Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Antidepressant Drugs for Seizures and Epilepsy: Where do we Stand?

Author(s): Martina Tallarico, Maria Pisano, Antonio Leo, Emilio Russo, Rita Citraro* and Giovambattista De Sarro

Volume 21, Issue 8, 2023

Published on: 24 March, 2023

Page: [1691 - 1713] Pages: 23

DOI: 10.2174/1570159X20666220627160048

Price: $65

conference banner
Abstract

People with epilepsy (PWE) are more likely to develop depression and both these complex chronic diseases greatly affect health-related quality of life (QOL). This comorbidity contributes to the deterioration of the QOL further than increasing the severity of epilepsy worsening prognosis. Strong scientific evidence suggests the presence of shared pathogenic mechanisms. The correct identification and management of these factors are crucial in order to improve patients’ QOL. This review article discusses recent original research on the most common pathogenic mechanisms of depression in PWE and highlights the effects of antidepressant drugs (ADs) against seizures in PWE and animal models of seizures and epilepsy. Newer ADs, such as selective serotonin reuptake inhibitors (SRRI) or serotonin-noradrenaline reuptake inhibitors (SNRI), particularly sertraline, citalopram, mirtazapine, reboxetine, paroxetine, fluoxetine, escitalopram, fluvoxamine, venlafaxine, duloxetine may lead to improvements in epilepsy severity whereas the use of older tricyclic antidepressant (TCAs) can increase the occurrence of seizures. Most of the data demonstrate the acute effects of ADs in animal models of epilepsy while there is a limited number of studies about the chronic antidepressant effects in epilepsy and epileptogenesis or on clinical efficacy. Much longer treatments are needed in order to validate the effectiveness of these new alternatives in the treatment and the development of epilepsy, while further clinical studies with appropriate protocols are warranted in order to understand the real potential contribution of these drugs in the management of PWE (besides their effects on mood).

Keywords: Depression, antidepressant drugs (ADs), animal models, clinical studies, seizures, epilepsy.

Graphical Abstract
[1]
Fiest, K.M.; Sauro, K.M.; Wiebe, S.; Patten, S.B.; Kwon, C.S.; Dykeman, J.; Pringsheim, T.; Lorenzetti, D.L.; Jetté, N. Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology, 2017, 88(3), 296-303.
[http://dx.doi.org/10.1212/WNL.0000000000003509] [PMID: 27986877]
[2]
Beghi, E. The Epidemiology of Epilepsy. Neuroepidemiology, 2020, 54(2), 185-191.
[http://dx.doi.org/10.1159/000503831] [PMID: 31852003]
[3]
Rocamora, R.; Chavarría, B.; Pérez, E.; Pérez-Enríquez, C.; Barguilla, A.; Panadés-de Oliveira, L.; Principe, A.; Zucca, R. Mood disturbances, anxiety, and impact on quality of life in patients admitted to epilepsy monitoring units. Front. Neurol., 2021, 12(12), 761239.
[http://dx.doi.org/10.3389/fneur.2021.761239] [PMID: 34777230]
[4]
Vinti, V.; Dell’Isola, G.B.; Tascini, G.; Mencaroni, E.; Cara, G.D.; Striano, P.; Verrotti, A. Temporal lobe epilepsy and psychiatric comorbidity. Front. Neurol., 2021, 12(12), 775781.
[http://dx.doi.org/10.3389/fneur.2021.775781] [PMID: 34917019]
[5]
Levira, F.; Thurman, D.J.; Sander, J.W.; Hauser, W.A.; Hesdorffer, D.C.; Masanja, H.; Odermatt, P.; Logroscino, G.; Newton, C.R. Premature mortality of epilepsy in low- and middle-income countries: A systematic review from the Mortality Task Force of the International League Against Epilepsy. Epilepsia, 2017, 58(1), 6-16.
[http://dx.doi.org/10.1111/epi.13603] [PMID: 27988968]
[6]
Hesdorffer, D.C.; Ishihara, L.; Mynepalli, L.; Webb, D.J.; Weil, J.; Hauser, W.A. Epilepsy, suicidality, and psychiatric disorders: A bidirectional association. Ann. Neurol., 2012, 72(2), 184-191.
[http://dx.doi.org/10.1002/ana.23601] [PMID: 22887468]
[7]
Nogueira, M.H.; Yasuda, C.L.; Coan, A.C.; Kanner, A.M.; Cendes, F. Concurrent mood and anxiety disorders are associated with pharmacoresistant seizures in patients with MTLE. Epilepsia, 2017, 58(7), 1268-1276.
[http://dx.doi.org/10.1111/epi.13781] [PMID: 28555776]
[8]
Kanner, A.M.; Ribot, R.; Mazarati, A. Bidirectional relations among common psychiatric and neurologic comorbidities and epilepsy: Do they have an impact on the course of the seizure disorder? Epilepsia Open, 2018, 3(Suppl)(Suppl. 2), 210-219.
[http://dx.doi.org/10.1002/epi4.12278] [PMID: 30564780]
[9]
Mula, M.; Kanner, A.M.; Jetté, N.; Sander, J.W. Psychiatric comorbidities in people with epilepsy. Neurol. Clin. Pract., 2021, 11(2), e112-e120.
[http://dx.doi.org/10.1212/CPJ.0000000000000874] [PMID: 33842079]
[10]
Ravizza, T.; Onat, F.Y.; Brooks-Kayal, A.R.; Depaulis, A.; Galanopoulou, A.S.; Mazarati, A.; Numis, A.L.; Sankar, R.; Friedman, A. WONOEP appraisal: Biomarkers of epilepsy-associated comorbidities. Epilepsia, 2017, 58(3), 331-342.
[http://dx.doi.org/10.1111/epi.13652] [PMID: 28035782]
[11]
Shehata, N.; Saleh, S.M.; Kamal, A.M.; Awad, O.K.; Kamal Awad, O. Assessment of the frequency of depressive symptoms in epileptic children (single center study). Risk Manag. Healthc. Policy, 2021, 14(14), 2089-2097.
[http://dx.doi.org/10.2147/RMHP.S301058] [PMID: 34295198]
[12]
Hesdorffer, D.C.; Hauser, W.A.; Annegers, J.F.; Cascino, G. Major depression is a risk factor for seizures in older adults. Ann. Neurol., 2000, 47(2), 246-249.
[http://dx.doi.org/10.1002/1531-8249(200002)47:2<246:AID-ANA17>3.0.CO;2-E] [PMID: 10665498]
[13]
Gonçalves, E.B.; de Oliveira Cardoso, T.A.M.; Yasuda, C.L.; Cendes, F. Depressive disorders in patients with pharmaco-resistant mesial temporal lobe epilepsy. J. Int. Med. Res., 2018, 46(2), 752-760.
[http://dx.doi.org/10.1177/0300060517717825] [PMID: 29239239]
[14]
McLaughlin, D.P.; Pachana, N.A.; McFarland, K. The impact of depression, seizure variables and locus of control on health related quality of life in a community dwelling sample of older adults. Seizure, 2010, 19(4), 232-236.
[http://dx.doi.org/10.1016/j.seizure.2010.02.008] [PMID: 20338790]
[15]
Cramer, J.A.; Blum, D.; Reed, M.; Fanning, K. The influence of comorbid depression on seizure severity. Epilepsia, 2003, 44(12), 1578-1584.
[http://dx.doi.org/10.1111/j.0013-9580.2003.28403.x] [PMID: 14636331]
[16]
Elger, C.E.; Johnston, S.A.; Hoppe, C. Diagnosing and treating depression in epilepsy. Seizure, 2017, 44(44), 184-193.
[http://dx.doi.org/10.1016/j.seizure.2016.10.018] [PMID: 27836391]
[17]
Chen, B.; Choi, H.; Hirsch, L.J.; Katz, A.; Legge, A.; Buchsbaum, R.; Detyniecki, K. Psychiatric and behavioral side effects of antiepileptic drugs in adults with epilepsy. Epilepsy Behav., 2017, 76(76), 24-31.
[http://dx.doi.org/10.1016/j.yebeh.2017.08.039] [PMID: 28931473]
[18]
Sarkisova, K.; van Luijtelaar, G. The WAG/Rij strain: A genetic animal model of absence epilepsy with comorbidity of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(4), 854-876.
[http://dx.doi.org/10.1016/j.pnpbp.2010.11.010] [PMID: 21093520]
[19]
Epps, S.A.; Weinshenker, D. Rhythm and blues: Animal models of epilepsy and depression comorbidity. Biochem. Pharmacol., 2013, 85(2), 135-146.
[http://dx.doi.org/10.1016/j.bcp.2012.08.016] [PMID: 22940575]
[20]
Mazarati, A.; Shin, D.; Auvin, S.; Caplan, R.; Sankar, R. Kindling epileptogenesis in immature rats leads to persistent depressive behavior. Epilepsy Behav., 2007, 10(3), 377-383.
[http://dx.doi.org/10.1016/j.yebeh.2007.02.001] [PMID: 17368107]
[21]
Mazarati, A.; Siddarth, P.; Baldwin, R.A.; Shin, D.; Caplan, R.; Sankar, R. Depression after status epilepticus: Behavioural and biochemical deficits and effects of fluoxetine. Brain, 2008, 131(Pt 8), 2071-2083.
[http://dx.doi.org/10.1093/brain/awn117] [PMID: 18559371]
[22]
Mula, M.; Brodie, M.J.; de Toffol, B.; Guekht, A.; Hecimovic, H.; Kanemoto, K.; Kanner, A.M.; Teixeira, A.L.; Wilson, S.J. ILAE clinical practice recommendations for the medical treatment of depression in adults with epilepsy. Epilepsia, 2022, 63(2), 316-334.
[http://dx.doi.org/10.1111/epi.17140] [PMID: 34866176]
[23]
Colmers, P.L.W.; Maguire, J. Network dysfunction in comorbid psychiatric illnesses and epilepsy. Epilepsy Curr., 2020, 20(4), 205-210.
[http://dx.doi.org/10.1177/1535759720934787] [PMID: 32628514]
[24]
Mukhtar, I. Inflammatory and immune mechanisms underlying epileptogenesis and epilepsy: From pathogenesis to treatment target. Seizure, 2020, 82(82), 65-79.
[http://dx.doi.org/10.1016/j.seizure.2020.09.015] [PMID: 33011590]
[25]
Vezzani, A.; Balosso, S.; Ravizza, T. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat. Rev. Neurol., 2019, 15(8), 459-472.
[http://dx.doi.org/10.1038/s41582-019-0217-x] [PMID: 31263255]
[26]
Troubat, R.; Barone, P.; Leman, S.; Desmidt, T.; Cressant, A.; Atanasova, B.; Brizard, B.; El Hage, W.; Surget, A.; Belzung, C.; Camus, V. Neuroinflammation and depression: A review. Eur. J. Neurosci., 2021, 53(1), 151-171.
[http://dx.doi.org/10.1111/ejn.14720] [PMID: 32150310]
[27]
Beurel, E.; Toups, M.; Nemeroff, C.B. The bidirectional relationship of depression and inflammation: Double trouble. Neuron, 2020, 107(2), 234-256.
[http://dx.doi.org/10.1016/j.neuron.2020.06.002] [PMID: 32553197]
[28]
Mazarati, A.M.; Lewis, M.L.; Pittman, Q.J. Neurobehavioral comorbidities of epilepsy: Role of inflammation. Epilepsia, 2017, 58(Suppl. 3), 48-56.
[http://dx.doi.org/10.1111/epi.13786] [PMID: 28675557]
[29]
Paudel, Y.N.; Shaikh, M.F.; Shah, S.; Kumari, Y.; Othman, I. Role of inflammation in epilepsy and neurobehavioral comorbidities: Implication for therapy. Eur. J. Pharmacol., 2018, 837(837), 145-155.
[http://dx.doi.org/10.1016/j.ejphar.2018.08.020] [PMID: 30125565]
[30]
de Vries, E.E.; van den Munckhof, B.; Braun, K.P.J.; van Royen-Kerkhof, A.; de Jager, W.; Jansen, F.E. Inflammatory mediators in human epilepsy: A systematic review and meta-analysis. Neurosci. Biobehav. Rev., 2016, 63(63), 177-190.
[http://dx.doi.org/10.1016/j.neubiorev.2016.02.007] [PMID: 26877106]
[31]
Ishikawa, N.; Kobayashi, Y.; Fujii, Y.; Kobayashi, M. Increased interleukin-6 and high-sensitivity C-reactive protein levels in pediatric epilepsy patients with frequent, refractory generalized motor seizures. Seizure, 2015, 25(25), 136-140.
[http://dx.doi.org/10.1016/j.seizure.2014.10.007] [PMID: 25455727]
[32]
Vieira, É.L.M.; de Oliveira, G.N.M.; Lessa, J.M.K.; Gonçalves, A.P.; Sander, J.W.; Cendes, F.; Teixeira, A.L. Interleukin-1β plasma levels are associated with depression in temporal lobe epilepsy. Epilepsy Behav., 2015, 53(53), 131-134.
[http://dx.doi.org/10.1016/j.yebeh.2015.09.035] [PMID: 26575253]
[33]
Alapirtti, T.; Rinta, S.; Hulkkonen, J.; Mäkinen, R.; Keränen, T.; Peltola, J. Interleukin-6, interleukin-1 receptor antagonist and interleukin-1beta production in patients with focal epilepsy: A video-EEG study. J. Neurol. Sci., 2009, 280(1-2), 94-97.
[http://dx.doi.org/10.1016/j.jns.2009.02.355] [PMID: 19272615]
[34]
Liimatainen, S.; Fallah, M.; Kharazmi, E.; Peltola, M.; Peltola, J. Interleukin-6 levels are increased in temporal lobe epilepsy but not in extra-temporal lobe epilepsy. J. Neurol., 2009, 256(5), 796-802.
[http://dx.doi.org/10.1007/s00415-009-5021-x] [PMID: 19252806]
[35]
Gouveia, T.L.F.; Vieira de Sousa, P.V.; de Almeida, S.S.; Nejm, M.B.; Vieira de Brito, J.M.; Cysneiros, R.M.; de Brito, M.V.; Salu, B.R.; Oliva, M.L.V.; Scorza, F.A. Naffah-Mazzacoratti, Mda.G. High serum levels of proinflammatory markers during epileptogenesis. Can omega-3 fatty acid administration reduce this process? Epilepsy Behav., 2015, 51(51), 300-305.
[http://dx.doi.org/10.1016/j.yebeh.2015.07.021] [PMID: 26318793]
[36]
Ravizza, T.; Rizzi, M.; Perego, C.; Richichi, C.; Velísková, J.; Moshé, S.L.; De Simoni, M.G.; Vezzani, A. Inflammatory response and glia activation in developing rat hippocampus after status epilepticus. Epilepsia, 2005, 46(46)(Suppl. 5), 113-117.
[http://dx.doi.org/10.1111/j.1528-1167.2005.01006.x] [PMID: 15987264]
[37]
Vezzani, A.; Viviani, B. Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology, 2015, 96(Pt A), 70-82.
[http://dx.doi.org/10.1016/j.neuropharm.2014.10.027] [PMID: 25445483]
[38]
Vezzani, A.; French, J.; Bartfai, T.; Baram, T.Z. The role of inflammation in epilepsy. Nat. Rev. Neurol., 2011, 7(1), 31-40.
[http://dx.doi.org/10.1038/nrneurol.2010.178] [PMID: 21135885]
[39]
Dowlati, Y.; Herrmann, N.; Swardfager, W.; Liu, H.; Sham, L.; Reim, E.K.; Lanctôt, K.L. A meta-analysis of cytokines in major depression. Biol. Psychiatry, 2010, 67(5), 446-457.
[http://dx.doi.org/10.1016/j.biopsych.2009.09.033] [PMID: 20015486]
[40]
Köhler, C.A.; Freitas, T.H.; Maes, M.; de Andrade, N.Q.; Liu, C.S.; Fernandes, B.S.; Stubbs, B.; Solmi, M.; Veronese, N.; Herrmann, N.; Raison, C.L.; Miller, B.J.; Lanctôt, K.L.; Carvalho, A.F. Peripheral cytokine and chemokine alterations in depression: A meta-analysis of 82 studies. Acta Psychiatr. Scand., 2017, 135(5), 373-387.
[http://dx.doi.org/10.1111/acps.12698] [PMID: 28122130]
[41]
Lamers, F.; Milaneschi, Y.; Smit, J.H.; Schoevers, R.A.; Wittenberg, G.; Penninx, B.W.J.H. Longitudinal association between depression and inflammatory markers: Results from the netherlands study of depression and anxiety. Biol. Psychiatry, 2019, 85(10), 829-837.
[http://dx.doi.org/10.1016/j.biopsych.2018.12.020] [PMID: 30819515]
[42]
Ting, E.Y.C.; Yang, A.C.; Tsai, S.J. Role of interleukin-6 in depressive disorder. Int. J. Mol. Sci., 2020, 21(6), E2194.
[http://dx.doi.org/10.3390/ijms21062194] [PMID: 32235786]
[43]
Kalia, M.; Costa, E.; Silva, J.; Silva, J. Biomarkers of psychiatric diseases: Current status and future prospects. Metabolism, 2015, 64(3)(Suppl. 1), S11-S15.
[http://dx.doi.org/10.1016/j.metabol.2014.10.026] [PMID: 25467847]
[44]
Więdłocha, M.; Marcinowicz, P.; Krupa, R.; Janoska-Jaździk, M.; Janus, M.; Dębowska, W.; Mosiołek, A.; Waszkiewicz, N.; Szulc, A. Effect of antidepressant treatment on peripheral inflammation markers - A meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 80(Pt C), 217-226.
[http://dx.doi.org/10.1016/j.pnpbp.2017.04.026] [PMID: 28445690]
[45]
Liu, J.J.; Wei, Y.B.; Strawbridge, R.; Bao, Y.; Chang, S.; Shi, L.; Que, J.; Gadad, B.S.; Trivedi, M.H.; Kelsoe, J.R.; Lu, L. Peripheral cytokine levels and response to antidepressant treatment in depression: A systematic review and meta-analysis. Mol. Psychiatry, 2020, 25(2), 339-350.
[http://dx.doi.org/10.1038/s41380-019-0474-5] [PMID: 31427752]
[46]
Hannestad, J.; DellaGioia, N.; Bloch, M. The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: A meta-analysis. Neuropsychopharmacology, 2011, 36(12), 2452-2459.
[http://dx.doi.org/10.1038/npp.2011.132] [PMID: 21796103]
[47]
Rossetti, A.C.; Papp, M.; Gruca, P.; Paladini, M.S.; Racagni, G.; Riva, M.A.; Molteni, R. Stress-induced anhedonia is associated with the activation of the inflammatory system in the rat brain: Restorative effect of pharmacological intervention. Pharmacol. Res., 2016, 103(103), 1-12.
[http://dx.doi.org/10.1016/j.phrs.2015.10.022] [PMID: 26535964]
[48]
Dantzer, R.; O’Connor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From inflammation to sickness and depression: When the immune system subjugates the brain. Nat. Rev. Neurosci., 2008, 9(1), 46-56.
[http://dx.doi.org/10.1038/nrn2297] [PMID: 18073775]
[49]
Enache, D.; Pariante, C.M.; Mondelli, V. Markers of central inflammation in major depressive disorder: A systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue. Brain Behav. Immun., 2019, 81, 24-40.
[http://dx.doi.org/10.1016/j.bbi.2019.06.015] [PMID: 31195092]
[50]
Suleymanova, E.M. Behavioral comorbidities of epilepsy and neuroinflammation: Evidence from experimental and clinical studies. Epilepsy Behav., 2021, 117(117), 107869.
[http://dx.doi.org/10.1016/j.yebeh.2021.107869] [PMID: 33684786]
[51]
Vezzani, A.; Aronica, E.; Mazarati, A.; Pittman, Q.J. Epilepsy and brain inflammation. Exp. Neurol., 2013, 244(244), 11-21.
[http://dx.doi.org/10.1016/j.expneurol.2011.09.033] [PMID: 21985866]
[52]
Cotter, D.; Mackay, D.; Chana, G.; Beasley, C.; Landau, S.; Everall, I.P. Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb. Cortex, 2002, 12(4), 386-394.
[http://dx.doi.org/10.1093/cercor/12.4.386] [PMID: 11884354]
[53]
Sheline, Y.I.; Gado, M.H.; Kraemer, H.C. Untreated depression and hippocampal volume loss. Am. J. Psychiatry, 2003, 160(8), 1516-1518.
[http://dx.doi.org/10.1176/appi.ajp.160.8.1516] [PMID: 12900317]
[54]
Pope, R.A.; Thompson, P.J.; Rantell, K.; Stretton, J.; Wright, M.A.; Foong, J. Frontal lobe dysfunction as a predictor of depression and anxiety following temporal lobe epilepsy surgery. Epilepsy Res., 2019, 152, 59-66.
[http://dx.doi.org/10.1016/j.eplepsyres.2019.03.003] [PMID: 30909053]
[55]
Zhang, S.; Zong, Y.; Ren, Z.; Hu, J.; Wu, X.; Xiao, H.; Qin, S.; Zhou, G.; Ma, Y.; Zhang, Y.; Yu, J.; Wang, K.; Lu, G.; Liu, Q. Regulation of indoleamine 2, 3-dioxygenase in hippocampal microglia by NLRP3 inflammasome in lipopolysaccharide-induced depressive-like behaviors. Eur. J. Neurosci., 2020, 52(11), 4586-4601.
[http://dx.doi.org/10.1111/ejn.15016] [PMID: 33098156]
[56]
Singh, T.; Goel, R.K. Managing epilepsy-associated depression: Serotonin enhancers or serotonin producers? Epilepsy Behav., 2017, 66, 93-99.
[http://dx.doi.org/10.1016/j.yebeh.2016.10.007] [PMID: 28038393]
[57]
Liimatainen, S.; Lehtimäki, K.; Raitala, A.; Peltola, M.; Oja, S.S.; Peltola, J.; Hurme, M.A. Increased indoleamine 2, 3-dioxygenase (IDO) activity in idiopathic generalized epilepsy. Epilepsy Res., 2011, 94(3), 206-212.
[http://dx.doi.org/10.1016/j.eplepsyres.2011.02.003] [PMID: 21377330]
[58]
Raijmakers, M.; Clynen, E.; Smisdom, N.; Nelissen, S.; Brône, B.; Rigo, J.M.; Hoogland, G.; Swijsen, A. Experimental febrile seizures increase dendritic complexity of newborn dentate granule cells. Epilepsia, 2016, 57(5), 717-726.
[http://dx.doi.org/10.1111/epi.13357] [PMID: 27020476]
[59]
Danzer, S.C. Depression, stress, epilepsy and adult neurogenesis. Exp. Neurol., 2012, 233(1), 22-32.
[http://dx.doi.org/10.1016/j.expneurol.2011.05.023] [PMID: 21684275]
[60]
Hattiangady, B.; Shetty, A.K. Implications of decreased hippocampal neurogenesis in chronic temporal lobe epilepsy. Epilepsia, 2008, 49(49)(Suppl. 5), 26-41.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01635.x] [PMID: 18522598]
[61]
Hayashi, Y.; Jinnou, H.; Sawamoto, K.; Hitoshi, S. Adult neurogenesis and its role in brain injury and psychiatric diseases. J. Neurochem., 2018, 147(5), 584-594.
[http://dx.doi.org/10.1111/jnc.14557] [PMID: 30028510]
[62]
Henn, F.A.; Vollmayr, B. Neurogenesis and depression: Etiology or epiphenomenon? Biol. Psychiatry, 2004, 56(3), 146-150.
[http://dx.doi.org/10.1016/j.biopsych.2004.04.011] [PMID: 15271582]
[63]
Hooper, A.; Paracha, R.; Maguire, J. Seizure-induced activation of the HPA axis increases seizure frequency and comorbid depression-like behaviors. Epilepsy Behav., 2018, 78, 124-133.
[http://dx.doi.org/10.1016/j.yebeh.2017.10.025] [PMID: 29186699]
[64]
Ceruso, A.; Martínez-Cengotitabengoa, M.; Peters-Corbett, A.; Diaz-Gutierrez, M.J.; Martínez-Cengotitabengoa, M. Alterations of the HPA axis observed in patients with major depressive disorder and their relation to early life stress: A systematic review. Neuropsychobiology, 2020, 79(6), 417-427.
[http://dx.doi.org/10.1159/000506484] [PMID: 32203965]
[65]
Wulsin, A.C.; Solomon, M.B.; Privitera, M.D.; Danzer, S.C.; Herman, J.P. Hypothalamic-pituitary-adrenocortical axis dysfunction in epilepsy. Physiol. Behav., 2016, 166, 22-31.
[http://dx.doi.org/10.1016/j.physbeh.2016.05.015] [PMID: 27195458]
[66]
Basu, T.; Maguire, J.; Salpekar, J.A. Hypothalamic-pituitary-adrenal axis targets for the treatment of epilepsy. Neurosci. Lett., 2021, 746(746), 135618.
[http://dx.doi.org/10.1016/j.neulet.2020.135618] [PMID: 33429002]
[67]
Zobel, A.; Wellmer, J.; Schulze-Rauschenbach, S.; Pfeiffer, U.; Schnell, S.; Elger, C.; Maier, W. Impairment of inhibitory control of the hypothalamic pituitary adrenocortical system in epilepsy. Eur. Arch. Psychiatry Clin. Neurosci., 2004, 254(5), 303-311.
[http://dx.doi.org/10.1007/s00406-004-0499-9] [PMID: 15365705]
[68]
Mazarati, A.M.; Shin, D.; Kwon, Y.S.; Bragin, A.; Pineda, E.; Tio, D.; Taylor, A.N.; Sankar, R. Elevated plasma corticosterone level and depressive behavior in experimental temporal lobe epilepsy. Neurobiol. Dis., 2009, 34(3), 457-461.
[http://dx.doi.org/10.1016/j.nbd.2009.02.018] [PMID: 19285131]
[69]
Raison, C.L.; Miller, A.H. When not enough is too much: The role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. Am. J. Psychiatry, 2003, 160(9), 1554-1565.
[http://dx.doi.org/10.1176/appi.ajp.160.9.1554] [PMID: 12944327]
[70]
Kumar, G.; Jones, N.C.; Morris, M.J.; Rees, S.; O’Brien, T.J.; Salzberg, M.R. Early life stress enhancement of limbic epileptogenesis in adult rats: Mechanistic insights. PLoS One, 2011, 6(9), e24033.
[http://dx.doi.org/10.1371/journal.pone.0024033] [PMID: 21957442]
[71]
Johnson, S.A.; Fournier, N.M.; Kalynchuk, L.E. Effect of different doses of corticosterone on depression-like behavior and HPA axis responses to a novel stressor. Behav. Brain Res., 2006, 168(2), 280-288.
[http://dx.doi.org/10.1016/j.bbr.2005.11.019] [PMID: 16386319]
[72]
Sterner, E.Y.; Kalynchuk, L.E. Behavioral and neurobiological consequences of prolonged glucocorticoid exposure in rats: Relevance to depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2010, 34(5), 777-790.
[http://dx.doi.org/10.1016/j.pnpbp.2010.03.005] [PMID: 20226827]
[73]
Kumar, G.; Couper, A.; O’Brien, T.J.; Salzberg, M.R.; Jones, N.C.; Rees, S.M.; Morris, M.J. The acceleration of amygdala kindling epileptogenesis by chronic low-dose corticosterone involves both mineralocorticoid and glucocorticoid receptors. Psychoneuroendocrinology, 2007, 32(7), 834-842.
[http://dx.doi.org/10.1016/j.psyneuen.2007.05.011] [PMID: 17614213]
[74]
Taher, T.R.; Salzberg, M.; Morris, M.J.; Rees, S.; O’Brien, T.J. Chronic low-dose corticosterone supplementation enhances acquired epileptogenesis in the rat amygdala kindling model of TLE. Neuropsychopharmacology, 2005, 30(9), 1610-1616.
[http://dx.doi.org/10.1038/sj.npp.1300709] [PMID: 15770235]
[75]
Singh, T.; Kaur, T.; Goel, R.K. Adjuvant quercetin therapy for combined treatment of epilepsy and comorbid depression. Neurochem. Int., 2017, 104, 27-33.
[http://dx.doi.org/10.1016/j.neuint.2016.12.023] [PMID: 28065794]
[76]
Mueller, N.K.; Beck, S.G. Corticosteroids alter the 5-HT1A receptor-mediated response in CA1 hippocampal pyramidal cells. Neuropsychopharmacol., 2000, 234(23), 419-427.
[http://dx.doi.org/10.1016/S0893-133X(00)00134-2]
[77]
Kanner, A.M. Hippocampal atrophy: Another common pathogenic mechanism of depressive disorders and epilepsy? Epilepsy Curr., 2011, 11(5), 149-150.
[http://dx.doi.org/10.5698/1535-7511-11.5.149] [PMID: 22020737]
[78]
Sapolsky, R.M. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch. Gen. Psychiatry, 2000, 57(10), 925-935.
[http://dx.doi.org/10.1001/archpsyc.57.10.925] [PMID: 11015810]
[79]
Jongsma, M.E.; Bosker, F.J.; Cremers, T.I.F.H.; Westerink, B.H.C.; den Boer, J.A. The effect of chronic selective serotonin reuptake inhibitor treatment on serotonin 1B receptor sensitivity and HPA axis activity. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2005, 29(5), 738-744.
[http://dx.doi.org/10.1016/j.pnpbp.2005.04.026] [PMID: 15961207]
[80]
Himmerich, H.; Zimmermann, P.; Ising, M.; Kloiber, S.; Lucae, S.; Künzel, H.E.; Binder, E.B.; Holsboer, F.; Uhr, M. Changes in the hypothalamic-pituitary-adrenal axis and leptin levels during antidepressant treatment. Neuropsychobiology, 2007, 55(1), 28-35.
[http://dx.doi.org/10.1159/000103573] [PMID: 17556850]
[81]
Rocha, L.; Alonso-Vanegas, M.; Orozco-Suárez, S.; Alcántara-González, D.; Cruzblanca, H.; Castro, E. Do certain signal transduction mechanisms explain the comorbidity of epilepsy and mood disorders? Epilepsy Behav., 2014, 38, 25-31.
[http://dx.doi.org/10.1016/j.yebeh.2014.01.001] [PMID: 24472685]
[82]
Zarcone, D.; Corbetta, S. Shared mechanisms of epilepsy, migraine and affective disorders. Neurol. Sci., 2017, 38(Suppl. 1), 73-76.
[http://dx.doi.org/10.1007/s10072-017-2902-0] [PMID: 28527083]
[83]
Albrecht, J.; Zielińska, M. Mechanisms of excessive extracellular glutamate accumulation in temporal lobe epilepsy. Neurochem. Res., 2017, 42(6), 1724-1734.
[http://dx.doi.org/10.1007/s11064-016-2105-8] [PMID: 27873132]
[84]
Barker-Haliski, M.; White, H.S. Glutamatergic mechanisms associated with seizures and epilepsy. Cold Spring Harb. Perspect. Med., 2015, 5(8), a022863.
[http://dx.doi.org/10.1101/cshperspect.a022863] [PMID: 26101204]
[85]
Khazipov, R. GABAergic synchronization in epilepsy. Cold Spring Harb. Perspect. Med., 2016, 6(2), a022764.
[http://dx.doi.org/10.1101/cshperspect.a022764] [PMID: 26747834]
[86]
Duman, R.S.; Sanacora, G.; Krystal, J.H. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron, 2019, 102(1), 75-90.
[http://dx.doi.org/10.1016/j.neuron.2019.03.013] [PMID: 30946828]
[87]
Peng, W.F.; Ding, J.; Mao, L.Y.; Li, X.; Liang, L.; Chen, C.Z.; Cheng, W.Z.; Fan, W.; Wang, X. Increased ratio of glutamate/glutamine to creatine in the right hippocampus contributes to depressive symptoms in patients with epilepsy. Epilepsy Behav., 2013, 29(1), 144-149.
[http://dx.doi.org/10.1016/j.yebeh.2013.07.004] [PMID: 23969202]
[88]
Garakani, A.; Martinez, J.M.; Yehuda, R.; Gorman, J.M. Cerebrospinal fluid levels of glutamate and corticotropin releasing hormone in major depression before and after treatment. J. Affect. Disord., 2013, 146(2), 262-265.
[http://dx.doi.org/10.1016/j.jad.2012.06.037] [PMID: 22840611]
[89]
Li, C.T.; Yang, K.C.; Lin, W.C. Glutamatergic dysfunction and glutamatergic compounds for major psychiatric disorders: Evidence from clinical neuroimaging studies. Front. Psychiatry, 2019, 9, 767.
[http://dx.doi.org/10.3389/fpsyt.2018.00767] [PMID: 30733690]
[90]
Reus, G.Z.; de Moura, A.B.; Silva, R.H.; Resende, W.R.; Quevedo, J. Resilience dysregulation in major depressive disorder: Focus on glutamatergic imbalance and microglial activation. Curr. Neuropharmacol., 2018, 16(3), 297-307.
[http://dx.doi.org/10.2174/1570159X15666170630164715] [PMID: 28676011]
[91]
Fullana, N.; Gasull-Camós, J.; Tarrés-Gatius, M.; Castañé, A.; Bortolozzi, A.; Artigas, F. Astrocyte control of glutamatergic activity: Downstream effects on serotonergic function and emotional behavior. Neuropharmacology, 2020, 166, 107914.
[http://dx.doi.org/10.1016/j.neuropharm.2019.107914] [PMID: 32045742]
[92]
Miladinovic, T.; Nashed, M.G.; Singh, G. Overview of glutamatergic dysregulation in central pathologies. Biomolecules, 2015, 5(4), 3112-3141.
[http://dx.doi.org/10.3390/biom5043112] [PMID: 26569330]
[93]
Eid, T.; Gruenbaum, S.E.; Dhaher, R.; Lee, T.S.W.; Zhou, Y.; Danbolt, N.C. The glutamate-glutamine cycle in epilepsy. In: The Glutamate/GABA-Glutamine Cycle. Advances in Neurobiology; Schousboe, A.; Sonnewald, U., Eds.; Springer, Cham, 2016; 13, p. 351-400.
[http://dx.doi.org/10.1007/978-3-319-45096-4_14]
[94]
Hanada, T. Ionotropic glutamate receptors in epilepsy: A review focusing on ampa and nmda receptors. Biomolecules, 2020, 10(3), E464.
[http://dx.doi.org/10.3390/biom10030464] [PMID: 32197322]
[95]
Sadeghi, M.A.; Hemmati, S.; Mohammadi, S.; Yousefi-Manesh, H.; Vafaei, A.; Zare, M.; Dehpour, A.R. Chronically altered NMDAR signaling in epilepsy mediates comorbid depression. Acta Neuropathol. Commun., 2021, 9(1), 53.
[http://dx.doi.org/10.1186/s40478-021-01153-2] [PMID: 33762011]
[96]
Sanacora, G.; Treccani, G.; Popoli, M. Towards a glutamate hypothesis of depression: An emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology, 2012, 62(1), 63-77.
[http://dx.doi.org/10.1016/j.neuropharm.2011.07.036] [PMID: 21827775]
[97]
Popoli, M.; Yan, Z.; McEwen, B.S.; Sanacora, G. The stressed synapse: The impact of stress and glucocorticoids on glutamate transmission. Nat. Rev. Neurosci., 2011, 13(1), 22-37.
[http://dx.doi.org/10.1038/nrn3138] [PMID: 22127301]
[98]
Liu, R.J.; Aghajanian, G.K. Stress blunts serotonin- and hypocretin-evoked EPSCs in prefrontal cortex: Role of corticosterone-mediated apical dendritic atrophy. Proc. Natl. Acad. Sci. USA, 2008, 105(1), 359-364.
[http://dx.doi.org/10.1073/pnas.0706679105] [PMID: 18172209]
[99]
Fee, C.; Banasr, M.; Sibille, E. Somatostatin-positive gamma-aminobutyric acid interneuron deficits in depression: Cortical microcircuit and therapeutic perspectives. Biol. Psychiatry, 2017, 82(8), 549-559.
[http://dx.doi.org/10.1016/j.biopsych.2017.05.024] [PMID: 28697889]
[100]
Godfrey, K.E.M.; Gardner, A.C.; Kwon, S.; Chea, W.; Muthukumaraswamy, S.D. Differences in excitatory and inhibitory neurotransmitter levels between depressed patients and healthy controls: A systematic review and meta-analysis. J. Psychiatr. Res., 2018, 105(105), 33-44.
[http://dx.doi.org/10.1016/j.jpsychires.2018.08.015] [PMID: 30144668]
[101]
Bhagwagar, Z.; Wylezinska, M.; Jezzard, P.; Evans, J.; Ashworth, F.; Sule, A.; Matthews, P.M.; Cowen, P.J. Reduction in occipital cortex gamma-aminobutyric acid concentrations in medication-free recovered unipolar depressed and bipolar subjects. Biol. Psychiatry, 2007, 61(6), 806-812.
[http://dx.doi.org/10.1016/j.biopsych.2006.08.048] [PMID: 17210135]
[102]
Rajkowska, G.; O’Dwyer, G.; Teleki, Z.; Stockmeier, C.A.; Miguel-Hidalgo, J.J. GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression. Neuropsychopharmacology, 2007, 32(2), 471-482.
[http://dx.doi.org/10.1038/sj.npp.1301234] [PMID: 17063153]
[103]
Bajbouj, M.; Lisanby, S.H.; Lang, U.E.; Danker-Hopfe, H.; Heuser, I.; Neu, P. Evidence for impaired cortical inhibition in patients with unipolar major depression. Biol. Psychiatry, 2006, 59(5), 395-400.
[http://dx.doi.org/10.1016/j.biopsych.2005.07.036] [PMID: 16197927]
[104]
Rocha, L.; Alonso-Vanegas, M.; Martínez-Juárez, I.E.; Orozco-Suárez, S.; Escalante-Santiago, D.; Feria-Romero, I.A.; Zavala-Tecuapetla, C.; Cisneros-Franco, J.M.; Buentello-García, R.M.; Cienfuegos, J. GABAergic alterations in neocortex of patients with pharmacoresistant temporal lobe epilepsy can explain the comorbidity of anxiety and depression: The potential impact of clinical factors. Front. Cell. Neurosci., 2015, 8(8), 442.
[http://dx.doi.org/10.3389/fncel.2014.00442] [PMID: 25601827]
[105]
Bielau, H.; Steiner, J.; Mawrin, C.; Trübner, K.; Brisch, R.; Meyer-Lotz, G.; Brodhun, M.; Dobrowolny, H.; Baumann, B.; Gos, T.; Bernstein, H.G.; Bogerts, B. Dysregulation of GABAergic neurotransmission in mood disorders: A postmortem study. Ann. N. Y. Acad. Sci., 2007, 1096(1096), 157-169.
[http://dx.doi.org/10.1196/annals.1397.081] [PMID: 17405927]
[106]
Levinson, A.J.; Fitzgerald, P.B.; Favalli, G.; Blumberger, D.M.; Daigle, M.; Daskalakis, Z.J. Evidence of cortical inhibitory deficits in major depressive disorder. Biol. Psychiatry, 2010, 67(5), 458-464.
[http://dx.doi.org/10.1016/j.biopsych.2009.09.025] [PMID: 19922906]
[107]
Sanacora, G.; Gueorguieva, R.; Epperson, C.N.; Wu, Y.T.; Appel, M.; Rothman, D.L.; Krystal, J.H.; Mason, G.F. Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression. Arch. Gen. Psychiatry, 2004, 61(7), 705-713.
[http://dx.doi.org/10.1001/archpsyc.61.7.705] [PMID: 15237082]
[108]
Banasr, M.; Lepack, A.; Fee, C.; Duric, V.; Maldonado-Aviles, J.; DiLeone, R.; Sibille, E.; Duman, R.S.; Sanacora, G. Characterization of GABAergic marker expression in the chronic unpredictable stress model of depression. Chronic Stress (Thousand Oaks), 2017, 1(1)
[http://dx.doi.org/10.1177/2470547017720459] [PMID: 28835932]
[109]
Ma, K.; Xu, A.; Cui, S.; Sun, M.R.; Xue, Y.C.; Wang, J.H. Impaired GABA synthesis, uptake and release are associated with depression-like behaviors induced by chronic mild stress. Transl. Psychiatry, 2016, 6(10), e910.
[http://dx.doi.org/10.1038/tp.2016.181] [PMID: 27701406]
[110]
Ghosal, S.; Hare, B.; Duman, R.S. Prefrontal cortex GABAergic deficits and circuit dysfunction in the pathophysiology and treatment of chronic stress and depression. Curr. Opin. Behav. Sci., 2017, 14, 1-8.
[http://dx.doi.org/10.1016/j.cobeha.2016.09.012] [PMID: 27812532]
[111]
Schijns, O.; Karaca, Ü.; Andrade, P.; de Nijs, L.; Küsters, B.; Peeters, A.; Dings, J.; Pannek, H.; Ebner, A.; Rijkers, K.; Hoogland, G. Hippocampal GABA transporter distribution in patients with temporal lobe epilepsy and hippocampal sclerosis. J. Chem. Neuroanat., 2015, 68(68), 39-44.
[http://dx.doi.org/10.1016/j.jchemneu.2015.07.004] [PMID: 26212582]
[112]
Kumar, S.S.; Buckmaster, P.S. Hyperexcitability, interneurons, and loss of GABAergic synapses in entorhinal cortex in a model of temporal lobe epilepsy. J. Neurosci., 2006, 26(17), 4613-4623.
[http://dx.doi.org/10.1523/JNEUROSCI.0064-06.2006] [PMID: 16641241]
[113]
Krystal, G.W.; Sulanke, G.; Litz, J. Inhibition of phosphatidylinositol 3-kinase-Akt signaling blocks growth, promotes apoptosis, and enhances sensitivity of small cell lung cancer cells to chemotherapy. Mol. Cancer Ther., 2002, 1(11), 913-922. Available from: https://pubmed.ncbi.nlm.nih.gov/12481412/
[PMID: 12481412]
[114]
Vahid-Ansari, F.; Albert, P.R. Rewiring of the serotonin system in major depression. Front. Psychiatry, 2021, 12(12), 802581.
[http://dx.doi.org/10.3389/fpsyt.2021.802581] [PMID: 34975594]
[115]
Ressler, K.J.; Nemeroff, C.B. Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress. Anxiety, 2000, 12(12)(Suppl. 1), 2-19.
[http://dx.doi.org/10.1002/1520-6394(2000)12:1+<2:AID-DA2>3.0.CO;2-4] [PMID: 11098410]
[116]
Wang, L.; Zhou, C.; Zhu, D.; Wang, X.; Fang, L.; Zhong, J.; Mao, Q.; Sun, L.; Gong, X.; Xia, J.; Lian, B.; Xie, P. Serotonin-1A receptor alterations in depression: A meta-analysis of molecular imaging studies. BMC Psychiatry, 2016, 16(1), 319.
[http://dx.doi.org/10.1186/s12888-016-1025-0] [PMID: 27623971]
[117]
Drevets, W.C.; Thase, M.E.; Moses-Kolko, E.L.; Price, J.; Frank, E.; Kupfer, D.J.; Mathis, C. Serotonin-1A receptor imaging in recurrent depression: Replication and literature review. Nucl. Med. Biol., 2007, 34(7), 865-877.
[http://dx.doi.org/10.1016/j.nucmedbio.2007.06.008] [PMID: 17921037]
[118]
Sargent, P.A.; Kjaer, K.H.; Bench, C.J.; Rabiner, E.A.; Messa, C.; Meyer, J.; Gunn, R.N.; Grasby, P.M.; Cowen, P.J. Brain serotonin1A receptor binding measured by positron emission tomography with [11C]WAY-100635: Effects of depression and antidepressant treatment. Arch. Gen. Psychiatry, 2000, 57(2), 174-180.
[http://dx.doi.org/10.1001/archpsyc.57.2.174] [PMID: 10665620]
[119]
Bravo, J.A.; Dinan, T.G.; Cryan, J.F. Early-life stress induces persistent alterations in 5-HT1A receptor and serotonin transporter mRNA expression in the adult rat brain. Front. Mol. Neurosci., 2014, 7, 24.
[http://dx.doi.org/10.3389/fnmol.2014.00024] [PMID: 24782706]
[120]
Parsey, R.V.; Hastings, R.S.; Oquendo, M.A.; Huang, Y.Y.; Simpson, N.; Arcement, J.; Huang, Y.; Ogden, R.T.; Van Heertum, R.L.; Arango, V.; Mann, J.J. Lower serotonin transporter binding potential in the human brain during major depressive episodes. Am. J. Psychiatry, 2006, 163(1), 52-58.
[http://dx.doi.org/10.1176/appi.ajp.163.1.52] [PMID: 16390889]
[121]
Gryglewski, G.; Lanzenberger, R.; Kranz, G.S.; Cumming, P. Meta-analysis of molecular imaging of serotonin transporters in major depression. J. Cereb. Blood Flow Metab., 2014, 34(7), 1096-1103.
[http://dx.doi.org/10.1038/jcbfm.2014.82] [PMID: 24802331]
[122]
Clevenger, S.S.; Malhotra, D.; Dang, J.; Vanle, B.; IsHak, W.W. The role of selective serotonin reuptake inhibitors in preventing relapse of major depressive disorder. Ther. Adv. Psychopharmacol., 2018, 8(1), 49-58.
[http://dx.doi.org/10.1177/2045125317737264] [PMID: 29344343]
[123]
Jobe, P.C.; Dailey, J.W.; Wernicke, J.F. A noradrenergic and serotonergic hypothesis of the linkage between epilepsy and affective disorders. Crit. Rev. Neurobiol., 1999, 13(4), 317-356.
[http://dx.doi.org/10.1615/CritRevNeurobiol.v13.i4.10] [PMID: 11028680]
[124]
Aguilar, B.L.; Malkova, L.; N’Gouemo, P.; Forcelli, P.A. Genetically epilepsy-prone rats display anxiety-like behaviors and neuropsychiatric comorbidities of epilepsy. Front. Neurol., 2018, 9(9), 476.
[http://dx.doi.org/10.3389/fneur.2018.00476] [PMID: 29997563]
[125]
Pineda, E.A.; Hensler, J.G.; Sankar, R.; Shin, D.; Burke, T.F.; Mazarati, A.M. Plasticity of presynaptic and postsynaptic serotonin 1A receptors in an animal model of epilepsy-associated depression. Neuropsychopharmacology, 2011, 36(6), 1305-1316.
[http://dx.doi.org/10.1038/npp.2011.18] [PMID: 21346733]
[126]
Rocha, L.; Lorigados-Pedre, L.; Orozco-Suárez, S.; Morales-Chacón, L.; Alonso-Vanegas, M.; García-Maeso, I.; Villeda-Hernández, J.; Osorio-Rico, L.; Estupiñán, B.; Quintana, C. Autoradiography reveals selective changes in serotonin binding in neocortex of patients with temporal lobe epilepsy. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2007, 31(6), 1208-1218.
[http://dx.doi.org/10.1016/j.pnpbp.2007.04.014] [PMID: 17513030]
[127]
Savic, I.; Lindström, P.; Gulyás, B.; Halldin, C.; Andrée, B.; Farde, L. Limbic reductions of 5-HT1A receptor binding in human temporal lobe epilepsy. Neurology, 2004, 62(8), 1343-1351.
[http://dx.doi.org/10.1212/01.WNL.0000123696.98166.AF] [PMID: 15111672]
[128]
Theodore, W.H.; Hasler, G.; Giovacchini, G.; Kelley, K.; Reeves-Tyer, P.; Herscovitch, P.; Drevets, W. Reduced hippocampal 5HT1A PET receptor binding and depression in temporal lobe epilepsy. Epilepsia, 2007, 48(8), 1526-1530.
[http://dx.doi.org/10.1111/j.1528-1167.2007.01089.x] [PMID: 17442003]
[129]
Marinho, A.M.D.N.; Lobão-Soares, B.; Targino, H.A.S.; Vasconcellos, Y.J.F.; Guarnieri, R.; Carlotti, C.G. Jr Decreased hippocampal serotonin 5HT1A expression in mesial temporal lobe of epilepsy patients. Epilepsy Behav., 2022, 129, 108574.
[http://dx.doi.org/10.1016/j.yebeh.2022.108574] [PMID: 35189481]
[130]
Hasler, G.; Bonwetsch, R.; Giovacchini, G.; Toczek, M.T.; Bagic, A.; Luckenbaugh, D.A.; Drevets, W.C.; Theodore, W.H. 5-HT1A receptor binding in temporal lobe epilepsy patients with and without major depression. Biol. Psychiatry, 2007, 62(11), 1258-1264.
[http://dx.doi.org/10.1016/j.biopsych.2007.02.015] [PMID: 17588547]
[131]
Theodore, W.H.; Wiggs, E.A.; Martinez, A.R.; Dustin, I.H.; Khan, O.I.; Appel, S.; Reeves-Tyer, P.; Sato, S. Serotonin 1A receptors, depression, and memory in temporal lobe epilepsy. Epilepsia, 2012, 53(1), 129-133.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03309.x] [PMID: 22050514]
[132]
Martinez, A.; Finegersh, A.; Cannon, D.M.; Dustin, I.; Nugent, A.; Herscovitch, P.; Theodore, W.H. The 5-HT1A receptor and 5-HT transporter in temporal lobe epilepsy. Neurology, 2013, 80(16), 1465-1471.
[http://dx.doi.org/10.1212/WNL.0b013e31828cf809] [PMID: 23516322]
[133]
Lothe, A.; Didelot, A.; Hammers, A.; Costes, N.; Saoud, M.; Gilliam, F.; Ryvlin, P. Comorbidity between temporal lobe epilepsy and depression: A [18F]MPPF PET study. Brain, 2008, 131(Pt 10), 2765-2782.
[http://dx.doi.org/10.1093/brain/awn194] [PMID: 18765418]
[134]
Schönhoff, K.; von Rüden, E.L.; Koska, I.; Seiffert, I.; Potschka, H. Hippocampal and Septal 5-HT1A Receptor Expression in Two Rat Models of Temporal Lobe Epilepsy. Neuroscience, 2021, 465, 219-230.
[http://dx.doi.org/10.1016/j.neuroscience.2021.03.026] [PMID: 33836244]
[135]
Mazarati, A.; Sankar, R. Common mechanisms underlying epileptogenesis and the comorbidities of epilepsy. Cold Spring Harb. Perspect. Med., 2016, 6(7)
[http://dx.doi.org/10.1101/cshperspect.a022798] [PMID: 27371669]
[136]
López-Meraz, M.L.; Martínez, A.; Rocha, L. Effect of 8-OH-DPAT on electrographic activity during the kainic acid-induced status epilepticus in rats. Seizure, 2007, 16(4), 365-370.
[http://dx.doi.org/10.1016/j.seizure.2007.02.009] [PMID: 17391992]
[137]
Pineda, E.A.; Hensler, J.G.; Sankar, R.; Shin, D.; Burke, T.F.; Mazarati, A.M. Interleukin-1β causes fluoxetine resistance in an animal model of epilepsy-associated depression. Neurotherapeutics, 2012, 9(2), 477-485.
[http://dx.doi.org/10.1007/s13311-012-0110-4] [PMID: 22427156]
[138]
Richerson, G.B.; Buchanan, G.F. The serotonin axis: Shared mechanisms in seizures, depression, and SUDEP. Epilepsia, 2011, 52(Suppl. 1), 28-38.
[http://dx.doi.org/10.1111/j.1528-1167.2010.02908.x] [PMID: 21214537]
[139]
Maletic, V.; Eramo, A.; Gwin, K.; Offord, S.J.; Duffy, R.A. The role of norepinephrine and its α-adrenergic receptors in the pathophysiology and treatment of major depressive disorder and schizophrenia: A systematic review. Front. Psychiatry, 2017, 8, 42.
[http://dx.doi.org/10.3389/fpsyt.2017.00042] [PMID: 28367128]
[140]
Montoya, A.; Bruins, R.; Katzman, M.A.; Blier, P. The noradrenergic paradox: Implications in the management of depression and anxiety. Neuropsychiatr. Dis. Treat., 2016, 12, 541-557.
[http://dx.doi.org/10.2147/NDT.S91311] [PMID: 27042068]
[141]
Cottingham, C.; Wang, Q. α2 adrenergic receptor dysregulation in depressive disorders: Implications for the neurobiology of depression and antidepressant therapy. Neurosci. Biobehav. Rev., 2012, 36(10), 2214-2225.
[http://dx.doi.org/10.1016/j.neubiorev.2012.07.011] [PMID: 22910678]
[142]
Weinshenker, D.; Szot, P. The role of catecholamines in seizure susceptibility: New results using genetically engineered mice. Pharmacol. Ther., 2002, 94(3), 213-233.
[http://dx.doi.org/10.1016/S0163-7258(02)00218-8] [PMID: 12113799]
[143]
Giorgi, F.S.; Pizzanelli, C.; Biagioni, F.; Murri, L.; Fornai, F. The role of norepinephrine in epilepsy: From the bench to the bedside. Neurosci. Biobehav. Rev., 2004, 28(5), 507-524.
[http://dx.doi.org/10.1016/j.neubiorev.2004.06.008] [PMID: 15465138]
[144]
Giorgi, F.S.; Ferrucci, M.; Lazzeri, G.; Pizzanelli, C.; Lenzi, P.; Alessanr, M.G.; Murri, L.; Fornai, F. A damage to locus coeruleus neurons converts sporadic seizures into self-sustaining limbic status epilepticus. Eur. J. Neurosci., 2003, 17(12), 2593-2601.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02692.x] [PMID: 12823466]
[145]
Raedt, R.; Clinckers, R.; Mollet, L.; Vonck, K.; El Tahry, R.; Wyckhuys, T.; De Herdt, V.; Carrette, E.; Wadman, W.; Michotte, Y.; Smolders, I.; Boon, P.; Meurs, A. Increased hippocampal noradrenaline is a biomarker for efficacy of vagus nerve stimulation in a limbic seizure model. J. Neurochem., 2011, 117(3), 461-469.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07214.x] [PMID: 21323924]
[146]
Midzyanovskaya, I.S.; Shatskova, A.B.; MacDonald, E.; Van Luijtelaar, G.; Tuomisto, L.; Midzyanovskaya, I.S.; Shatskova, A.B.; MacDonald, E.; Van Luijtelaar, G.; Tuomisto, L. Brain aminergic deficiency in absence epileptic rats: Dependency on seizure severity and their functional coupling at rest. J. Behav. Brain Sci., 2020, 10, 29-45.
[http://dx.doi.org/10.4236/jbbs.2020.101003]
[147]
Akyuz, E.; Polat, A.K.; Eroglu, E.; Kullu, I.; Angelopoulou, E.; Paudel, Y.N. Revisiting the role of neurotransmitters in epilepsy: An updated review. Life Sci., 2021, 265, 118826.
[http://dx.doi.org/10.1016/j.lfs.2020.118826] [PMID: 33259863]
[148]
Weinshenker, D. The contribution of norepinephrine and orexigenic neuropeptides to the anticonvulsant effect of the ketogenic diet. Epilepsia, 2008, 49(Suppl. 8), 104-107.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01850.x] [PMID: 19049603]
[149]
Szot, P.; Weinshenker, D.; Rho, J.M.; Storey, T.W.; Schwartzkroin, P.A. Norepinephrine is required for the anticonvulsant effect of the ketogenic diet. Brain Res. Dev. Brain Res., 2001, 129(2), 211-214.
[http://dx.doi.org/10.1016/S0165-3806(01)00213-9] [PMID: 11506865]
[150]
Ahmed, M.; Azmat, A. Decreased brain serotonin turnover rate following administration of Sharbat-e-Ahmed Shah produces antidepressant and anxiolytic effect in rats. Metab. Brain Dis., 2017, 32(6), 1785-1790.
[http://dx.doi.org/10.1007/s11011-017-0065-6] [PMID: 28687902]
[151]
Tsutsumi, H.; Yonemitsu, K.; Sasao, A.; Ohtsu, Y.; Furukawa, S.; Nishitani, Y. Cerebrospinal fluid neurotransmitter levels and central nervous system depression in a rat drug overdose model. Toxicol. Mech. Methods, 2020, 30(2), 139-145.
[http://dx.doi.org/10.1080/15376516.2019.1672122] [PMID: 31550965]
[152]
Delva, N.C.; Stanwood, G.D. Dysregulation of brain dopamine systems in major depressive disorder. Exp. Biol. Med. (Maywood), 2021, 246(9), 1084-1093.
[http://dx.doi.org/10.1177/1535370221991830] [PMID: 33593109]
[153]
Belujon, P.; Grace, A.A. Dopamine system dysregulation in major depressive disorders. Int. J. Neuropsychopharmacol., 2017, 20(12), 1036-1046.
[http://dx.doi.org/10.1093/ijnp/pyx056] [PMID: 29106542]
[154]
Dougherty, D.D.; Bonab, A.A.; Ottowitz, W.E.; Livni, E.; Alpert, N.M.; Rauch, S.L.; Fava, M.; Fischman, A.J. Decreased striatal D1 binding as measured using PET and [11C]SCH 23, 390 in patients with major depression with anger attacks. Depress. Anxiety, 2006, 23(3), 175-177.
[http://dx.doi.org/10.1002/da.20168] [PMID: 16528700]
[155]
Hasler, G.; Fromm, S.; Carlson, P.J.; Luckenbaugh, D.A.; Waldeck, T.; Geraci, M.; Roiser, J.P.; Neumeister, A.; Meyers, N.; Charney, D.S.; Drevets, W.C. Neural response to catecholamine depletion in unmedicated subjects with major depressive disorder in remission and healthy subjects. Arch. Gen. Psychiatry, 2008, 65(5), 521-531.
[http://dx.doi.org/10.1001/archpsyc.65.5.521] [PMID: 18458204]
[156]
Peciña, M.; Sikora, M.; Avery, E.T.; Heffernan, J.; Peciña, S.; Mickey, B.J.; Zubieta, J.K. Striatal dopamine D2/3 receptor-mediated neurotransmission in major depression: Implications for anhedonia, anxiety and treatment response. Eur. Neuropsychopharmacol., 2017, 27(10), 977-986.
[http://dx.doi.org/10.1016/j.euroneuro.2017.08.427] [PMID: 28870407]
[157]
Moreines, J.L.; Owrutsky, Z.L.; Grace, A.A. Involvement of infralimbic prefrontal cortex but not lateral habenula in dopamine attenuation after chronic mild stress. Neuropsychopharmacology, 2017, 42(4), 904-913.
[http://dx.doi.org/10.1038/npp.2016.249] [PMID: 27813530]
[158]
Chang, C.H.; Grace, A.A. Amygdala-ventral pallidum pathway decreases dopamine activity after chronic mild stress in rats. Biol. Psychiatry, 2014, 76(3), 223-230.
[http://dx.doi.org/10.1016/j.biopsych.2013.09.020] [PMID: 24209776]
[159]
Tye, K.M.; Mirzabekov, J.J.; Warden, M.R.; Ferenczi, E.A.; Tsai, H.C.; Finkelstein, J.; Kim, S.Y.; Adhikari, A.; Thompson, K.R.; Andalman, A.S.; Gunaydin, L.A.; Witten, I.B.; Deisseroth, K. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature, 2013, 493(7433), 537-541.
[http://dx.doi.org/10.1038/nature11740] [PMID: 23235822]
[160]
Pizzagalli, D.A.; Berretta, S.; Wooten, D.; Goer, F.; Pilobello, K.T.; Kumar, P.; Murray, L.; Beltzer, M.; Boyer-Boiteau, A.; Alpert, N.; El Fakhri, G.; Mechawar, N.; Vitaliano, G.; Turecki, G.; Normandin, M. Assessment of striatal dopamine transporter binding in individuals with major depressive disorder: In vivo positron emission tomography and postmortem evidence. JAMA Psychiatry, 2019, 76(8), 854-861.
[http://dx.doi.org/10.1001/jamapsychiatry.2019.0801]
[161]
Werhahn, K.J.; Landvogt, C.; Klimpe, S.; Buchholz, H.G.; Yakushev, I.; Siessmeier, T.; Müller-Forell, W.; Piel, M.; Rösch, F.; Glaser, M.; Schreckenberger, M.; Bartenstein, P. Decreased dopamine D2/D3-receptor binding in temporal lobe epilepsy: An [18F]fallypride PET study. Epilepsia, 2006, 47(8), 1392-1396.
[http://dx.doi.org/10.1111/j.1528-1167.2006.00561.x] [PMID: 16922886]
[162]
Rocha, L.; Alonso-Vanegas, M.; Villeda-Hernández, J.; Mújica, M.; Cisneros-Franco, J.M.; López-Gómez, M.; Zavala-Tecuapetla, C.; Frías-Soria, C.L.; Segovia-Vila, J.; Borsodi, A. Dopamine abnormalities in the neocortex of patients with temporal lobe epilepsy. Neurobiol. Dis., 2012, 45(1), 499-507.
[http://dx.doi.org/10.1016/j.nbd.2011.09.006] [PMID: 21964255]
[163]
Bozzi, Y.; Vallone, D.; Borrelli, E. Neuroprotective role of dopamine against hippocampal cell death. J. Neurosci., 2000, 20(22), 8643-8649.
[http://dx.doi.org/10.1523/JNEUROSCI.20-22-08643.2000] [PMID: 11069974]
[164]
Bozzi, Y.; Borrelli, E. The role of dopamine signaling in epileptogenesis. Front. Cell. Neurosci., 2013, 7, 157.
[http://dx.doi.org/10.3389/fncel.2013.00157] [PMID: 24062645]
[165]
Trimble, M.R.; Rüsch, N.; Betts, T.; Crawford, P.M. Psychiatric symptoms after therapy with new antiepileptic drugs: Psychopathological and seizure related variables. Seizure, 2000, 9(4), 249-254.
[http://dx.doi.org/10.1053/seiz.2000.0405] [PMID: 10880283]
[166]
Mula, M.; Monaco, F. Antiepileptic drugs and psychopathology of epilepsy: An update. Epileptic Disord., 2009, 11(1), 1-9.
[http://dx.doi.org/10.1684/epd.2009.0238] [PMID: 19258231]
[167]
Ettinger, A.B.; Kustra, R.P.; Hammer, A.E. Effect of lamotrigine on depressive symptoms in adult patients with epilepsy. Epilepsy Behav., 2007, 10(1), 148-154.
[http://dx.doi.org/10.1016/j.yebeh.2006.09.008] [PMID: 17071141]
[168]
Mazza, M.; Della Marca, G.; Di Nicola, M.; Martinotti, G.; Pozzi, G.; Janiri, L.; Bria, P.; Mazza, S. Oxcarbazepine improves mood in patients with epilepsy. Epilepsy Behav., 2007, 10(3), 397-401.
[http://dx.doi.org/10.1016/j.yebeh.2007.01.003] [PMID: 17300991]
[169]
Prabhavalkar, K.S.; Poovanpallil, N.B.; Bhatt, L.K. Management of bipolar depression with lamotrigine: An antiepileptic mood stabilizer. Front. Pharmacol., 2015, 6, 242.
[http://dx.doi.org/10.3389/fphar.2015.00242] [PMID: 26557090]
[170]
Cipriani, A.; Reid, K.; Young, A.H.; Macritchie, K.; Geddes, J. Valproic acid, valproate and divalproex in the maintenance treatment of bipolar disorder. Cochrane Database Syst. Rev., 2013, 2013(10), CD003196.
[http://dx.doi.org/10.1002/14651858.CD003196.pub2] [PMID: 24132760]
[171]
Biton, V.; Shneker, B.F.; Naritoku, D.; Hammer, A.E.; Vuong, A.; Caldwell, P.T.; Messenheimer, J.A. Long-term tolerability and safety of lamotrigine extended-release: Pooled analysis of three clinical trials. Clin. Drug Investig., 2013, 33(5), 359-364.
[http://dx.doi.org/10.1007/s40261-013-0070-4] [PMID: 23475541]
[172]
Reid, C.A.; Kim, T.; Phillips, A.M.; Low, J.; Berkovic, S.F.; Luscher, B.; Petrou, S. Multiple molecular mechanisms for a single GABAA mutation in epilepsy. Neurology, 2013, 80(11), 1003-1008.
[http://dx.doi.org/10.1212/WNL.0b013e3182872867] [PMID: 23408872]
[173]
Mula, M.; Trimble, M.R.; Yuen, A.; Liu, R.S.N.; Sander, J.W.A.S. Psychiatric adverse events during levetiracetam therapy. Neurology, 2003, 61(5), 704-706.
[http://dx.doi.org/10.1212/01.WNL.0000078031.32904.0D] [PMID: 12963770]
[174]
Helmstaedter, C.; Fritz, N.E.; Kockelmann, E.; Kosanetzky, N.; Elger, C.E. Positive and negative psychotropic effects of levetiracetam. Epilepsy Behav., 2008, 13(3), 535-541.
[http://dx.doi.org/10.1016/j.yebeh.2008.05.012] [PMID: 18583196]
[175]
Fritz, N.; Glogau, S.; Hoffmann, J.; Rademacher, M.; Elger, C.E.; Helmstaedter, C. Efficacy and cognitive side effects of tiagabine and topiramate in patients with epilepsy. Epilepsy Behav., 2005, 6(3), 373-381.
[http://dx.doi.org/10.1016/j.yebeh.2005.01.002] [PMID: 15820346]
[176]
Ogunsakin, O.; Tumenta, T.; Louis-Jean, S.; Mahbub, A.; Rabel, P.; Olupona, T.; Alam, S. Levetiracetam induced behavioral abnormalities in a patient with seizure disorder: A diagnostic challenge. Case Rep. Psychiatry, 2020, 2020, 8883802.
[http://dx.doi.org/10.1155/2020/8883802] [PMID: 32908767]
[177]
Cavanna, A.E.; Seri, S. Psychiatric adverse effects of zonisamide in patients with epilepsy and mental disorder comorbidities. Epilepsy Behav., 2013, 29(2), 281-284.
[http://dx.doi.org/10.1016/j.yebeh.2013.08.024] [PMID: 24070880]
[178]
Yates, S.L.; Fakhoury, T.; Liang, W.; Eckhardt, K.; Borghs, S.; D’Souza, J. An open-label, prospective, exploratory study of patients with epilepsy switching from levetiracetam to brivaracetam. Epilepsy Behav., 2015, 52(Pt A), 165-168.
[http://dx.doi.org/10.1016/j.yebeh.2015.09.005] [PMID: 26432008]
[179]
Theochari, E.; Cock, H.; Lozsadi, D.; Galtrey, C.; Arevalo, J.; Mula, M. Brivaracetam in adults with drug-resistant epilepsy and psychiatric comorbidities. Epilepsy Behav., 2019, 90(90), 129-131.
[http://dx.doi.org/10.1016/j.yebeh.2018.11.032] [PMID: 30530134]
[180]
Mula, M.; Hesdorffer, D.C.; Trimble, M.; Sander, J.W. The role of titration schedule of topiramate for the development of depression in patients with epilepsy. Epilepsia, 2009, 50(5), 1072-1076.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01799.x] [PMID: 19178563]
[181]
Mula, M.; Trimble, M.R.; Lhatoo, S.D.; Sander, J.W.A.S. Topiramate and psychiatric adverse events in patients with epilepsy. Epilepsia, 2003, 44(5), 659-663.
[http://dx.doi.org/10.1046/j.1528-1157.2003.05402.x] [PMID: 12752464]
[182]
Perucca, P.; Mula, M. Antiepileptic drug effects on mood and behavior: Molecular targets. Epilepsy Behav., 2013, 26(3), 440-449.
[http://dx.doi.org/10.1016/j.yebeh.2012.09.018] [PMID: 23092694]
[183]
Mula, M.; Sander, J.W. Negative effects of antiepileptic drugs on mood in patients with epilepsy. Drug Saf., 2007, 30(7), 555-567.
[http://dx.doi.org/10.2165/00002018-200730070-00001] [PMID: 17604407]
[184]
Maguire, M.J.; Weston, J.; Singh, J.; Marson, A.G. Antidepressants for people with epilepsy and depression. Cochrane Database Syst. Rev., 2014, 2014(12), CD010682.
[http://dx.doi.org/10.1002/14651858.CD010682.pub2] [PMID: 25464360]
[185]
Kanner, A.M.; Kozak, A.M.; Frey, M. The use of sertraline in patients with epilepsy: Is it safe? Epilepsy Behav., 2000, 1(2), 100-105.
[http://dx.doi.org/10.1006/ebeh.2000.0050] [PMID: 12609138]
[186]
Thomé-Souza, M.S.; Kuczynski, E.; Valente, K.D. Sertraline and fluoxetine: Safe treatments for children and adolescents with epilepsy and depression. Epilepsy Behav., 2007, 10(3), 417-425.
[http://dx.doi.org/10.1016/j.yebeh.2007.01.004] [PMID: 17306625]
[187]
Hovorka, J.; Herman, E.; Nemcová, I. Treatment of interictal depression with citalopram in patients with epilepsy. Epilepsy Behav., 2000, 1(6), 444-447.
[http://dx.doi.org/10.1006/ebeh.2000.0123] [PMID: 12737834]
[188]
Specchio, L.M.; Iudice, A.; Specchio, N.; La Neve, A.; Spinelli, A.; Galli, R.; Rocchi, R.; Ulivelli, M.; de Tommaso, M.; Pizzanelli, C.; Murri, L. Citalopram as treatment of depression in patients with epilepsy. Clin. Neuropharmacol., 2004, 27(3), 133-136.
[http://dx.doi.org/10.1097/00002826-200405000-00009] [PMID: 15190237]
[189]
Kühn, K.U.; Quednow, B.B.; Thiel, M.; Falkai, P.; Maier, W.; Elger, C.E. Antidepressive treatment in patients with temporal lobe epilepsy and major depression: A prospective study with three different antidepressants. Epilepsy Behav., 2003, 4(6), 674-679.
[http://dx.doi.org/10.1016/j.yebeh.2003.08.009] [PMID: 14698701]
[190]
Maguire, M.J.; Marson, A.G.; Nevitt, S.J. Antidepressants for people with epilepsy and depression. Cochrane Database Syst. Rev., 2021, 4, CD010682.
[http://dx.doi.org/10.1002/14651858.CD010682.pub3] [PMID: 33860531]
[191]
Mula, M.; Sander, J.W. Current and emerging drug therapies for the treatment of depression in adults with epilepsy. Expert Opin. Pharmacother., 2019, 20(1), 41-45.
[http://dx.doi.org/10.1080/14656566.2018.1543402] [PMID: 30428279]
[192]
Kanner, A.M. Most antidepressant drugs are safe for patients with epilepsy at therapeutic doses: A review of the evidence. Epilepsy Behav., 2016, 61, 282-286.
[http://dx.doi.org/10.1016/j.yebeh.2016.03.022] [PMID: 27236241]
[193]
Ribot, R.; Ouyang, B.; Kanner, A.M. The impact of antidepressants on seizure frequency and depressive and anxiety disorders of patients with epilepsy: Is it worth investigating? Epilepsy Behav., 2017, 70(Pt A), 5-9.
[http://dx.doi.org/10.1016/j.yebeh.2017.02.032] [PMID: 28407526]
[194]
Kanner, A.M. Management of psychiatric and neurological comorbidities in epilepsy. Nat. Rev. Neurol., 2016, 12(2), 106-116.
[http://dx.doi.org/10.1038/nrneurol.2015.243] [PMID: 26782334]
[195]
Okazaki, M.; Adachi, N.; Ito, M.; Watanabe, M.; Watanabe, Y.; Kato, M.; Onuma, T. One-year seizure prognosis in epilepsy patients treated with antidepressants. Epilepsy Behav., 2011, 22(2), 331-335.
[http://dx.doi.org/10.1016/j.yebeh.2011.07.016] [PMID: 21855418]
[196]
Favale, E.; Audenino, D.; Cocito, L.; Albano, C. The anticonvulsant effect of citalopram as an indirect evidence of serotonergic impairment in human epileptogenesis. Seizure, 2003, 12(5), 316-318.
[http://dx.doi.org/10.1016/S1059-1311(02)00315-1] [PMID: 12810346]
[197]
Steinert, T.; Fröscher, W. Epileptic seizures under antidepressive drug treatment: Systematic review. Pharmacopsychiatry, 2018, 51(4), 121-135.
[http://dx.doi.org/10.1055/s-0043-117962] [PMID: 28850959]
[198]
Bloechliger, M.; Ceschi, A.; Rüegg, S.; Kupferschmidt, H.; Kraehenbuehl, S.; Jick, S.S.; Meier, C.R.; Bodmer, M. Risk of seizures associated with antidepressant use in patients with depressive disorder: Follow-up study with a nested case-control analysis using the clinical practice research datalink. Drug Saf., 2016, 39(4), 307-321.
[http://dx.doi.org/10.1007/s40264-015-0363-z] [PMID: 26650063]
[199]
Wu, C.S.; Liu, H.Y.; Tsai, H.J.; Liu, S.K. Seizure risk associated with antidepressant treatment among patients with depressive disorders: A population-based case-crossover study. J. Clin. Psychiatry, 2017, 78(9), e1226-e1232.
[http://dx.doi.org/10.4088/JCP.16m11377] [PMID: 29068610]
[200]
Hernandez, E.J.; Williams, P.A.; Dudek, F.E. Effects of fluoxetine and TFMPP on spontaneous seizures in rats with pilocarpine-induced epilepsy. Epilepsia, 2002, 43(11), 1337-1345.
[http://dx.doi.org/10.1046/j.1528-1157.2002.48701.x] [PMID: 12423383]
[201]
Vermoesen, K.; Massie, A.; Smolders, I.; Clinckers, R. The antidepressants citalopram and reboxetine reduce seizure frequency in rats with chronic epilepsy. Epilepsia, 2012, 53(5), 870-878.
[http://dx.doi.org/10.1111/j.1528-1167.2012.03436.x] [PMID: 22429158]
[202]
Klein, S.; Bankstahl, J.P.; Löscher, W.; Bankstahl, M. Sucrose consumption test reveals pharmacoresistant depression-associated behavior in two mouse models of temporal lobe epilepsy. Exp. Neurol., 2015, 263, 263-271.
[http://dx.doi.org/10.1016/j.expneurol.2014.09.004] [PMID: 25220610]
[203]
Chou, C.C.; Yen, D.J.; Lin, Y.Y.; Wang, Y.C.; Lin, C.L.; Kao, C.H. Selective serotonin reuptake inhibitors and poststroke epilepsy: A population-based nationwide study. Mayo Clin. Proc., 2017, 92(2), 193-199.
[http://dx.doi.org/10.1016/j.mayocp.2016.10.011] [PMID: 28160872]
[204]
Christensen, J.; Pedersen, H.S.; Fenger-Grøn, M.; Fann, J.R.; Jones, N.C.; Vestergaard, M. Selective serotonin reuptake inhibitors and risk of epilepsy after traumatic brain injury - A population based cohort study. PLoS One, 2019, 14(7), e0219137.
[http://dx.doi.org/10.1371/journal.pone.0219137] [PMID: 31323024]
[205]
Cardamone, L.; Salzberg, M.R.; Koe, A.S.; Ozturk, E.; O’Brien, T.J.; Jones, N.C. Chronic antidepressant treatment accelerates kindling epileptogenesis in rats. Neurobiol. Dis., 2014, 63, 194-200.
[http://dx.doi.org/10.1016/j.nbd.2013.11.020] [PMID: 24321434]
[206]
Li, C.; Silva, J.; Ozturk, E.; Dezsi, G.; O’Brien, T.J.; Renoir, T.; Jones, N.C. Chronic fluoxetine treatment accelerates kindling epileptogenesis in mice independently of 5-HT2A receptors. Epilepsia, 2018, 59(7), e114-e119.
[http://dx.doi.org/10.1111/epi.14435] [PMID: 29858497]
[207]
Italiano, D.; Spina, E.; de Leon, J. Pharmacokinetic and pharmacodynamic interactions between antiepileptics and antidepressants. Expert Opin. Drug Metab. Toxicol., 2014, 10(11), 1457-1489.
[http://dx.doi.org/10.1517/17425255.2014.956081] [PMID: 25196459]
[208]
Mula, M. The pharmacological management of psychiatric comorbidities in patients with epilepsy. Pharmacol. Res., 2016, 107, 147-153.
[http://dx.doi.org/10.1016/j.phrs.2016.03.022] [PMID: 27001226]
[209]
Christensen, J.; Vestergaard, M.; Mortensen, P.B.; Sidenius, P.; Agerbo, E. Epilepsy and risk of suicide: A population-based case-control study. Lancet Neurol., 2007, 6(8), 693-698.
[http://dx.doi.org/10.1016/S1474-4422(07)70175-8] [PMID: 17611160]
[210]
Robertson, M.M.; Trimble, M.R. The treatment of depression in patients with epilepsy. A double-blind trial. J. Affect. Disord., 1985, 9(2), 127-136.
[http://dx.doi.org/10.1016/0165-0327(85)90091-6] [PMID: 2932485]
[211]
Zhu, S.; Luo, L.; Gui, Y. Short-term efficacy of venlafaxine] treating the depression in epilepsy patients. Chinese. J. Rehabilitation, 2004, 19(2), 100-101. Available from: https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01616853/full
[212]
Li, W.; Ma, D.R. A randomized controlled trial to evaluate the efficacy of paroxetine and doxepin in treating epileptic patients with depression. Zhongguo Linchuang Kangfu, 2005, 9, 20-21. Available from: https://www.cochranelibrary.com/central/
[http://dx.doi.org/10.1002/central/CN-00569416/full]
[213]
Gilliam, F.G.; Black, K.J.; Carter, J.; Freedland, K.E.; Sheline, Y.I.; Tsai, W.Y.; Lustman, P.J. A Trial of Sertraline or Cognitive Behavior Therapy for Depression in Epilepsy. Ann. Neurol., 2019, 86(4), 552-560.
[http://dx.doi.org/10.1002/ana.25561] [PMID: 31359460]
[214]
Favale, E.; Rubino, V.; Mainardi, P.; Lunardi, G.; Albano, C. Anticonvulsant effect of fluoxetine in humans. Neurology, 1995, 45(10), 1926-1927.
[http://dx.doi.org/10.1212/WNL.45.10.1926] [PMID: 7477995]
[215]
Orjuela-Rojas, J.M.; Martínez-Juárez, I.E.; Ruiz-Chow, A.; Crail-Melendez, D. Treatment of depression in patients with temporal lobe epilepsy: A pilot study of cognitive behavioral therapy vs. selective serotonin reuptake inhibitors. Epilepsy Behav., 2015, 51, 176-181.
[http://dx.doi.org/10.1016/j.yebeh.2015.07.033] [PMID: 26284748]
[216]
Meador, K.J. Seizure Reduction with Fluoxetine in Dravet Syndrome. Epilepsy Behav. Case Rep., 2014, 2, 54-56.
[http://dx.doi.org/10.1016/j.ebcr.2014.03.001] [PMID: 24955329]
[217]
Alper, K.; Schwartz, K.A.; Kolts, R.L.; Khan, A. Seizure incidence in psychopharmacological clinical trials: An analysis of Food and Drug Administration (FDA) summary basis of approval reports. Biol. Psychiatry, 2007, 62(4), 345-354.
[http://dx.doi.org/10.1016/j.biopsych.2006.09.023] [PMID: 17223086]
[218]
Mula, M. Investigational new drugs for focal epilepsy. Expert Opin. Investig. Drugs, 2016, 25(1), 1-5.
[http://dx.doi.org/10.1517/13543784.2016.1110144] [PMID: 26535466]
[219]
Ceulemans, B.; Schoonjans, A.S.; Marchau, F.; Paelinck, B.P.; Lagae, L. Five-year extended follow-up status of 10 patients with Dravet syndrome treated with fenfluramine. Epilepsia, 2016, 57(7), e129-e134.
[http://dx.doi.org/10.1111/epi.13407] [PMID: 27197941]
[220]
Ceulemans, B.; Boel, M.; Leyssens, K.; Van Rossem, C.; Neels, P.; Jorens, P.G.; Lagae, L. Successful use of fenfluramine as an add-on treatment for Dravet syndrome. Epilepsia, 2012, 53(7), 1131-1139.
[http://dx.doi.org/10.1111/j.1528-1167.2012.03495.x] [PMID: 22554283]
[221]
Górska, N.; Słupski, J.; Cubała, J.; Stanisław Wiglusz, M.; Gałuszko-Węgielnik, M. Antidepressants in epilepsy. Neurol. Neurochir. Pol., 2018, 52(6), 657-661.
[http://dx.doi.org/10.1016/j.pjnns.2018.07.005] [PMID: 30131174]
[222]
Onder, H.; Coskun, A.; Goksungur, M.T. Recovery of visual scotomas by vortioxetine in a patient with symptomatic occipital lobe epilepsy. Ann. Indian Acad. Neurol., 2018, 21(1), 88-90.
[http://dx.doi.org/10.4103/AIAN.AIAN_291_17] [PMID: 29720810]
[223]
McIntyre, R.S.; Rodrigues, N.B.; Lee, Y.; Lipsitz, O.; Subramaniapillai, M.; Gill, H.; Nasri, F.; Majeed, A.; Lui, L.M.W.; Senyk, O.; Phan, L.; Carvalho, I.P.; Siegel, A.; Mansur, R.B.; Brietzke, E.; Kratiuk, K.; Arekapudi, A.K.; Abrishami, A.; Chau, E.H.; Szpejda, W.; Rosenblat, J.D. The effectiveness of repeated intravenous ketamine on depressive symptoms, suicidal ideation and functional disability in adults with major depressive disorder and bipolar disorder: Results from the Canadian Rapid Treatment Center of Excellence. J. Affect. Disord., 2020, 274(274), 903-910.
[http://dx.doi.org/10.1016/j.jad.2020.05.088] [PMID: 32664031]
[224]
Zheng, W.; Zhou, Y.L.; Liu, W.J.; Wang, C.Y.; Zhan, Y.N.; Li, H.Q.; Chen, L.J.; Li, M.D.; Ning, Y.P. Rapid and longer-term antidepressant effects of repeated-dose intravenous ketamine for patients with unipolar and bipolar depression. J. Psychiatr. Res., 2018, 106, 61-68.
[http://dx.doi.org/10.1016/j.jpsychires.2018.09.013] [PMID: 30278319]
[225]
McIntyre, R.S.; Carvalho, I.P.; Lui, L.M.W.; Majeed, A.; Masand, P.S.; Gill, H.; Rodrigues, N.B.; Lipsitz, O.; Coles, A.C.; Lee, Y.; Tamura, J.K.; Iacobucci, M.; Phan, L.; Nasri, F.; Singhal, N.; Wong, E.R.; Subramaniapillai, M.; Mansur, R.; Ho, R.; Lam, R.W.; Rosenblat, J.D. The effect of intravenous, intranasal, and oral ketamine in mood disorders: A meta-analysis. J. Affect. Disord., 2020, 276(276), 576-584.
[http://dx.doi.org/10.1016/j.jad.2020.06.050] [PMID: 32871689]
[226]
Kaur, U.; Pathak, B.K.; Singh, A.; Chakrabarti, S.S. Esketamine: A glimmer of hope in treatment-resistant depression. Eur. Arch. Psychiatry Clin. Neurosci., 2021, 271(3), 417-429.
[http://dx.doi.org/10.1007/s00406-019-01084-z] [PMID: 31745646]
[227]
Mahase, E. Esketamine is approved in Europe for treating resistant major depressive disorder. BMJ, 2019, 367, l7069.
[http://dx.doi.org/10.1136/bmj.l7069] [PMID: 31862692]
[228]
Höfler, J.; Trinka, E. Intravenous ketamine in status epilepticus. Epilepsia, 2018, 59(Suppl. 2), 198-206.
[http://dx.doi.org/10.1111/epi.14480] [PMID: 30146731]
[229]
Fujikawa, D.G. Starting ketamine for neuroprotection earlier than its current use as an anesthetic/antiepileptic drug late in refractory status epilepticus. Epilepsia, 2019, 60(3), 373-380.
[http://dx.doi.org/10.1111/epi.14676] [PMID: 30785224]
[230]
Fung, E.L.W.; Yam, K.M.; Yau, M.L.Y. Ketamine use for super-refractory status epilepticus in children. Hong Kong Med. J., 2020, 26(6), 549-550.
[http://dx.doi.org/10.12809/hkmj208488] [PMID: 33350974]
[231]
Igelström, K.M. Preclinical antiepileptic actions of selective serotonin reuptake inhibitors-implications for clinical trial design. Epilepsia, 2012, 53(4), 596-605.
[http://dx.doi.org/10.1111/j.1528-1167.2012.03427.x] [PMID: 22416943]
[232]
Hamid, H.; Kanner, A.M. Should antidepressant drugs of the selective serotonin reuptake inhibitor family be tested as antiepileptic drugs? Epilepsy Behav., 2013, 26(3), 261-265.
[http://dx.doi.org/10.1016/j.yebeh.2012.10.009] [PMID: 23395350]
[233]
Borowicz, K.K.; Stepień, K.; Czuczwar, S.J. Fluoxetine enhances the anticonvulsant effects of conventional antiepileptic drugs in maximal electroshock seizures in mice. Pharmacol. Rep., 2006, 58(1), 83-90.
[PMID: 16531634]
[234]
Kruse, S.W.; Dayton, K.G.; Purnell, B.S.; Rosner, J.I.; Buchanan, G.F. Effect of monoamine reuptake inhibition and α1 blockade on respiratory arrest and death following electroshock-induced seizures in mice. Epilepsia, 2019, 60(3), 495-507.
[http://dx.doi.org/10.1111/epi.14652] [PMID: 30723893]
[235]
Borowicz, K.K.; Zarczuk, R.; Latalski, M.; Borowicz, K.M. Reboxetine and its influence on the action of classical antiepileptic drugs in the mouse maximal electroshock model. Pharmacol. Rep., 2014, 66(3), 430-435.
[http://dx.doi.org/10.1016/j.pharep.2013.11.009] [PMID: 24905519]
[236]
Pericić, D.; Lazić, J.; Švob Štrac, D. Anticonvulsant effects of acute and repeated fluoxetine treatment in unstressed and stressed mice. Brain Res., 2005, 1033(1), 90-95.
[http://dx.doi.org/10.1016/j.brainres.2004.11.025] [PMID: 15680343]
[237]
Prendiville, S.; Gale, K. Anticonvulsant effect of fluoxetine on focally evoked limbic motor seizures in rats. Epilepsia, 1993, 34(2), 381-384.
[http://dx.doi.org/10.1111/j.1528-1157.1993.tb02425.x] [PMID: 8384110]
[238]
Borowicz, K.K.; Piskorska, B.; Stępniak, B.; Czuczwar, S.J. Effects of fluoxetine on the anticonvulsant action of valproate and ethosuximide in mouse model of myoclonic convulsions. Ann. Agric. Environ. Med., 2012, 19(3), 487-490.
[PMID: 23020044]
[239]
Shiha, A.A.; de la Rosa, R.F.; Delgado, M.; Pozo, M.A.; García-García, L. Subacute fluoxetine reduces signs of hippocampal damage induced by a single convulsant dose of 4-aminopyridine in rats. CNS Neurol. Disord. Drug Targets, 2017, 16(6), 694-704.
[http://dx.doi.org/10.2174/1871527315666160720121723] [PMID: 27989232]
[240]
Ceyhan, M.; Kayir, H.; Uzbay, I.T. Investigation of the effects of tianeptine and fluoxetine on pentylenetetrazole-induced seizures in rats. J. Psychiatr. Res., 2005, 39(2), 191-196.
[http://dx.doi.org/10.1016/j.jpsychires.2004.06.002] [PMID: 15589568]
[241]
Zienowicz, M.; Wisłowska, A.; Lehner, M.; Taracha, E.; Skórzewska, A.; Maciejak, P.; Płaźnik, A. The effect of fluoxetine in a model of chemically induced seizures--behavioral and immunocytochemical study. Neurosci. Lett., 2005, 373(3), 226-231.
[http://dx.doi.org/10.1016/j.neulet.2004.10.009] [PMID: 15619548]
[242]
Payandemehr, B.; Bahremand, A.; Rahimian, R.; Ziai, P.; Amouzegar, A.; Sharifzadeh, M.; Dehpour, A.R. 5-HT(3) receptor mediates the dose-dependent effects of citalopram on pentylenetetrazole-induced clonic seizure in mice: Involvement of nitric oxide. Epilepsy Res., 2012, 101(3), 217-227.
[http://dx.doi.org/10.1016/j.eplepsyres.2012.04.004] [PMID: 22578701]
[243]
Löscher, W. Preclinical assessment of proconvulsant drug activity and its relevance for predicting adverse events in humans. Eur. J. Pharmacol., 2009, 610(1-3), 1-11.
[http://dx.doi.org/10.1016/j.ejphar.2009.03.025] [PMID: 19292981]
[244]
Bahremand, A.; Payandemehr, B.; Rahimian, R.; Ziai, P.; Pourmand, N.; Loloee, S.; Ebrahimi, A.; Ghasemi, A.; Fakhfouri, G.; Ghasemi, M.; Dehpour, A.R. The role of 5-HT(3) receptors in the additive anticonvulsant effects of citalopram and morphine on pentylenetetrazole-induced clonic seizures in mice. Epilepsy Behav., 2011, 21(2), 122-127.
[http://dx.doi.org/10.1016/j.yebeh.2011.03.010] [PMID: 21531632]
[245]
Borowicz, K.K.; Furmanek-Karwowska, K.; Sawicka, K.; Luszczki, J.J.; Czuczwar, S.J. Chronically administered fluoxetine enhances the anticonvulsant activity of conventional antiepileptic drugs in the mouse maximal electroshock model. Eur. J. Pharmacol., 2007, 567(1-2), 77-82.
[http://dx.doi.org/10.1016/j.ejphar.2007.03.015] [PMID: 17481604]
[246]
Ahern, T.H.; Javors, M.A.; Eagles, D.A.; Martillotti, J.; Mitchell, H.A.; Liles, L.C.; Weinshenker, D. The effects of chronic norepinephrine transporter inactivation on seizure susceptibility in mice. Neuropsychopharmacology, 2006, 31(4), 730-738.
[http://dx.doi.org/10.1038/sj.npp.1300847] [PMID: 16052243]
[247]
Lin, W.H.; Li, X.F.; Lin, M.X.; Zhou, Y.; Huang, H.P. Novel insights into the effect of paroxetine administration in pilocarpine induced chronic epileptic rats. Mol. Med. Rep., 2017, 16(6), 8245-8252.
[http://dx.doi.org/10.3892/mmr.2017.7659] [PMID: 28983622]
[248]
Clinckers, R.; Smolders, I.; Meurs, A.; Ebinger, G.; Michotte, Y. Anticonvulsant action of GBR-12909 and citalopram against acute experimentally induced limbic seizures. Neuropharmacology, 2004, 47(7), 1053-1061.
[http://dx.doi.org/10.1016/j.neuropharm.2004.07.032] [PMID: 15555639]
[249]
Popławska, M.; Wróblewska, D.; Borowicz, K.K. Interactions between an antidepressant reboxetine and four classic antiepileptic drugs in the mouse model of myoclonic seizures. Pharmacol. Rep., 2015, 67(6), 1141-1146.
[http://dx.doi.org/10.1016/j.pharep.2015.04.016] [PMID: 26481533]
[250]
Dailey, J.W.; Yan, Q.S.; Mishra, P.K.; Burger, R.L.; Jobe, P.C. Effects of fluoxetine on convulsions and on brain serotonin as detected by microdialysis in genetically epilepsy-prone rats. J. Pharmacol. Exp. Ther., 1992, 260(2), 533-540. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1738103
[PMID: 1738103]
[251]
Yan, Q.S.; Jobe, P.C.; Dailey, J.W. Evidence that a serotonergic mechanism is involved in the anticonvulsant effect of fluoxetine in genetically epilepsy-prone rats. Eur. J. Pharmacol., 1994, 252(1), 105-112.
[http://dx.doi.org/10.1016/0014-2999(94)90581-9] [PMID: 8149989]
[252]
Yan, Q.S.; Jobe, P.C.; Dailey, J.W. Further evidence of anticonvulsant role for 5-hydroxytryptamine in genetically epilepsy-prone rats. Br. J. Pharmacol., 1995, 115(7), 1314-1318.
[http://dx.doi.org/10.1111/j.1476-5381.1995.tb15042.x] [PMID: 7582562]
[253]
Tupal, S.; Faingold, C.L. Evidence supporting a role of serotonin in modulation of sudden death induced by seizures in DBA/2 mice. Epilepsia, 2006, 47(1), 21-26.
[http://dx.doi.org/10.1111/j.1528-1167.2006.00365.x] [PMID: 16417527]
[254]
Watanabe, K.; Ashby, C.R., Jr; Katsumori, H.; Minabe, Y. The effect of the acute administration of various selective 5-HT receptor antagonists on focal hippocampal seizures in freely-moving rats. Eur. J. Pharmacol., 2000, 398(2), 239-246.
[http://dx.doi.org/10.1016/S0014-2999(00)00258-2] [PMID: 10854835]
[255]
Jakus, R.; Graf, M.; Juhasz, G.; Gerber, K.; Levay, G.; Halasz, P.; Bagdy, G. 5-HT2C receptors inhibit and 5-HT1A receptors activate the generation of spike-wave discharges in a genetic rat model of absence epilepsy. Exp. Neurol., 2003, 184(2), 964-972.
[http://dx.doi.org/10.1016/S0014-4886(03)00352-2] [PMID: 14769389]
[256]
Citraro, R.; Leo, A.; De Fazio, P.; De Sarro, G.; Russo, E. Antidepressants but not antipsychotics have antiepileptogenic effects with limited effects on comorbid depressive-like behaviour in the WAG/Rij rat model of absence epilepsy. Br. J. Pharmacol., 2015, 172(12), 3177-3188.
[http://dx.doi.org/10.1111/bph.13121] [PMID: 25754610]
[257]
Russo, E.; Citraro, R. Pharmacology of epileptogenesis and related comorbidities in the WAG/Rij rat model of genetic absence epilepsy. J. Neurosci. Methods, 2018, 310(310), 54-62.
[http://dx.doi.org/10.1016/j.jneumeth.2018.05.020] [PMID: 29857008]
[258]
Santos, J.G.; Do Monte, F.H.M.; Russi, M.; Agustine, P.E.; Lanziotti, V.M.N.B. Proconvulsant effects of high doses of venlafaxine in pentylenetetrazole-convulsive rats. Braz. J. Med. Biol. Res., 2002, 35, 469-472.
[http://dx.doi.org/10.1590/S0100-879X2002000400010]
[259]
Sağlam, E.; Uzbay, I.T.; Kayir, H.; Çelik, T.; Beyazyürek, M. Effects of venlafaxine on ethanol withdrawal syndrome in rats. Fundam. Clin. Pharmacol., 2004, 18(6), 693-698.
[http://dx.doi.org/10.1111/j.1472-8206.2004.00281.x] [PMID: 15548241]
[260]
Borowicz, K.K.; Gołyska, D.; Luszczki, J.J.; Czuczwar, S.J. Effect of acutely and chronically administered venlafaxine on the anticonvulsant action of classical antiepileptic drugs in the mouse maximal electroshock model. Eur. J. Pharmacol., 2011, 670(1), 114-120.
[http://dx.doi.org/10.1016/j.ejphar.2011.08.042]
[261]
Jobe, P.C.; Browning, R.A. The serotonergic and noradrenergic effects of antidepressant drugs are anticonvulsant, not proconvulsant. Epilepsy Behav., 2005, 7(4), 602-619.
[http://dx.doi.org/10.1016/j.yebeh.2005.07.014] [PMID: 16169281]
[262]
Heydari, A.; Davoudi, S. The effect of sertraline and 8-OH-DPAT on the PTZ_induced seizure threshold: Role of the nitrergic system. Seizure, 2017, 45(45), 119-124.
[http://dx.doi.org/10.1016/j.seizure.2016.12.005] [PMID: 28012414]
[263]
Sitges, M.; Aldana, B.I.; Reed, R.C. Effect of the anti-depressant sertraline, the novel anti-seizure drug vinpocetine and several conventional antiepileptic drugs on the epileptiform EEG activity induced by 4-aminopyridine. Neurochem. Res., 2016, 41(6), 1365-1374.
[http://dx.doi.org/10.1007/s11064-016-1840-1] [PMID: 26830290]
[264]
Sitges, M.; Aldana, B.I.; Gómez, C.D.; Nekrassov, V. The antidepressant sertraline prevents the behavioral and EEG changes induced in two animal models of seizures. Epilepsy Behav., 2012, 25(4), 511-516.
[http://dx.doi.org/10.1016/j.yebeh.2012.09.005] [PMID: 23153716]
[265]
Sitges, M.; Gómez, C.D.; Aldana, B.I. Sertraline reduces IL-1β and TNF-α mRNA expression and overcomes their rise induced by seizures in the rat hippocampus. PLoS One, 2014, 9(11), e111665.
[http://dx.doi.org/10.1371/journal.pone.0111665] [PMID: 25364907]
[266]
Gonda, X.; Sharma, S.R.; Tarazi, F.I. Vortioxetine: A novel antidepressant for the treatment of major depressive disorder. Expert Opin. Drug Discov., 2019, 14(1), 81-89.
[http://dx.doi.org/10.1080/17460441.2019.1546691] [PMID: 30457395]
[267]
Ögün, M.N.; Çetinkaya, A.; Beyazçiçek, E. The effect of vortioxetine on penicillin-induced epileptiform activity in rats. Arq. Neuropsiquiatr., 2019, 77(6), 412-417.
[http://dx.doi.org/10.1590/0004-282X20190064] [PMID: 31314843]
[268]
Aygun, H.; Ayyildiz, M. Vortioxetine increases absence-like seizures in WAG/Rij rats but decreases penicillin- and pentylenetetrazole-induced seizures in Wistar rats. Epilepsy Behav., 2021, 116, 107797.
[http://dx.doi.org/10.1016/j.yebeh.2021.107797] [PMID: 33561766]
[269]
Gharedaghi, M.H.; Seyedabadi, M.; Ghia, J.E.; Dehpour, A.R.; Rahimian, R. The role of different serotonin receptor subtypes in seizure susceptibility. Exp. Brain Res., 2014, 232(2), 347-367.
[http://dx.doi.org/10.1007/s00221-013-3757-0] [PMID: 24232860]
[270]
Graf, M.; Jakus, R.; Kantor, S.; Levay, G.; Bagdy, G. Selective] 5-HT1A and 5-HT7 antagonists decrease epileptic activity in the WAG/Rij rat model of absence epilepsy. Neurosci. Lett., 2004, 359(1-2), 45-48.
[http://dx.doi.org/10.1016/j.neulet.2004.01.072] [PMID: 15050708]
[271]
Taskiran, M.; Unal, G. Vortioxetine suppresses epileptiform activity and cognition deficits in a chronic PTZ-induced kindling rat model. Epileptic Disord., 2021, 23(6), 893-900.
[http://dx.doi.org/10.1684/epd.2021.1344] [PMID: 34704947]
[272]
Lenkey, N.; Karoly, R.; Kiss, J.P.; Szasz, B.K.; Vizi, E.S.; Mike, A. The mechanism of activity-dependent sodium channel inhibition by the antidepressants fluoxetine and desipramine. Mol. Pharmacol., 2006, 70(6), 2052-2063.
[http://dx.doi.org/10.1124/mol.106.026419] [PMID: 16985186]
[273]
Robinson, R.T.; Drafts, B.C.; Fisher, J.L. Fluoxetine increases GABA(A) receptor activity through a novel modulatory site. J. Pharmacol. Exp. Ther., 2003, 304(3), 978-984.
[http://dx.doi.org/10.1124/jpet.102.044834] [PMID: 12604672]
[274]
Bagdy, G.; Kecskemeti, V.; Riba, P.; Jakus, R. Serotonin and epilepsy. J. Neurochem., 2007, 100(4), 857-873.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04277.x] [PMID: 17212700]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy