of cancer and cancer treatments. Annu. Rev. Clin. Psychol., 2018, 14, 425-451.
[http://dx.doi.org/10.1146/annurev-clinpsy-050817-084903] [PMID: 29345974]
[13]
Sami, S.A.; Darwish, N.H.E.; Barile, A.N.M.; Mousa, S.A. Current and future molecular targets for acute myeloid leukemia therapy. Curr. Treat. Options Oncol., 2020, 21(1), 3.
[http://dx.doi.org/10.1007/s11864-019-0694-6] [PMID: 31933183]
[14]
Barcellini, A.; Roccio, M.; Laliscia, C.; Zanellini, F.; Pettinato, D.; Valvo, F.; Mirandola, A.; Orlandi, E.; Gadducci, A. Endometrial cancer: When upfront surgery is not an option. Oncology, 2021, 99(2), 65-71.
[http://dx.doi.org/10.1159/000510690] [PMID: 33032278]
[15]
Sigurdson, S.S.; Vera-Badillo, F.E.; de Moraes, F.Y. Discussion of treatment options for metastatic hormone sensitive prostate cancer patients. Front. Oncol., 2020, 10, 587981.
[http://dx.doi.org/10.3389/fonc.2020.587981] [PMID: 33178613]
[16]
Wu, D.; Pusuluri, A.; Vogus, D.; Krishnan, V.; Shields, C.W., IV; Kim, J.; Razmi, A.; Mitragotri, S. Design principles of drug combinations for chemotherapy. J. Control. Release, 2020, 323, 36-46.
[http://dx.doi.org/10.1016/j.jconrel.2020.04.018] [PMID: 32283210]
[17]
Niederwieser, D. A post-stem cell transplant risk score for Philadelphia-negative acute lymphoblastic leukemia. Haematologica, 2020, 105(5), 1177-1179.
[http://dx.doi.org/10.3324/haematol.2019.246322] [PMID: 32358079]
[18]
Wandrer, F.; Liebig, S.; Marhenke, S.; Vogel, A.; John, K.; Manns, M.P.; Teufel, A.; Itzel, T.; Longerich, T.; Maier, O.; Fischer, R.; Kontermann, R.E.; Pfizenmaier, K.; Schulze-Osthoff, K.; Bantel, H. TNF-Receptor-1 inhibition reduces liver steatosis, hepatocellular injury and fibrosis in NAFLD mice. Cell Death Dis., 2020, 11(3), 212.
[http://dx.doi.org/10.1038/s41419-020-2411-6] [PMID: 32235829]
[19]
Chen, X.; Li, J. Bioinspired by cell membranes: Functional polymeric materials for biomedical applications. Mater. Chem. Front., 2020, 4(3), 750-774.
[http://dx.doi.org/10.1039/C9QM00717B]
[20]
Onyeisi, J.O.S.; Ferreira, B.Z.F.; Nader, H.B.; Lopes, C.C. Heparan sulfate proteoglycans as targets for cancer therapy: A review. Cancer Biol. Ther., 2020, 21(12), 1087-1094.
[http://dx.doi.org/10.1080/15384047.2020.1838034] [PMID: 33180600]
[21]
Prasad, S.; Ramachandran, S.; Gupta, N.; Kaushik, I.; Srivastava, S.K. Cancer cells stemness: A doorstep to targeted therapy. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(4), 165424.
[http://dx.doi.org/10.1016/j.bbadis.2019.02.019] [PMID: 30818002]
[22]
Dorff, T.B.; Stein, C.; Kortylewski, M.; Posadas, E.; Synold, T.; Quinn, D. Evaluating changes in immune function and bone microenvironment during radium-223 treatment of patients with castration-resistant prostate cancer. Cancer Biother. Radiopharm., 2020, 35(7), 485-489.
[http://dx.doi.org/10.1089/cbr.2019.3397] [PMID: 32366119]
[23]
Arora, A.; Scholar, E.M. Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther., 2005, 315(3), 971-979.
[http://dx.doi.org/10.1124/jpet.105.084145] [PMID: 16002463]
[24]
Mele, S.; Johnson, T.K. Receptor tyrosine kinases in development: Insights from drosophila. Int. J. Mol. Sci., 2019, 21(1), 188.
[http://dx.doi.org/10.3390/ijms21010188] [PMID: 31888080]
[25]
Taddei, M.L.; Pardella, E.; Pranzini, E.; Raugei, G.; Paoli, P. Role of tyrosine phosphorylation in modulating cancer cell metabolism. Biochim. Biophys. Acta Rev. Cancer, 2020, 1874(2), 188442.
[http://dx.doi.org/10.1016/j.bbcan.2020.188442] [PMID: 33017632]
[26]
da Fonseca, L.G.; Reig, M.; Bruix, J. Tyrosine kinase inhibitors and hepatocellular carcinoma. Clin. Liver Dis., 2020, 24(4), 719-737.
[http://dx.doi.org/10.1016/j.cld.2020.07.012] [PMID: 33012455]
[27]
Shawver, L.K.; Slamon, D.; Ullrich, A. Smart drugs: Tyrosine kinase inhibitors in cancer therapy. Cancer Cell, 2002, 1(2), 117-123.
[http://dx.doi.org/10.1016/S1535-6108(02)00039-9] [PMID: 12086869]
[28]
Huang, L.; Jiang, S.; Shi, Y. Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001-2020). J. Hematol. Oncol., 2020, 13(1), 143.
[http://dx.doi.org/10.1186/s13045-020-00977-0] [PMID: 33109256]
[29]
Metibemu, D.S.; Akinloye, O.A.; Akamo, A.J.; Ojo, D.A.; Okeowo, O.T.; Omotuyi, I.O. Exploring receptor tyrosine kinases-inhibitors in cancer treatments. Egypt. J. Med. Hum. Genet., 2019, 20(1), 1-6.
[30]
Terman, B.I.; Carrion, M.E.; Kovacs, E.; Rasmussen, B.A.; Eddy, R.L.; Shows, T.B. Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene, 1991, 6(9), 1677-1683.
[PMID: 1656371]
[31]
Yamaoka, T.; Kusumoto, S.; Ando, K.; Ohba, M.; Ohmori, T. Receptor tyrosine kinase-targeted cancer therapy. Int. J. Mol. Sci., 2018, 19(11), 3491.
[http://dx.doi.org/10.3390/ijms19113491] [PMID: 30404198]
[32]
Abbaspour Babaei, M.; Kamalidehghan, B.; Saleem, M.; Huri, H.Z.; Ahmadipour, F. Receptor tyrosine kinase (c-Kit) inhibitors: A potential therapeutic target in cancer cells. Drug Des. Devel. Ther., 2016, 10, 2443-2459.
[http://dx.doi.org/10.2147/DDDT.S89114] [PMID: 27536065]
[33]
Wu, X.; Zahari, M.S.; Renuse, S.; Kelkar, D.S.; Barbhuiya, M.A.; Rojas, P.L.; Stearns, V.; Gabrielson, E.; Malla, P.; Sukumar, S.; Mahajan, N.P.; Pandey, A. The non-receptor tyrosine kinase TNK2/ACK1 is a novel therapeutic target in triple negative breast cancer. Oncotarget, 2017, 8(2), 2971-2983.
[http://dx.doi.org/10.18632/oncotarget.13579] [PMID: 27902967]
[34]
Solouki, S.; August, A.; Huang, W. Non-receptor tyrosine kinase signaling in autoimmunity and therapeutic implications. Pharmacol. Ther., 2019, 201, 39-50.
[http://dx.doi.org/10.1016/j.pharmthera.2019.05.008] [PMID: 31082431]
[35]
Altanerova, U.; Jakubechova, J.; Benejova, K.; Priscakova, P.; Repiska, V.; Babelova, A.; Smolkova, B.; Altaner, C. Intracellular prodrug gene therapy for cancer mediated by tumor cell suicide gene exosomes. Int. J. Cancer, 2021, 148(1), 128-139.
[http://dx.doi.org/10.1002/ijc.33188] [PMID: 32621791]
[36]
Teleanu, R.I.; Chircov, C.; Grumezescu, A.M.; Teleanu, D.M. Tumor angiogenesis and anti-angiogenic strategies for cancer treatment. J. Clin. Med., 2019, 9(1), 84.
[http://dx.doi.org/10.3390/jcm9010084] [PMID: 31905724]
[37]
Yu, Y.; Suryo Rahmanto, Y.; Shen, Y-A.; Ardighieri, L.; Davidson, B.; Gaillard, S.; Ayhan, A.; Shi, X.; Xuan, J.; Wang, T-L.; Shih, I.M. Spleen tyrosine kinase activity regulates epidermal growth factor receptor signaling pathway in ovarian cancer. EBio Med., 2019, 47, 184-194.
[http://dx.doi.org/10.1016/j.ebiom.2019.08.055] [PMID: 31492560]
[38]
Geahlen, R.L. Getting Syk: Spleen tyrosine kinase as a therapeutic target. Trends Pharmacol. Sci., 2014, 35(8), 414-422.
[http://dx.doi.org/10.1016/j.tips.2014.05.007] [PMID: 24975478]
[39]
Heizmann, B.; Reth, M.; Infantino, S. Syk is a dual-specificity kinase that self-regulates the signal output from the B-cell antigen receptor. Proc. Natl. Acad. Sci. USA, 2010, 107(43), 18563-18568.
[http://dx.doi.org/10.1073/pnas.1009048107] [PMID: 20940318]
[40]
Lo, H-W.; Hsu, S-C.; Ali-Seyed, M.; Gunduz, M.; Xia, W.; Wei, Y.; Bartholomeusz, G.; Shih, J-Y.; Hung, M-C. Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell, 2005, 7(6), 575-589.
[http://dx.doi.org/10.1016/j.ccr.2005.05.007] [PMID: 15950906]
[41]
Tang, C.; Zhu, G. Classic and novel signaling pathways involved in cancer: Targeting the NF-κB and Syk signaling pathways. Curr. Stem Cell Res. Ther., 2019, 14(3), 219-225.
[http://dx.doi.org/10.2174/1574888X13666180723104340] [PMID: 30033874]
[42]
Qin, S.; Li, A.; Yi, M.; Yu, S.; Zhang, M.; Wu, K. Recent advances on anti-angiogenesis receptor tyrosine kinase inhibitors in cancer therapy. J. Hematol. Oncol., 2019, 12(1), 27.
[http://dx.doi.org/10.1186/s13045-019-0718-5] [PMID: 30866992]
[43]
Rosti, G.; Castagnetti, F.; Gugliotta, G.; Baccarani, M. Tyrosine kinase inhibitors in chronic myeloid leukaemia: Which, when, for whom? Nat. Rev. Clin. Oncol., 2017, 14(3), 141-154.
[http://dx.doi.org/10.1038/nrclinonc.2016.139] [PMID: 27752053]
[44]
Navara, C.S. The spleen tyrosine kinase (Syk) in human disease, implications for design of tyrosine kinase inhibitor based therapy. Curr. Pharm. Des., 2004, 10(15), 1739-1744.
[http://dx.doi.org/10.2174/1381612043384493] [PMID: 15180536]
[45]
Park, S.R.; Speranza, G.; Piekarz, R.; Wright, J.J.; Kinders, R.J.; Wang, L.; Pfister, T.; Trepel, J.B.; Lee, M-J.; Alarcon, S.; Steinberg, S.M.; Collins, J.; Doroshow, J.H.; Kummar, S. A multi-histology trial of fostamatinib in patients with advanced colorectal, non-small cell lung, head and neck, thyroid, and renal cell carcinomas, and pheochromocytomas. Cancer Chemother. Pharmacol., 2013, 71(4), 981-990.
[http://dx.doi.org/10.1007/s00280-013-2091-3] [PMID: 23404627]
[46]
Liu, D.; Mamorska-Dyga, A. Syk inhibitors in clinical development for hematological malignancies. J. Hematol. Oncol., 2017, 10(1), 145.
[http://dx.doi.org/10.1186/s13045-017-0512-1] [PMID: 28754125]
[47]
Wakeling, A.E. Epidermal growth factor receptor tyrosine kinase inhibitors. Curr. Opin. Pharmacol., 2002, 2(4), 382-387.
[http://dx.doi.org/10.1016/S1471-4892(02)00183-2] [PMID: 12127870]
[48]
Paul, M.K.; Mukhopadhyay, A.K. Tyrosine kinase - Role and significance in cancer. Int. J. Med. Sci., 2004, 1(2), 101-115.
[http://dx.doi.org/10.7150/ijms.1.101] [PMID: 15912202]
[49]
Li, X.; Zuo, Y.; Tang, G.; Wang, Y.; Zhou, Y.; Wang, X.; Guo, T.; Xia, M.; Ding, N.; Pan, Z. Discovery of a series of 2,5-diaminopyrimidine covalent irreversible inhibitors of Bruton’s tyrosine kinase with in vivo antitumor activity. J. Med. Chem., 2014, 57(12), 5112-5128.
[http://dx.doi.org/10.1021/jm4017762] [PMID: 24915291]
[50]
Xue, Y.; Song, P.; Song, Z.; Wang, A.; Tong, L.; Geng, M.; Ding, J.; Liu, Q.; Sun, L.; Xie, H.; Zhang, A. Discovery of 4,7-Diamino-5-(4-phenoxyphenyl)-6- methylene-pyrimido[5,4- b]pyrrolizines as novel Bruton’s Tyrosine Kinase Inhibitors. J. Med. Chem., 2018, 61(10), 4608-4627.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00441] [PMID: 29715023]
[51]
Teng, Y.; Lu, X.; Xiao, M.; Li, Z.; Zou, Y.; Ren, S.; Cheng, Y.; Luo, G.; Xiang, H. Discovery of potent and highly selective covalent inhibitors of Bruton’s tyrosine kinase bearing triazine scaffold. Eur. J. Med. Chem., 2020, 199, 112339.
[http://dx.doi.org/10.1016/j.ejmech.2020.112339] [PMID: 32402933]
[52]
Lamminmaki, U.; Nikolov, D.; Himanen, J. Eph receptors as drug targets: Single-chain antibodies and beyond. Curr. Drug Targets, 2015, 16(10), 1021-1030.
[http://dx.doi.org/10.2174/1389450116666150531154619] [PMID: 26028047]
[53]
Boyd, A.W.; Bartlett, P.F.; Lackmann, M. Therapeutic targeting of EPH receptors and their ligands. Nat. Rev. Drug Discov., 2014, 13(1), 39-62.
[http://dx.doi.org/10.1038/nrd4175] [PMID: 24378802]
[54]
Liang, L-Y.; Patel, O.; Janes, P.W.; Murphy, J.M.; Lucet, I.S. Eph receptor signalling: From catalytic to non-catalytic functions. Oncogene, 2019, 38(39), 6567-6584.
[http://dx.doi.org/10.1038/s41388-019-0931-2] [PMID: 31406248]
[55]
Lafleur, K.; Huang, D.; Zhou, T.; Caflisch, A.; Nevado, C. Structure-based optimization of potent and selective inhibitors of the tyrosine kinase erythropoietin producing human hepatocellular carcinoma receptor B4 (EphB4). J. Med. Chem., 2009, 52(20), 6433-6446.
[http://dx.doi.org/10.1021/jm9009444] [PMID: 19788238]
[56]
Zhao, H.; Dong, J.; Lafleur, K.; Nevado, C.; Caflisch, A. Discovery of a novel chemotype of tyrosine kinase inhibitors by fragment-based docking and molecular dynamics. ACS Med. Chem. Lett., 2012, 3(10), 834-838.
[http://dx.doi.org/10.1021/ml3001984] [PMID: 24900387]
[57]
Lafleur, K.; Dong, J.; Huang, D.; Caflisch, A.; Nevado, C. Optimization of inhibitors of the tyrosine kinase EphB4. 2. Cellular potency improvement and binding mode validation by X-ray crystallography. J. Med. Chem., 2013, 56(1), 84-96.
[http://dx.doi.org/10.1021/jm301187e] [PMID: 23253074]
[58]
Unzue, A.; Jessen-Trefzer, C.; Spiliotopoulos, D.; Gaudio, E.; Tarantelli, C.; Dong, J.; Zhao, H.; Pachmayr, J.; Zahler, S.; Bernasconi, E.; Sartori, G.; Cascione, L.; Bertoni, F.; Śledź, P.; Caflisch, A.; Nevado, C. Understanding the mechanism of action of pyrrolo[3,2-b]quinoxaline-derivatives as kinase inhibitors. RSC Med. Chem., 2020, 11(6), 665-675.
[http://dx.doi.org/10.1039/D0MD00049C] [PMID: 33479666]
[59]
Unzue, A.; Dong, J.; Lafleur, K.; Zhao, H.; Frugier, E.; Caflisch, A.; Nevado, C. Pyrrolo[3,2-b]quinoxaline derivatives as types I1/2 and II Eph tyrosine kinase inhibitors: Structure-based design, synthesis, and in vivo validation. J. Med. Chem., 2014, 57(15), 6834-6844.
[http://dx.doi.org/10.1021/jm5009242] [PMID: 25076195]
[60]
El Newahie, A.M.; Ismail, N.S.; Abou El Ella, D.A.; Abouzid, K.A. Quinoxaline-based scaffolds targeting tyrosine kinases and their potential anticancer activity. Arch. Pharm., 2016, 349(5), 309-326.
[http://dx.doi.org/10.1002/ardp.201500468]
[61]
Lim, C.J.; Oh, K-S.; Ha, J.D.; Lee, J.H.; Seo, H.W.; Chae, C.H.; Kim, D-G.; Lee, M-J.; Lee, B.H. 4-Substituted quinazoline derivatives as novel EphA2 receptor tyrosine kinase inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(17), 4080-4083.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.081] [PMID: 25124116]
[62]
Dong, Q.; Yu, P.; Ye, L.; Zhang, J.; Wang, H.; Zou, F.; Tian, J.; Kurihara, H. PCC0208027, a novel tyrosine kinase inhibitor, inhibits tumor growth of NSCLC by targeting EGFR and HER2 aberrations. Sci. Rep., 2019, 9(1), 5692.
[http://dx.doi.org/10.1038/s41598-019-42245-3] [PMID: 30952931]
[63]
Gravina, G.L.; Mancini, A.; Colapietro, A.; Delle Monache, S.; Sferra, R.; Vitale, F.; Cristiano, L.; Martellucci, S.; Marampon, F.; Mattei, V.; Beirinckx, F.; Pujuguet, P.; Saniere, L.; Lorenzon, G.; van der Aar, E.; Festuccia, C. The small molecule ephrin receptor inhibitor, GLPG1790, reduces renewal capabilities of cancer stem cells, showing anti-tumour efficacy on preclinical glioblastoma models. Cancers (Basel), 2019, 11(3), 359.
[http://dx.doi.org/10.3390/cancers11030359] [PMID: 30871240]
[64]
Chen, J.; Song, W.; Amato, K. Eph receptor tyrosine kinases in cancer stem cells. Cytokine Growth Factor Rev., 2015, 26(1), 1-6.
[http://dx.doi.org/10.1016/j.cytogfr.2014.05.001] [PMID: 24933439]
[65]
Colapietro, A.; Gravina, G.L.; Petragnano, F.; Fasciani, I.; Scicchitano, B.M.; Beirinckx, F.; Pujuguet, P.; Saniere, L.; Van der Aar, E.; Musio, D. Antitumorigenic effects of inhibiting ephrin receptor kinase signaling by glpg1790 against colorectal cancer cell lines in vitro and in vivo. J. Oncol., 2020, 2020, 9342732.
[http://dx.doi.org/10.1155/2020/9342732]
[66]
Qian, Y.; Chen, X. Senescence regulation by the p53 protein family. In: Methods in molecular biology; Lorenzo, Galluzzi, Ed.; Springer: New York, 2013; pp. 37-61.
[http://dx.doi.org/10.1007/978-1-62703-239-1_3]
[67]
Lucas, M.C.; Goldstein, D.M.; Hermann, J.C.; Kuglstatter, A.; Liu, W.; Luk, K.C.; Padilla, F.; Slade, M.; Villaseñor, A.G.; Wanner, J.; Xie, W.; Zhang, X.; Liao, C. Rational design of highly selective spleen tyrosine kinase inhibitors. J. Med. Chem., 2012, 55(23), 10414-10423.
[http://dx.doi.org/10.1021/jm301367c] [PMID: 23151054]
[68]
Kurniawan, D.W.; Storm, G.; Prakash, J.; Bansal, R. Role of spleen tyrosine kinase in liver diseases. World J. Gastroenterol., 2020, 26(10), 1005-1019.
[http://dx.doi.org/10.3748/wjg.v26.i10.1005] [PMID: 32205992]
[69]
Jiang, S.; DiPaolo, J.; Currie, K.; Alderucci, S.; Ramamurthy, A.; Peppers, J.; Qian, X.; Qian, D.; Awad, T.; Velleca, M.; Whitney, J.A. Chemical genetic transcriptional fingerprinting for selectivity profiling of kinase inhibitors. Assay Drug Dev. Technol., 2007, 5(1), 49-64.
[http://dx.doi.org/10.1089/adt.2006.032] [PMID: 17355199]
[70]
Awan, F.T.; Thirman, M.J.; Patel-Donnelly, D.; Assouline, S.; Rao, A.V.; Ye, W.; Hill, B.; Sharman, J.P. Entospletinib monotherapy in patients with relapsed or refractory chronic lymphocytic leukemia previously treated with B-cell receptor inhibitors: Results of a phase 2 study. Leuk. Lymphoma, 2019, 60(8), 1972-1977.
[http://dx.doi.org/10.1080/10428194.2018.1562180] [PMID: 30633573]
[71]
Kittai, A.; Hashiguchi, T.; Thurlow, B.; Gokcora, B.; Stadnik, A.; MacKinnon, R.; Stephen, M.; Moore, L.; Persky, D.; Park, B.; Spurgeon, S.; Danilov, A. PS1155 a phase I/II study of the syk inhibitor entospletinib in combination with obinutuzumab in patients with relapsed/refractory chronic lymphocytic leukemia (cll). HemaSphere, 2019, 3(S1), 524.
[http://dx.doi.org/10.1097/01.HS9.0000562904.73237.a4]
[72]
Andorsky, D.J.; Kolibaba, K.S.; Assouline, S.; Forero-Torres, A.; Jones, V.; Klein, L.M.; Patel-Donnelly, D.; Smith, M.; Ye, W.; Shi, W.; Yasenchak, C.A.; Sharman, J.P. An open-label phase 2 trial of entospletinib in indolent non-Hodgkin lymphoma and mantle cell lymphoma. Br. J. Haematol., 2019, 184(2), 215-222.
[http://dx.doi.org/10.1111/bjh.15552] [PMID: 30183069]
[73]
Assis, L.C.; Garcia, L.S.; Mancini, D.T.; Assis, T.M.; Silva, D.R.; Cardoso, G.G.; de Castro, A.A.; Ramalho, T.C.; Da Cunha, E.F.F. Structure-based drugs design studies on spleen tyrosine kinase inhibitors. Lett. Drug Des. Discov., 2016, 13(9), 845-858.
[http://dx.doi.org/10.2174/1570180813666160725095118]
[74]
Selig, R.; Goettert, M.; Schattel, V.; Schollmeyer, D.; Albrecht, W.; Laufer, S. A frozen analogue approach to aminopyridinylimidazoles leading to novel and promising p38 MAP kinase inhibitors. J. Med. Chem., 2012, 55(19), 8429-8439.
[http://dx.doi.org/10.1021/jm300852w] [PMID: 22951114]
[75]
Lin, L.G.; Xie, H.; Li, H.L.; Tong, L.J.; Tang, C.P.; Ke, C.Q.; Liu, Q.F.; Lin, L.P.; Geng, M.Y.; Jiang, H.; Zhao, W.M.; Ding, J.; Ye, Y. Naturally occurring homoisoflavonoids function as potent protein tyrosine kinase inhibitors by c-Src-based high-throughput screening. J. Med. Chem., 2008, 51(15), 4419-4429.
[http://dx.doi.org/10.1021/jm701501x] [PMID: 18610999]
[76]
Dinges, J.; Albert, D.H.; Arnold, L.D.; Ashworth, K.L.; Akritopoulou-Zanze, I.; Bousquet, P.F.; Bouska, J.J.; Cunha, G.A.; Davidsen, S.K.; Diaz, G.J.; Djuric, S.W.; Gasiecki, A.F.; Gintant, G.A.; Gracias, V.J.; Harris, C.M.; Houseman, K.A.; Hutchins, C.W.; Johnson, E.F.; Li, H.; Marcotte, P.A.; Martin, R.L.; Michaelides, M.R.; Nyein, M.; Sowin, T.J.; Su, Z.; Tapang, P.H.; Xia, Z.; Zhang, H.Q. 1,4-Dihydroindeno[1,2-c]pyrazoles with acetylenic side chains as novel and potent multitargeted receptor tyrosine kinase inhibitors with low affinity for the hERG ion channel. J. Med. Chem., 2007, 50(9), 2011-2029.
[http://dx.doi.org/10.1021/jm061223o] [PMID: 17425296]
[77]
Dai, Y.; Hartandi, K.; Ji, Z.; Ahmed, A.A.; Albert, D.H.; Bauch, J.L.; Bouska, J.J.; Bousquet, P.F.; Cunha, G.A.; Glaser, K.B.; Harris, C.M.; Hickman, D.; Guo, J.; Li, J.; Marcotte, P.A.; Marsh, K.C.; Moskey, M.D.; Martin, R.L.; Olson, A.M.; Osterling, D.J.; Pease, L.J.; Soni, N.B.; Stewart, K.D.; Stoll, V.S.; Tapang, P.; Reuter, D.R.; Davidsen, S.K.; Michaelides, M.R. Discovery of N-(4-(3-amino-1H-indazol-4-yl)phenyl)-N′-(2-fluoro-5-methylphenyl) urea (ABT-869), a 3-aminoindazole-based orally active multitargeted receptor tyrosine kinase inhibitor. J. Med. Chem., 2007, 50(7), 1584-1597.
[http://dx.doi.org/10.1021/jm061280h] [PMID: 17343372]
[78]
Klutchko, S.R.; Zhou, H.; Winters, R.T.; Tran, T.P.; Bridges, A.J.; Althaus, I.W.; Amato, D.M.; Elliott, W.L.; Ellis, P.A.; Meade, M.A.; Roberts, B.J.; Fry, D.W.; Gonzales, A.J.; Harvey, P.J.; Nelson, J.M.; Sherwood, V.; Han, H.K.; Pace, G.; Smaill, J.B.; Denny, W.A.; Showalter, H.D. Tyrosine kinase inhibitors. 19. 6-Alkynamides of 4-anilinoquinazolines and 4-anilinopyrido[3,4-d]pyrimidines as irreversible inhibitors of the erbB family of tyrosine kinase receptors. J. Med. Chem., 2006, 49(4), 1475-1485.
[http://dx.doi.org/10.1021/jm050936o] [PMID: 16480284]
[79]
Baindur, N.; Chadha, N.; Brandt, B.M.; Asgari, D.; Patch, R.J.; Schalk-Hihi, C.; Carver, T.E.; Petrounia, I.P.; Baumann, C.A.; Ott, H.; Manthey, C.; Springer, B.A.; Player, M.R. 2-Hydroxy-4,6-diamino-[1,3,5]triazines: A novel class of VEGF-R2 (KDR) tyrosine kinase inhibitors. J. Med. Chem., 2005, 48(6), 1717-1720.
[http://dx.doi.org/10.1021/jm049372z] [PMID: 15771417]
[80]
Kumar, R.; Kumar, N.; Roy, R.K.; Singh, A. 1, 3, 5-Triazine analogs: A potent anticancer scaffold. Curr. Signal. Transduct. Ther., 2019, 14(2), 87-106.
[http://dx.doi.org/10.2174/1574362413666180221113805]
[81]
Smaill, J.B.; Showalter, H.D.; Zhou, H.; Bridges, A.J.; McNamara, D.J.; Fry, D.W.; Nelson, J.M.; Sherwood, V.; Vincent, P.W.; Roberts, B.J.; Elliott, W.L.; Denny, W.A. Tyrosine kinase inhibitors. 18. 6-Substituted 4-anilinoquinazolines and 4-anilinopyrido[3,4-d]pyrimidines as soluble, irreversible inhibitors of the epidermal growth factor receptor. J. Med. Chem., 2001, 44(3), 429-440.
[http://dx.doi.org/10.1021/jm000372i] [PMID: 11462982]
[82]
Thompson, A.M.; Connolly, C.J.; Hamby, J.M.; Boushelle, S.; Hartl, B.G.; Amar, A.M.; Kraker, A.J.; Driscoll, D.L.; Steinkampf, R.W.; Patmore, S.J.; Vincent, P.W.; Roberts, B.J.; Elliott, W.L.; Klohs, W.; Leopold, W.R.; Showalter, H.D.; Denny, W.A. 3-(3,5-Dimethoxyphenyl)-1,6-naphthyridine-2,7-diamines and related 2-urea derivatives are potent and selective inhibitors of the FGF receptor-1 tyrosine kinase. J. Med. Chem., 2000, 43(22), 4200-4211.
[http://dx.doi.org/10.1021/jm000161d] [PMID: 11063616]
[83]
Ma, Y.; Carter, E.; Wang, X.; Shu, C.; McMahon, G.; Longley, B.J. Indolinone derivatives inhibit constitutively activated KIT mutants and kill neoplastic mast cells. J. Invest. Dermatol., 2000, 114(2), 392-394.
[http://dx.doi.org/10.1046/j.1523-1747.2000.00888.x] [PMID: 10652004]
[84]
Wipf, P.; Aslan, D.C.; Luci, D.K.; Southwick, E.C.; Lazo, J.S. Synthesis and biological evaluation of a targeted library of protein phosphatase inhibitors. Biotechnol. Bioeng., 2000, 71(1), 58-70.
[http://dx.doi.org/10.1002/(SICI)1097-0290(200024)71:1<58::AID-BIT9>3.0.CO;2-0] [PMID: 10629537]
[85]
Roskoski, R., Jr. Properties of FDA-approved small molecule protein kinase inhibitors: A 2021 update. Pharmacol. Res., 2021, 165, 105463.
[http://dx.doi.org/10.1016/j.phrs.2021.105463] [PMID: 33513356]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy