Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Lipophagy: A Potential Therapeutic Target for Diabetic Nephropathy

Author(s): Ming Yang, Panai Song, Li Zhao and Xi Wang*

Volume 30, Issue 16, 2023

Published on: 04 October, 2022

Page: [1875 - 1886] Pages: 12

DOI: 10.2174/0929867329666220727113129

Price: $65

conference banner
Abstract

Diabetic nephropathy (DN) is a serious complication of diabetes mellitus and one of the main causes of end-stage renal disease (ESRD). There are many factors causing the progression of DN. Lipid metabolism disorder is a common clinical manifestation of DN, and ectopic renal lipid deposition was recently proposed as a key factor promoting the development of DN. Lipophagy is a newly discovered type of selective autophagy that can remove excessive lipids in cells to maintain lipid homeostasis. Recently, abnormalities in lipophagy have also been implicated in the progression of DN. Here, we discuss the formation of lipid droplets, describe lipophagy and its key regulatory signals, summarize the current research progress of lipophay in DN, and finally propose that lipophagy may be a potential target for the treatment of DN.

Keywords: Diabetic nephropathy (DN), lipophagy, lipid droplet, lipid homeostasis, autophagy, kidney.

[1]
Yang, M.; Wang, X.; Han, Y.; Li, C.; Wei, L.; Yang, J.; Chen, W.; Zhu, X.; Sun, L. Targeting the NLRP3 inflammasome in diabetic nephropathy. Curr. Med. Chem., 2021, 28(42), 8810-8824.
[http://dx.doi.org/10.2174/0929867328666210705153109] [PMID: 34225600]
[2]
Zhang, P.N.; Zhou, M.Q.; Guo, J.; Zheng, H.J.; Tang, J.; Zhang, C.; Liu, Y.N.; Liu, W.J.; Wang, Y.X. Mitochondrial dysfunction and diabetic nephropathy: Nontraditional therapeutic opportunities. J. Diabetes Res., 2021, 2021, 1010268.
[http://dx.doi.org/10.1155/2021/1010268] [PMID: 34926696]
[3]
Wongmekiat, O.; Lailerd, N.; Kobroob, A.; Peerapanyasut, W. Protective effects of purple rice husk against diabetic nephropathy by modulating PGC-1alpha/SIRT3/SOD2 signaling and maintaining mitochondrial redox equilibrium in rats. Biomolecules, 2021, 11(8), 11.
[http://dx.doi.org/10.3390/biom11081224] [PMID: 34439892]
[4]
Pang, X.; Zhang, Y.; Shi, X.; Li, D.; Han, J. ERp44 depletion exacerbates ER stress and aggravates diabetic nephropathy in db/db mice. Biochem. Biophys. Res. Commun., 2018, 504(4), 921-926.
[http://dx.doi.org/10.1016/j.bbrc.2018.09.037] [PMID: 30224065]
[5]
Huang, W.; Man, Y.; Gao, C.; Zhou, L.; Gu, J.; Xu, H.; Wan, Q.; Long, Y.; Chai, L.; Xu, Y.; Xu, Y. Short-chain fatty acids ameliorate diabetic nephropathy via GPR43-Mediated inhibition of oxidative stress and NF-kappaB signaling. Oxid. Med. Cell. Longev., 2020, 2020, 4074832.
[http://dx.doi.org/10.1155/2020/4074832] [PMID: 32831998]
[6]
Herman-Edelstein, M.; Scherzer, P.; Tobar, A.; Levi, M.; Gafter, U. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J. Lipid Res., 2014, 55(3), 561-572.
[http://dx.doi.org/10.1194/jlr.P040501] [PMID: 24371263]
[7]
Lingwood, D.; Simons, K. Lipid rafts as a membrane-organizing principle. Science, 2010, 327(5961), 46-50.
[http://dx.doi.org/10.1126/science.1174621] [PMID: 20044567]
[8]
Walther, T.C.; Farese, R.V., Jr. Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem., 2012, 81, 687-714.
[http://dx.doi.org/10.1146/annurev-biochem-061009-102430] [PMID: 22524315]
[9]
Srivastava, S.P.; Shi, S.; Koya, D.; Kanasaki, K. Lipid mediators in diabetic nephropathy. Fibrogenesis Tissue Repair, 2014, 7, 12.
[http://dx.doi.org/10.1186/1755-1536-7-12] [PMID: 25206927]
[10]
Guebre-Egziabher, F.; Alix, P.M.; Koppe, L.; Pelletier, C.C.; Kalbacher, E.; Fouque, D.; Soulage, C.O. Ectopic lipid accumulation: A potential cause for metabolic disturbances and a contributor to the alteration of kidney function. Biochimie, 2013, 95(11), 1971-1979.
[http://dx.doi.org/10.1016/j.biochi.2013.07.017] [PMID: 23896376]
[11]
Chen, X.; Han, Y.; Gao, P.; Yang, M.; Xiao, L.; Xiong, X.; Zhao, H.; Tang, C.; Chen, G.; Zhu, X.; Yuan, S.; Liu, F.; Dong, L.Q.; Liu, F.; Kanwar, Y.S.; Sun, L. Disulfide-bond A oxidoreductase-like protein protects against ectopic fat deposition and lipid-related kidney damage in diabetic nephropathy. Kidney Int., 2019, 95(4), 880-895.
[http://dx.doi.org/10.1016/j.kint.2018.10.038] [PMID: 30791996]
[12]
Yang, M.; Han, Y.; Luo, S.; Xiong, X.; Zhu, X.; Zhao, H.; Jiang, N.; Xiao, Y.; Wei, L.; Li, C.; Yang, J.; Sun, L. MAMs protect against ectopic fat deposition and lipid-related kidney damage in DN patients. Front. Endocrinol. (Lausanne), 2021, 12, 609580.
[http://dx.doi.org/10.3389/fendo.2021.609580] [PMID: 33679616]
[13]
Wu, L.; Liu, C.; Chang, D.Y.; Zhan, R.; Zhao, M.; Man Lam, S.; Shui, G.; Zhao, M.H.; Zheng, L.; Chen, M. The attenuation of diabetic nephropathy by annexin a1 via regulation of lipid metabolism through the AMPK/PPARalpha/CPT1b pathway. Diabetes, 2021, 70(10), 2192-2203.
[http://dx.doi.org/10.2337/db21-0050] [PMID: 34103347]
[14]
Schulze, R.J.; Sathyanarayan, A.; Mashek, D.G. Breaking fat: The regulation and mechanisms of lipophagy. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2017, 1862(10 Pt B), 1178-1187.
[http://dx.doi.org/10.1016/j.bbalip.2017.06.008] [PMID: 28642194]
[15]
Gao, Y.; Zhang, W.; Zeng, L.Q.; Bai, H.; Li, J.; Zhou, J.; Zhou, G.Y.; Fang, C.W.; Wang, F.; Qin, X.J. Exercise and dietary intervention ameliorate high-fat diet-induced NAFLD and liver aging by inducing lipophagy. Redox Biol., 2020, 36, 101635.
[http://dx.doi.org/10.1016/j.redox.2020.101635] [PMID: 32863214]
[16]
Jackson, C.L. Lipid droplet biogenesis. Curr. Opin. Cell Biol., 2019, 59, 88-96.
[http://dx.doi.org/10.1016/j.ceb.2019.03.018] [PMID: 31075519]
[17]
Jarc, E.; Petan, T. Lipid droplets and the management of cellular stress. Yale J. Biol. Med., 2019, 92(3), 435-452.
[PMID: 31543707]
[18]
Nishimura, T.; Stefan, C.J. Specialized ER membrane domains for lipid metabolism and transport. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2020, 1865(1), 158492.
[http://dx.doi.org/10.1016/j.bbalip.2019.07.001] [PMID: 31349025]
[19]
Chen, F.J.; Yin, Y.; Chua, B.T.; Li, P. CIDE family proteins control lipid homeostasis and the development of metabolic diseases. Traffic, 2020, 21(1), 94-105.
[http://dx.doi.org/10.1111/tra.12717] [PMID: 31746121]
[20]
Walther, T.C.; Chung, J.; Farese, R.V., Jr. Lipid droplet biogenesis. Annu. Rev. Cell Dev. Biol., 2017, 33, 491-510.
[http://dx.doi.org/10.1146/annurev-cellbio-100616-060608] [PMID: 28793795]
[21]
Cui, L.; Liu, P. Two types of contact between lipid droplets and mitochondria. Front. Cell Dev. Biol., 2020, 8, 618322.
[http://dx.doi.org/10.3389/fcell.2020.618322] [PMID: 33385001]
[22]
Mirza, A.H.; Cui, L.; Zhang, S.; Liu, P. Comparative proteomics reveals that lipid droplet-anchored mitochondria are more sensitive to cold in brown adipocytes. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2021, 1866(10), 158992.
[http://dx.doi.org/10.1016/j.bbalip.2021.158992] [PMID: 34147658]
[23]
Li, D.; Zhao, Y.G.; Li, D.; Zhao, H.; Huang, J.; Miao, G.; Feng, D.; Liu, P.; Li, D.; Zhang, H. The ER-localized protein DFCP1 modulates ER-Lipid droplet contact formation. Cell Rep., 2019, 27(2), 343-358.e5.
[http://dx.doi.org/10.1016/j.celrep.2019.03.025] [PMID: 30970241]
[24]
Du, X.; Zhou, L.; Aw, Y.C.; Mak, H.Y.; Xu, Y.; Rae, J.; Wang, W.; Zadoorian, A.; Hancock, S.E.; Osborne, B.; Chen, X.; Wu, J.W.; Turner, N.; Parton, R.G.; Li, P.; Yang, H. ORP5 localizes to ER-lipid droplet contacts and regulates the level of PI(4)P on lipid droplets. J. Cell Biol., 2020, 219(1), 219.
[http://dx.doi.org/10.1083/jcb.201905162] [PMID: 31653673]
[25]
Fuchs, C.D.; Claudel, T.; Kumari, P.; Haemmerle, G.; Pollheimer, M.J.; Stojakovic, T.; Scharnagl, H.; Halilbasic, E.; Gumhold, J.; Silbert, D.; Koefeler, H.; Trauner, M. Absence of adipose triglyceride lipase protects from hepatic endoplasmic reticulum stress in mice. Hepatology, 2012, 56(1), 270-280.
[http://dx.doi.org/10.1002/hep.25601] [PMID: 22271167]
[26]
Ohsaki, Y.; Kawai, T.; Yoshikawa, Y.; Cheng, J.; Jokitalo, E.; Fujimoto, T. PML isoform II plays a critical role in nuclear lipid droplet formation. J. Cell Biol., 2016, 212(1), 29-38.
[http://dx.doi.org/10.1083/jcb.201507122] [PMID: 26728854]
[27]
Valm, A.M.; Cohen, S.; Legant, W.R.; Melunis, J.; Hershberg, U.; Wait, E.; Cohen, A.R.; Davidson, M.W.; Betzig, E.; Lippincott-Schwartz, J. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature, 2017, 546(7656), 162-167.
[http://dx.doi.org/10.1038/nature22369] [PMID: 28538724]
[28]
Kaushik, S.; Cuervo, A.M. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat. Cell Biol., 2015, 17(6), 759-770.
[http://dx.doi.org/10.1038/ncb3166] [PMID: 25961502]
[29]
Welte, M.A.; Gould, A.P. Lipid droplet functions beyond energy storage. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2017, 1862(10 Pt B), 1260-1272.
[http://dx.doi.org/10.1016/j.bbalip.2017.07.006] [PMID: 28735096]
[30]
Bartness, T.J.; Liu, Y.; Shrestha, Y.B.; Ryu, V. Neural innervation of white adipose tissue and the control of lipolysis. Front. Neuroendocrinol., 2014, 35(4), 473-493.
[http://dx.doi.org/10.1016/j.yfrne.2014.04.001] [PMID: 24736043]
[31]
Shin, D.W. Lipophagy: Molecular mechanisms and implications in metabolic disorders. Mol. Cells, 2020, 43(8), 686-693.
[PMID: 32624503]
[32]
Fredrikson, G.; Tornqvist, H.; Belfrage, P. Hormone-sensitive lipase and monoacylglycerol lipase are both required for complete degradation of adipocyte triacylglycerol. Biochim. Biophys. Acta, 1986, 876(2), 288-293.
[http://dx.doi.org/10.1016/0005-2760(86)90286-9] [PMID: 3955067]
[33]
Kaushik, S.; Cuervo, A.M. The coming of age of chaperone-mediated autophagy. Nat. Rev. Mol. Cell Biol., 2018, 19(6), 365-381.
[http://dx.doi.org/10.1038/s41580-018-0001-6] [PMID: 29626215]
[34]
Andrade-Tomaz, M.; de Souza, I.; Rocha, C.; Gomes, L.R. The role of Chaperone-Mediated autophagy in cell cycle control and its implications in cancer; CELLS-BASEL, 2020, p. 9.
[35]
Onishi, M.; Yamano, K.; Sato, M.; Matsuda, N.; Okamoto, K. Molecular mechanisms and physiological functions of mitophagy. EMBO J., 2021, 40(3), e104705.
[http://dx.doi.org/10.15252/embj.2020104705] [PMID: 33438778]
[36]
Chino, H.; Mizushima, N. ER-Phagy: Quality control and turnover of endoplasmic reticulum. Trends Cell Biol., 2020, 30(5), 384-398.
[http://dx.doi.org/10.1016/j.tcb.2020.02.001] [PMID: 32302550]
[37]
Singh, R.; Kaushik, S.; Wang, Y.; Xiang, Y.; Novak, I.; Komatsu, M.; Tanaka, K.; Cuervo, A.M.; Czaja, M.J. Autophagy regulates lipid metabolism. Nature, 2009, 458(7242), 1131-1135.
[http://dx.doi.org/10.1038/nature07976] [PMID: 19339967]
[38]
Ao, X.; Zou, L.; Wu, Y. Regulation of autophagy by the Rab GTPase network. Cell Death Differ., 2014, 21(3), 348-358.
[http://dx.doi.org/10.1038/cdd.2013.187] [PMID: 24440914]
[39]
Jain, N.; Ganesh, S. Emerging nexus between RAB GTPases, autophagy and neurodegeneration. Autophagy, 2016, 12(5), 900-904.
[http://dx.doi.org/10.1080/15548627.2016.1147673] [PMID: 26985808]
[40]
Schroeder, B.; Schulze, R.J.; Weller, S.G.; Sletten, A.C.; Casey, C.A.; McNiven, M.A. The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology, 2015, 61(6), 1896-1907.
[http://dx.doi.org/10.1002/hep.27667] [PMID: 25565581]
[41]
Schulze, R.J.; Rasineni, K.; Weller, S.G.; Schott, M.B.; Schroeder, B.; Casey, C.A.; McNiven, M.A. Ethanol exposure inhibits hepatocyte lipophagy by inactivating the small guanosine triphosphatase Rab7. Hepatol. Commun., 2017, 1(2), 140-152.
[http://dx.doi.org/10.1002/hep4.1021] [PMID: 29404450]
[42]
Li, Z.; Schulze, R.J.; Weller, S.G.; Krueger, E.W.; Schott, M.B.; Zhang, X.; Casey, C.A.; Liu, J.; Stöckli, J.; James, D.E.; McNiven, M.A. A novel Rab10-EHBP1-EHD2 complex essential for the autophagic engulfment of lipid droplets. Sci. Adv., 2016, 2(12), e1601470.
[http://dx.doi.org/10.1126/sciadv.1601470] [PMID: 28028537]
[43]
Li, Z.; Weller, S.G.; Drizyte-Miller, K.; Chen, J.; Krueger, E.W.; Mehall, B.; Casey, C.A.; Cao, H.; McNiven, M.A. Maturation of lipophagic organelles in hepatocytes is dependent upon a Rab10/Dynamin-2 complex. Hepatology, 2020, 72(2), 486-502.
[http://dx.doi.org/10.1002/hep.31059] [PMID: 31808574]
[44]
Bekbulat, F.; Schmitt, D.; Feldmann, A.; Huesmann, H.; Eimer, S.; Juretschke, T.; Beli, P.; Behl, C.; Kern, A. RAB18 loss interferes with lipid droplet catabolism and provokes autophagy network adaptations. J. Mol. Biol., 2020, 432(4), 1216-1234.
[http://dx.doi.org/10.1016/j.jmb.2019.12.031] [PMID: 31874152]
[45]
Feldmann, A.; Bekbulat, F.; Huesmann, H.; Ulbrich, S.; Tatzelt, J.; Behl, C.; Kern, A. The RAB GTPase RAB18 modulates macroautophagy and proteostasis. Biochem. Biophys. Res. Commun., 2017, 486(3), 738-743.
[http://dx.doi.org/10.1016/j.bbrc.2017.03.112] [PMID: 28342870]
[46]
Hirabayashi, T.; Murakami, M.; Kihara, A. The role of PNPLA1 in ω-O-acylceramide synthesis and skin barrier function. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2019, 1864(6), 869-879.
[http://dx.doi.org/10.1016/j.bbalip.2018.09.010] [PMID: 30290227]
[47]
Martinez-Lopez, N.; Garcia-Macia, M.; Sahu, S.; Athonvarangkul, D.; Liebling, E.; Merlo, P.; Cecconi, F.; Schwartz, G.J.; Singh, R. Autophagy in the CNS and periphery coordinate lipophagy and lipolysis in the brown adipose tissue and liver. Cell Metab., 2016, 23(1), 113-127.
[http://dx.doi.org/10.1016/j.cmet.2015.10.008] [PMID: 26698918]
[48]
Sathyanarayan, A.; Mashek, M.T.; Mashek, D.G. ATGL promotes autophagy/lipophagy via SIRT1 to control hepatic lipid droplet catabolism. Cell Rep., 2017, 19(1), 1-9.
[http://dx.doi.org/10.1016/j.celrep.2017.03.026] [PMID: 28380348]
[49]
Schwerbel, K.; Kamitz, A.; Krahmer, N.; Hallahan, N.; Jähnert, M.; Gottmann, P.; Lebek, S.; Schallschmidt, T.; Arends, D.; Schumacher, F.; Kleuser, B.; Haltenhof, T.; Heyd, F.; Gancheva, S.; Broman, K.W.; Roden, M.; Joost, H.G.; Chadt, A.; Al-Hasani, H.; Vogel, H.; Jonas, W.; Schürmann, A. Immunity-related GTPase induces lipophagy to prevent excess hepatic lipid accumulation. J. Hepatol., 2020, 73(4), 771-782.
[http://dx.doi.org/10.1016/j.jhep.2020.04.031] [PMID: 32376415]
[50]
Tang, M.; Hu, Z.; Rao, C.; Chen, J.; Yuan, S.; Zhang, J.; Mao, C.; Yan, J.; Xia, Y.; Zhang, M.; Yue, J.; Xiang, Y.; Xie, J.; Mao, X.; Li, Q. Burkholderia pseudomallei interferes with host lipid metabolism via NR1D2-mediated PNPLA2/ATGL suppression to block autophagy-dependent inhibition of infection. Autophagy, 2021, 17(8), 1918-1933.
[http://dx.doi.org/10.1080/15548627.2020.1801270] [PMID: 32777979]
[51]
Basu Ray, S. PNPLA3-I148M: A problem of plenty in non-alcoholic fatty liver disease. Adipocyte, 2019, 8(1), 201-208.
[http://dx.doi.org/10.1080/21623945.2019.1607423] [PMID: 31062641]
[52]
Negoita, F.; Blomdahl, J.; Wasserstrom, S.; Winberg, M.E.; Osmark, P.; Larsson, S.; Stenkula, K.G.; Ekstedt, M.; Kechagias, S.; Holm, C.; Jones, H.A. PNPLA3 variant M148 causes resistance to starvation-mediated lipid droplet autophagy in human hepatocytes. J. Cell. Biochem., 2019, 120(1), 343-356.
[http://dx.doi.org/10.1002/jcb.27378] [PMID: 30171718]
[53]
Xu, B.; Shen, J.; Li, D.; Ning, B.; Guo, L.; Bing, H.; Chen, J.; Li, Y. Overexpression of microRNA-9 inhibits 3T3-L1 cell adipogenesis by targeting PNPLA3 via activation of AMPK. Gene, 2020, 730, 144260.
[http://dx.doi.org/10.1016/j.gene.2019.144260] [PMID: 31759991]
[54]
Dupont, N.; Chauhan, S.; Arko-Mensah, J.; Castillo, E.F.; Masedunskas, A.; Weigert, R.; Robenek, H.; Proikas-Cezanne, T.; Deretic, V. Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis. Curr. Biol., 2014, 24(6), 609-620.
[http://dx.doi.org/10.1016/j.cub.2014.02.008] [PMID: 24613307]
[55]
Kim, K.Y.; Jang, H.J.; Yang, Y.R.; Park, K.I.; Seo, J.; Shin, I.W.; Jeon, T.I.; Ahn, S.C.; Suh, P.G.; Osborne, T.F.; Seo, Y.K. SREBP-2/PNPLA8 axis improves non-alcoholic fatty liver disease through activation of autophagy. Sci. Rep., 2016, 6, 35732.
[http://dx.doi.org/10.1038/srep35732] [PMID: 27767079]
[56]
Voisin, M.; Gage, M.C.; Becares, N.; Shrestha, E.; Fisher, E.A.; Pineda-Torra, I.; Garabedian, M.J. LXRalpha phosphorylation in cardiometabolic disease: Insight from mouse models. Endocrinology, 2020, 161(7), 161.
[http://dx.doi.org/10.1210/endocr/bqaa089] [PMID: 32496563]
[57]
Wang, B.; Tontonoz, P. Liver X receptors in lipid signalling and membrane homeostasis. Nat. Rev. Endocrinol., 2018, 14(8), 452-463.
[http://dx.doi.org/10.1038/s41574-018-0037-x] [PMID: 29904174]
[58]
Parikh, M.; Patel, K.; Soni, S.; Gandhi, T. Liver X receptor: A cardinal target for atherosclerosis and beyond. J. Atheroscler. Thromb., 2014, 21(6), 519-531.
[http://dx.doi.org/10.5551/jat.19778] [PMID: 24695022]
[59]
Hashimoto, K.; Mori, M. Crosstalk of thyroid hormone receptor and liver X receptor in lipid metabolism and beyond [Review]. Endocr. J., 2011, 58(11), 921-930. [Review].
[http://dx.doi.org/10.1507/endocrj.EJ11-0114] [PMID: 21908933]
[60]
Fiévet, C.; Staels, B. Liver X receptor modulators: Effects on lipid metabolism and potential use in the treatment of atherosclerosis. Biochem. Pharmacol., 2009, 77(8), 1316-1327.
[http://dx.doi.org/10.1016/j.bcp.2008.11.026] [PMID: 19101522]
[61]
Zhang, Z.; Tang, S.; Gui, W.; Lin, X.; Zheng, F.; Wu, F.; Li, H. Liver X receptor activation induces podocyte injury via inhibiting autophagic activity. J. Physiol. Biochem., 2020, 76(2), 317-328.
[http://dx.doi.org/10.1007/s13105-020-00737-1] [PMID: 32328877]
[62]
Zhang, Y.; Breevoort, S.R.; Angdisen, J.; Fu, M.; Schmidt, D.R.; Holmstrom, S.R.; Kliewer, S.A.; Mangelsdorf, D.J.; Schulman, I.G. Liver LXRα expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice. J. Clin. Invest., 2012, 122(5), 1688-1699.
[http://dx.doi.org/10.1172/JCI59817] [PMID: 22484817]
[63]
Liang, X.; Wang, C.; Sun, Y.; Song, W.; Lin, J.; Li, J.; Guan, X. p62/mTOR/LXRα pathway inhibits cholesterol efflux mediated by ABCA1 and ABCG1 during autophagy blockage. Biochem. Biophys. Res. Commun., 2019, 514(4), 1093-1100.
[http://dx.doi.org/10.1016/j.bbrc.2019.04.134] [PMID: 31101336]
[64]
Li, F.; Zhao, X.; Li, H.; Liu, Y.; Zhang, Y.; Huang, X.; Cao, J.; Du, F.; Wu, D.; Yu, H. Hepatic lysosomal acid lipase drives the autophagy-lysosomal response and alleviates cholesterol metabolic disorder in ApoE deficient mice. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2021, 1866(12), 159027.
[http://dx.doi.org/10.1016/j.bbalip.2021.159027] [PMID: 34416392]
[65]
Carotti, S.; Aquilano, K.; Valentini, F.; Ruggiero, S.; Alletto, F.; Morini, S.; Picardi, A.; Antonelli-Incalzi, R.; Lettieri-Barbato, D.; Vespasiani-Gentilucci, U. An overview of deregulated lipid metabolism in nonalcoholic fatty liver disease with special focus on lysosomal acid lipase. Am. J. Physiol. Gastrointest. Liver Physiol., 2020, 319(4), G469-G480.
[http://dx.doi.org/10.1152/ajpgi.00049.2020] [PMID: 32812776]
[66]
Kim, Y.S.; Nam, H.J.; Han, C.Y.; Joo, M.S.; Jang, K.; Jun, D.W.; Kim, S.G. Liver x receptor alpha activation inhibits autophagy and lipophagy in hepatocytes by dysregulating autophagy-related 4B cysteine peptidase and Rab-8B, reducing mitochondrial fuel oxidation. Hepatology, 2021, 73(4), 1307-1326.
[http://dx.doi.org/10.1002/hep.31423] [PMID: 32557804]
[67]
Zhang, C.J.; Zhu, N.; Long, J.; Wu, H.T.; Wang, Y.X.; Liu, B.Y.; Liao, D.F.; Qin, L. Celastrol induces lipophagy via the LXRα/ABCA1 pathway in clear cell renal cell carcinoma. Acta Pharmacol. Sin., 2021, 42(9), 1472-1485.
[http://dx.doi.org/10.1038/s41401-020-00572-6] [PMID: 33303989]
[68]
Xiao, J.; Deng, Y.M.; Liu, X.R.; Cao, J.P.; Zhou, M.; Tang, Y.L.; Xiong, W.H.; Jiang, Z.S.; Tang, Z.H.; Liu, L.S. PCSK9: A new participant in lipophagy in regulating atherosclerosis? Clin. Chim. Acta, 2019, 495, 358-364.
[http://dx.doi.org/10.1016/j.cca.2019.05.005] [PMID: 31075236]
[69]
Farnier, M. PCSK9: From discovery to therapeutic applications. Arch. Cardiovasc. Dis., 2014, 107(1), 58-66.
[http://dx.doi.org/10.1016/j.acvd.2013.10.007] [PMID: 24373748]
[70]
Zhang, D.W.; Lagace, T.A.; Garuti, R.; Zhao, Z.; McDonald, M.; Horton, J.D.; Cohen, J.C.; Hobbs, H.H. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J. Biol. Chem., 2007, 282(25), 18602-18612.
[http://dx.doi.org/10.1074/jbc.M702027200] [PMID: 17452316]
[71]
Ding, Z.; Wang, X.; Liu, S.; Shahanawaz, J.; Theus, S.; Fan, Y.; Deng, X.; Zhou, S.; Mehta, J.L. PCSK9 expression in the ischaemic heart and its relationship to infarct size, cardiac function, and development of autophagy. Cardiovasc. Res., 2018, 114(13), 1738-1751.
[http://dx.doi.org/10.1093/cvr/cvy128] [PMID: 29800228]
[72]
Sun, H.; Krauss, R.M.; Chang, J.T.; Teng, B.B. PCSK9 deficiency reduces atherosclerosis, apolipoprotein B secretion, and endothelial dysfunction. J. Lipid Res., 2018, 59(2), 207-223.
[http://dx.doi.org/10.1194/jlr.M078360] [PMID: 29180444]
[73]
Liu, W.J.; Huang, W.F.; Ye, L.; Chen, R.H.; Yang, C.; Wu, H.L.; Pan, Q.J.; Liu, H.F. The activity and role of autophagy in the pathogenesis of diabetic nephropathy. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(10), 3182-3189.
[PMID: 29863264]
[74]
Li, A.; Yi, B.; Han, H.; Yang, S.; Hu, Z.; Zheng, L.; Wang, J.; Liao, Q.; Zhang, H. Vitamin D-VDR (vitamin D receptor) regulates defective autophagy in renal tubular epithelial cell in streptozotocin-induced diabetic mice via the AMPK pathway. Autophagy, 2022, 18(4), 877-890.
[PMID: 34432556]
[75]
Wang, X.; Zhao, L.; Ajay, A.K.; Jiao, B.; Zhang, X.; Wang, C.; Gao, X.; Yuan, Z.; Liu, H.; Liu, W.J. QiDiTang- Shen granules activate renal nutrient-sensing associated autophagy in db/db Mice. Front. Physiol., 2019, 10, 1224.
[http://dx.doi.org/10.3389/fphys.2019.01224] [PMID: 31632286]
[76]
Lv, L.; Zhang, J.; Tian, F.; Li, X.; Li, D.; Yu, X. Arbutin protects HK-2 cells against high glucose-induced apoptosis and autophagy by up-regulating microRNA-27a. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 2940-2947.
[http://dx.doi.org/10.1080/21691401.2019.1640231] [PMID: 31319730]
[77]
Huang, H.; Ni, H.; Ma, K.; Zou, J. ANGPTL2 regulates autophagy through the MEK/ERK/Nrf-1 pathway and affects the progression of renal fibrosis in diabetic nephropathy. Am. J. Transl. Res., 2019, 11(9), 5472-5486.
[PMID: 31632523]
[78]
Yamahara, K.; Kume, S.; Koya, D.; Tanaka, Y.; Morita, Y.; Chin-Kanasaki, M.; Araki, H.; Isshiki, K.; Araki, S.; Haneda, M.; Matsusaka, T.; Kashiwagi, A.; Maegawa, H.; Uzu, T. Obesity-mediated autophagy insufficiency exacerbates proteinuria-induced tubulointerstitial lesions. J. Am. Soc. Nephrol., 2013, 24(11), 1769-1781.
[http://dx.doi.org/10.1681/ASN.2012111080] [PMID: 24092929]
[79]
Han, Y.; Xiong, S.; Zhao, H.; Yang, S.; Yang, M.; Zhu, X.; Jiang, N.; Xiong, X.; Gao, P.; Wei, L.; Xiao, Y.; Sun, L. Lipophagy deficiency exacerbates ectopic lipid accumulation and tubular cells injury in diabetic nephropathy. Cell Death Dis., 2021, 12(11), 1031.
[http://dx.doi.org/10.1038/s41419-021-04326-y] [PMID: 34718329]
[80]
Kimmelstiel, P.; Wilson, C. Intercapillary lesions in the glomeruli of the kidney. Am. J. Pathol., 1936, 12(1), 83-98, 7.
[PMID: 19970254]
[81]
Su, K.; Yi, B.; Yao, B.Q.; Xia, T.; Yang, Y.F.; Zhang, Z.H.; Chen, C. Liraglutide attenuates renal tubular ectopic lipid deposition in rats with diabetic nephropathy by inhibiting lipid synthesis and promoting lipolysis. Pharmacol. Res., 2020, 156, 104778.
[http://dx.doi.org/10.1016/j.phrs.2020.104778] [PMID: 32247822]
[82]
Wang, C.; Min, C.; Rong, X.; Fu, T.; Huang, X.; Wang, C. Irbesartan can improve blood lipid and the kidney function of diabetic nephropathy. Discov. Med., 2015, 20(108), 67-77.
[PMID: 26321089]
[83]
Grefhorst, A.; van de Peppel, I.P.; Larsen, L.E.; Jonker, J.W.; Holleboom, A.G. The role of lipophagy in the development and treatment of Non-Alcoholic fatty liver disease. Front. Endocrinol. (Lausanne), 2021, 11, 601627.
[http://dx.doi.org/10.3389/fendo.2020.601627] [PMID: 33597924]
[84]
Lanfranco, M.F.; Ng, C.A.; Rebeck, G.W. ApoE lipidation as a therapeutic target in Alzheimer’s disease. Int. J. Mol. Sci., 2020, 21(17), 21.
[http://dx.doi.org/10.3390/ijms21176336] [PMID: 32882843]
[85]
Chen, K.; Yuan, R.; Zhang, Y.; Geng, S.; Li, L. Tollip deficiency alters atherosclerosis and steatosis by disrupting lipophagy. J. Am. Heart Assoc., 2017, 6(4), 6.
[http://dx.doi.org/10.1161/JAHA.116.004078] [PMID: 28396568]
[86]
Liu, Q.; Wang, Y.M.; Gu, H.F. Lipophagy in atherosclerosis. Clin. Chim. Acta, 2020, 511, 208-214.
[http://dx.doi.org/10.1016/j.cca.2020.10.025] [PMID: 33096029]
[87]
Papáčková, Z.; Daňková, H.; Páleníčková, E.; Kazdová, L.; Cahová, M. Effect of short- and long-term high-fat feeding on autophagy flux and lysosomal activity in rat liver. Physiol. Res., 2012, 61(Suppl. 2), S67-S76.
[http://dx.doi.org/10.33549/physiolres.932394] [PMID: 23130905]
[88]
Miceli, C.; Roccio, F.; Penalva-Mousset, L.; Burtin, M.; Leroy, C.; Nemazanyy, I.; Kuperwasser, N.; Pontoglio, M.; Friedlander, G.; Morel, E.; Terzi, F.; Codogno, P.; Dupont, N. The primary cilium and lipophagy translate mechanical forces to direct metabolic adaptation of kidney epithelial cells. Nat. Cell Biol., 2020, 22(9), 1091-1102.
[http://dx.doi.org/10.1038/s41556-020-0566-0] [PMID: 32868900]
[89]
Yoo, J.; Jeong, I.K.; Ahn, K.J.; Chung, H.Y.; Hwang, Y.C. Fenofibrate, a PPARα agonist, reduces hepatic fat accumulation through the upregulation of TFEB-mediated lipophagy. Metabolism, 2021, 120, 154798.
[http://dx.doi.org/10.1016/j.metabol.2021.154798] [PMID: 33984335]
[90]
Reyes-Farias, M.; Carrasco-Pozo, C. The Anti-Cancer effect of quercetin: Molecular implications in cancer metabolism. Int. J. Mol. Sci., 2019, 20(13), 20.
[http://dx.doi.org/10.3390/ijms20133177] [PMID: 31261749]
[91]
Zhu, X.; Xiong, T.; Liu, P.; Guo, X.; Xiao, L.; Zhou, F.; Tang, Y.; Yao, P. Quercetin ameliorates HFD-induced NAFLD by promoting hepatic VLDL assembly and lipophagy via the IRE1a/XBP1s pathway. Food Chem. Toxicol., 2018, 114, 52-60.
[http://dx.doi.org/10.1016/j.fct.2018.02.019] [PMID: 29438776]
[92]
Sinha, R.A.; Farah, B.L.; Singh, B.K.; Siddique, M.M.; Li, Y.; Wu, Y.; Ilkayeva, O.R.; Gooding, J.; Ching, J.; Zhou, J.; Martinez, L.; Xie, S.; Bay, B.H.; Summers, S.A.; Newgard, C.B.; Yen, P.M. Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice. Hepatology, 2014, 59(4), 1366-1380.
[http://dx.doi.org/10.1002/hep.26667] [PMID: 23929677]
[93]
Lin, C.W.; Zhang, H.; Li, M.; Xiong, X.; Chen, X.; Chen, X.; Dong, X.C.; Yin, X.M. Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non-alcoholic fatty liver conditions in mice. J. Hepatol., 2013, 58(5), 993-999.
[http://dx.doi.org/10.1016/j.jhep.2013.01.011] [PMID: 23339953]
[94]
Sinha, R.A.; You, S.H.; Zhou, J.; Siddique, M.M.; Bay, B.H.; Zhu, X.; Privalsky, M.L.; Cheng, S.Y.; Stevens, R.D.; Summers, S.A.; Newgard, C.B.; Lazar, M.A.; Yen, P.M. Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy. J. Clin. Invest., 2012, 122(7), 2428-2438.
[http://dx.doi.org/10.1172/JCI60580] [PMID: 22684107]
[95]
Panda, P.K.; Patra, S.; Naik, P.P.; Praharaj, P.P.; Mukhopadhyay, S.; Meher, B.R.; Gupta, P.K.; Verma, R.S.; Maiti, T.K.; Bhutia, S.K. Deacetylation of LAMP1 drives lipophagy-dependent generation of free fatty acids by Abrus agglutinin to promote senescence in prostate cancer. J. Cell. Physiol., 2020, 235(3), 2776-2791.
[http://dx.doi.org/10.1002/jcp.29182] [PMID: 31544977]
[96]
Qiu, S.; Xu, H.; Lin, Z.; Liu, F.; Tan, F. The blockade of lipophagy pathway is necessary for docosahexaenoic acid to regulate lipid droplet turnover in hepatic stellate cells. Biomed. Pharmacother., 2019, 109, 1841-1850.
[http://dx.doi.org/10.1016/j.biopha.2018.11.035] [PMID: 30551439]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy