Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Anti-Allergic Effects of Quercetin and Quercetin Liposomes in RBL-2H3 Cells

Author(s): Yanhui Zhang, Rongfa Guan* and Haizhi Huang

Volume 23, Issue 5, 2023

Published on: 31 October, 2022

Page: [692 - 701] Pages: 10

DOI: 10.2174/1871530322666220627151830

Price: $65

conference banner
Abstract

Background: Quercetin is a kind of flavonoid with important bioactivities, such as hypoglycemic, antioxidant, anti-inflammatory, and anti-allergic properties. Although it is unstable, it is worth exploring how to better exert its anti-allergic effect.

Objective: The current study aimed to elucidate the anti-allergic effect of quercetin liposomes on RBL-2H3 cells in vitro.

Methods: Quercetin liposomes were prepared to improve the anti-allergic activity of quercetin through a green thin-film dispersion method. We compared the anti-allergic effects of quercetin and quercetin liposomes in RBL-2H3 cells. The anti-allergic activity of the quercetin liposomes was evaluated by the level of β-hexosaminidase, histamine, Ca2+, IL-4, IL-8, and MCP-1.

Results: The results showed that quercetin liposomes could significantly restrain the release of β-hexosaminidase and histamine, calcium influx, and the expression of inflammatory factors, whose effect is stronger than quercetin.

Conclusion: Collectively, our research suggests that the quercetin liposome can be used as a potential allergy antagonist.

Keywords: Quercetin, liposomes, RBL-2H3 cells, anti-allergic, viability, polyhydroxy flavonoid.

Graphical Abstract
[1]
Di Petrillo, A.; Orrù, G.; Fais, A.; Fantini, M.C. Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytother. Res., 2022, 36(1), 266-278.
[http://dx.doi.org/10.1002/ptr.7309] [PMID: 34709675]
[2]
Dai, X.; Ding, Y.; Zhang, Z.; Cai, X.; Bao, L.; Li, Y. Quercetin but not quercitrin ameliorates tumor necrosis factor-alpha-induced insulin resistance in C2C12 skeletal muscle cells. Biol. Pharm. Bull., 2013, 36(5), 788-795.
[http://dx.doi.org/10.1248/bpb.b12-00947] [PMID: 23439570]
[3]
Çelik, N.; Vurmaz, A.; Kahraman, A. Protective effect of quercetin on homocysteine-induced oxidative stress. Nutrition, 2017, 33, 291-296.
[http://dx.doi.org/10.1016/j.nut.2016.07.014] [PMID: 27717661]
[4]
Kleemann, R.; Verschuren, L.; Morrison, M.; Zadelaar, S.; van Erk, M.J.; Wielinga, P.Y.; Kooistra, T. Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis, 2011, 218(1), 44-52.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.04.023] [PMID: 21601209]
[5]
Cho, Y.H.; Kim, N.H.; Khan, I.; Yu, J.M.; Jung, H.G.; Kim, H.H.; Jang, J.Y.; Kim, H.J.; Kim, D.I.; Kwak, J.H.; Kang, S.C.; An, B.J. Anti-inflammatory potential of quercetin-3-o-β-d-(“2”-galloyl)-glucopyranoside and quercetin isolated from diospyros kaki calyx via suppression of map signaling molecules in LPS-induced raw 264.7 macrophages. J. Food Sci., 2016, 81(10), C2447-C2456.
[http://dx.doi.org/10.1111/1750-3841.13497] [PMID: 27648736]
[6]
Lee, E.J.; Ji, G.E.; Sung, M.K. Quercetin and kaempferol suppress immunoglobulin E-mediated allergic inflammation in RBL-2H3 and Caco-2 cells. Inflamm. Res., 2010, 59(10), 847-854.
[http://dx.doi.org/10.1007/s00011-010-0196-2] [PMID: 20383790]
[7]
Ding, Y.; Che, D.; Li, C.; Cao, J.; Wang, J.; Ma, P.; Zhao, T.; An, H.; Zhang, T. Quercetin inhibits Mrgprx2-induced pseudo-allergic reaction via PLCγ-IP3R related Ca2+ fluctuations. Int. Immunopharmacol., 2019, 66, 185-197.
[http://dx.doi.org/10.1016/j.intimp.2018.11.025] [PMID: 30471617]
[8]
Carrasco-Pozo, C.; Tan, K.N.; Reyes-Farias, M.; De La Jara, N.; Ngo, S.T.; Garcia-Diaz, D.F.; Llanos, P.; Cires, M.J.; Borges, K. The deleterious effect of cholesterol and protection by quercetin on mitochondrial bioenergetics of pancreatic β-cells, glycemic control and inflammation: In vitro and in vivo studies. Redox Biol., 2016, 9, 229-243.
[http://dx.doi.org/10.1016/j.redox.2016.08.007] [PMID: 27591402]
[9]
Zeng, Y.; Pu, X.; Du, J.; Yang, X.; Li, X.; Mandal, M.S.N.; Yang, T.; Yang, J. Molecular mechanism of functional ingredients in barley to combat human chronic diseases. Oxid. Med. Cell. Longev., 2020, 2020, 3836172.
[http://dx.doi.org/10.1155/2020/3836172] [PMID: 32318238]
[10]
Rauf, A.; Imran, M.; Khan, I.A.; Ur-Rehman, M.; Gilani, S.A.; Mehmood, Z.; Mubarak, M.S. Anticancer potential of quercetin: A comprehensive review. Phytother. Res., 2018, 32(11), 2109-2130.
[http://dx.doi.org/10.1002/ptr.6155] [PMID: 30039547]
[11]
Saeedi-Boroujeni, A.; Mahmoudian-Sani, M.R. Anti-inflammatory potential of quercetin in COVID-19 treatment. J. Inflamm. (Lond.), 2021, 18(1), 3.
[http://dx.doi.org/10.1186/s12950-021-00268-6] [PMID: 33509217]
[12]
Xu, D.; Hu, M.J.; Wang, Y.Q.; Cui, Y.L. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules, 2019, 24(6), 1-15.
[http://dx.doi.org/10.3390/molecules24061123] [PMID: 30901869]
[13]
Scalia, S.; Mezzena, M. Incorporation of quercetin in lipid microparticles: Effect on photo- and chemical-stability. J. Pharm. Biomed. Anal., 2009, 49(1), 90-94.
[http://dx.doi.org/10.1016/j.jpba.2008.10.011] [PMID: 19042102]
[14]
Reyes-Farias, M.; Carrasco-Pozo, C. The anti-cancer effect of quercetin: Molecular implications in cancer metabolism. Int. J. Mol. Sci., 2019, 20(13), 1-19.
[http://dx.doi.org/10.3390/ijms20133177] [PMID: 31261749]
[15]
Hosseini, A.; Razavi, B.M.; Banach, M.; Hosseinzadeh, H. Quercetin and metabolic syndrome: A review. Phytother. Res., 2021, 35(10), 5352-5364.
[http://dx.doi.org/10.1002/ptr.7144] [PMID: 34101925]
[16]
Fang, R.; Hao, R.; Wu, X.; Li, Q.; Leng, X.; Jing, H. Bovine serum albumin nanoparticle promotes the stability of quercetin in simulated intestinal fluid. J. Agric. Food Chem., 2011, 59(11), 6292-6298.
[http://dx.doi.org/10.1021/jf200718j] [PMID: 21542648]
[17]
Wang, Y. Liposome as a delivery system for the treatment of biofilm-mediated infections. J. Appl. Microbiol., 2021, 131(6), 2626-2639.
[http://dx.doi.org/10.1111/jam.15053] [PMID: 33650748]
[18]
Imran, M.; Revol-Junelles, A.M.; Paris, C.; Guedon, E.; Linder, M.; Desobry, S. Liposomal nanodelivery systems using soy and marine lecithin to encapsulate food biopreservative nisin. Lebensm. Wiss. Technol., 2015, 62(1), 341-349.
[http://dx.doi.org/10.1016/j.lwt.2014.12.046]
[19]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[20]
Angelova, A.; Garamus, V.M.; Angelov, B.; Tian, Z.; Li, Y.; Zou, A. Advances in structural design of lipid-based nanoparticle carriers for delivery of macromolecular drugs, phytochemicals and anti-tumor agents. Adv. Colloid Interface Sci., 2017, 249, 331-345.
[http://dx.doi.org/10.1016/j.cis.2017.04.006] [PMID: 28477868]
[21]
Dutta, S.; Moses, J.A.; Anandharamakrishnan, C. Encapsulation of nutraceutical ingredients in liposomes and their potential for cancer treatment. Nutr. Cancer, 2018, 70(8), 1184-1198.
[http://dx.doi.org/10.1080/01635581.2018.1557212] [PMID: 30741011]
[22]
Bayat, F.; Hosseinpour-Moghadam, R.; Mehryab, F.; Fatahi, Y.; Shakeri, N.; Dinarvand, R.; Ten Hagen, T.L.M.; Haeri, A. Potential application of liposomal nanodevices for non-cancer diseases: An update on design, characterization and biopharmaceutical evaluation. Adv. Colloid Interface Sci., 2020, 277, 102121.
[http://dx.doi.org/10.1016/j.cis.2020.102121] [PMID: 32092487]
[23]
Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: An updated review. Pharmaceutics, 2017, 9(2), 1-33.
[http://dx.doi.org/10.3390/pharmaceutics9020012] [PMID: 28346375]
[24]
Cheng, R.; Liu, L.; Xiang, Y.; Lu, Y.; Deng, L.; Zhang, H.; Santos, H.A.; Cui, W. Advanced liposome-loaded scaffolds for therapeutic and tissue engineering applications. Biomaterials, 2020, 232, 119706.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119706] [PMID: 31918220]
[25]
Mazur, F.; Bally, M.; Städler, B.; Chandrawati, R. Liposomes and lipid bilayers in biosensors. Adv. Colloid Interface Sci., 2017, 249, 88-99.
[http://dx.doi.org/10.1016/j.cis.2017.05.020] [PMID: 28602208]
[26]
Van Tran, V.; Moon, J.Y.; Lee, Y.C. Liposomes for delivery of antioxidants in cosmeceuticals: Challenges and development strategies. J. Control. Release, 2019, 300, 114-140.
[http://dx.doi.org/10.1016/j.jconrel.2019.03.003] [PMID: 30853528]
[27]
Huang, M.; Su, E.; Zheng, F.; Tan, C. Encapsulation of flavonoids in liposomal delivery systems: The case of quercetin, kaempferol and luteolin. Food Funct., 2017, 8(9), 3198-3208.
[http://dx.doi.org/10.1039/C7FO00508C] [PMID: 28805832]
[28]
Huang, M.; Liang, C.; Tan, C.; Huang, S.; Ying, R.; Wang, Y.; Wang, Z.; Zhang, Y. Liposome co-encapsulation as a strategy for the delivery of curcumin and resveratrol. Food Funct., 2019, 10(10), 6447-6458.
[http://dx.doi.org/10.1039/C9FO01338E] [PMID: 31524893]
[29]
Liu, W.; Hou, Y.; Jin, Y.; Wang, Y.; Xu, X.; Han, J. Research progress on liposomes: Application in food, digestion behavior and absorption mechanism. Trends Food Sci. Technol., 2020, 104, 177-189.
[http://dx.doi.org/10.1016/j.tifs.2020.08.012]
[30]
Tan, C.; Xue, J.; Abbas, S.; Feng, B.; Zhang, X.; Xia, S. Liposome as a delivery system for carotenoids: Comparative antioxidant activity of carotenoids as measured by ferric reducing antioxidant power, DPPH assay and lipid peroxidation. J. Agric. Food Chem., 2014, 62(28), 6726-6735.
[http://dx.doi.org/10.1021/jf405622f] [PMID: 24745755]
[31]
Mirzavi, F.; Barati, M.; Soleimani, A.; Vakili-Ghartavol, R.; Jaafari, M.R.; Soukhtanloo, M. A review on liposome-based therapeutic approaches against malignant melanoma. Int. J. Pharm., 2021, 599, 120413.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120413] [PMID: 33667562]
[32]
Panahi, Y.; Farshbaf, M.; Mohammadhosseini, M.; Mirahadi, M.; Khalilov, R.; Saghfi, S.; Akbarzadeh, A. Recent advances on liposomal nanoparticles: Synthesis, characterization and biomedical applications. Artif. Cells Nanomed. Biotechnol., 2017, 45(4), 788-799.
[http://dx.doi.org/10.1080/21691401.2017.1282496] [PMID: 28278586]
[33]
Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975-999.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[34]
Tan, C.; Wang, J.; Sun, B. Biopolymer-liposome hybrid systems for controlled delivery of bioactive compounds: Recent advances. Biotechnol. Adv., 2021, 48, 107727.
[http://dx.doi.org/10.1016/j.biotechadv.2021.107727] [PMID: 33677025]
[35]
Tan, C.; Zhang, Y.; Abbas, S.; Feng, B.; Zhang, X.; Xia, S. Modulation of the carotenoid bioaccessibility through liposomal encapsulation. Colloids Surf. B Biointerfaces, 2014, 123, 692-700.
[http://dx.doi.org/10.1016/j.colsurfb.2014.10.011] [PMID: 25456993]
[36]
Ickenstein, L.M.; Garidel, P. Lipid-based nanoparticle formulations for small molecules and RNA drugs. Expert Opin. Drug Deliv., 2019, 16(11), 1205-1226.
[http://dx.doi.org/10.1080/17425247.2019.1669558] [PMID: 31530041]
[37]
Szoka, F., Jr; Papahadjopoulos, D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc. Natl. Acad. Sci. USA, 1978, 75(9), 4194-4198.
[http://dx.doi.org/10.1073/pnas.75.9.4194] [PMID: 279908]
[38]
Szoka, F., Jr; Papahadjopoulos, D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu. Rev. Biophys. Bioeng., 1980, 9, 467-508.
[http://dx.doi.org/10.1146/annurev.bb.09.060180.002343] [PMID: 6994593]
[39]
Hope, M.J.; Bally, M.B.; Webb, G.; Cullis, P.R. Production of large unilamellar vesicles by a rapid extrusion procedure: Characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim. Biophys. Acta, 1985, 812(1), 55-65.
[http://dx.doi.org/10.1016/0005-2736(85)90521-8] [PMID: 23008845]
[40]
Chem. Phys. Lipids, 1986, 40, 207-222.
[http://dx.doi.org/10.1016/0009-3084(86)90071-X] [PMID: 3742672]
[41]
Mayer, L.D.; Hope, M.J.; Cullis, P.R. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim. Biophys. Acta, 1986, 858(1), 161-168.
[http://dx.doi.org/10.1016/0005-2736(86)90302-0] [PMID: 3707960]
[42]
Wagner, A.; Vorauer-Uhl, K.; Kreismayr, G.; Katinger, H. The crossflow injection technique: An improvement of the ethanol injection method. J. Liposome Res., 2002, 12(3), 259-270.
[http://dx.doi.org/10.1081/LPR-120014761] [PMID: 12604030]
[43]
Shah, V.M.; Nguyen, D.X.; Patel, P.; Cote, B.; Al-Fatease, A.; Pham, Y.; Huynh, M.G.; Woo, Y.; Alani, A.W. Liposomes produced by microfluidics and extrusion: A comparison for scale-up purposes. Nanomedicine, 2019, 18, 146-156.
[http://dx.doi.org/10.1016/j.nano.2019.02.019] [PMID: 30876818]
[44]
Carugo, D.; Bottaro, E.; Owen, J.; Stride, E.; Nastruzzi, C. Liposome production by microfluidics: Potential and limiting factors. Sci. Rep., 2016, 6, 25876.
[http://dx.doi.org/10.1038/srep25876] [PMID: 27194474]
[45]
Sang, R.; Stratton, B.; Engel, A.; Deng, W. Liposome technologies towards colorectal cancer therapeutics. Acta Biomater., 2021, 127, 24-40.
[http://dx.doi.org/10.1016/j.actbio.2021.03.055] [PMID: 33812076]
[46]
Feng, T.; Wei, Y.; Lee, R.J.; Zhao, L. Liposomal curcumin and its application in cancer. Int. J. Nanomedicine, 2017, 12, 6027-6044.
[http://dx.doi.org/10.2147/IJN.S132434] [PMID: 28860764]
[47]
Zununi Vahed, S.; Salehi, R.; Davaran, S.; Sharifi, S. Liposome-based drug co-delivery systems in cancer cells. Mater. Sci. Eng. C, 2017, 71, 1327-1341.
[http://dx.doi.org/10.1016/j.msec.2016.11.073] [PMID: 27987688]
[48]
Cai, A.; Wang, C.; Yan, M.; Ma, L.; Liu, W.; Li, F.; Liu, T.; Song, P.; Gao, Z.; Li, J.; Xin, M.; Wei, G. A liposome preparation based on β-CD-LPC molecule and its application as drug-delivery system. Nanomedicine (Lond.), 2018, 13(21), 2777-2789.
[http://dx.doi.org/10.2217/nnm-2018-0172] [PMID: 30247090]
[49]
Chan, H.H.L.; Ng, T. Traditional chinese medicine (tcm) and allergic diseases. Curr. Allergy Asthma Rep., 2020, 20(11), 67.
[http://dx.doi.org/10.1007/s11882-020-00959-9] [PMID: 32875353]
[50]
Kheradmand, D.B.C.F. Induction and regulation of the IgE response. Nature, 1999, 402.
[http://dx.doi.org/10.1038/35037014]
[51]
Gould, H.J.; Sutton, B.J. IgE in allergy and asthma today. Nat. Rev. Immunol., 2008, 8(3), 205-217.
[http://dx.doi.org/10.1038/nri2273] [PMID: 18301424]
[52]
Holgate, S.T. The epidemic of allergy and asthma. Nature, 1999, 42, 2-4.
[http://dx.doi.org/10.1038/35037000]
[53]
Choi, Y.H.; Yan, G.H.; Chai, O.H.; Song, C.H. Inhibitory effects of curcumin on passive cutaneous anaphylactoid response and compound 48/80-induced mast cell activation. Anat. Cell Biol., 2010, 43(1), 36-43.
[http://dx.doi.org/10.5115/acb.2010.43.1.36] [PMID: 21190003]
[54]
Sun, N.; Zhou, C.; Zhou, X.; Sun, L.; Che, H. Use of a Rat Basophil Leukemia (RBL) cell-based immunological assay for allergen identification, clinical diagnosis of allergy, and identification of anti-allergy agents for use in immunotherapy. J. Immunotoxicol., 2015, 12(2), 199-205.
[http://dx.doi.org/10.3109/1547691X.2014.920063] [PMID: 24920006]
[55]
Kobayashi, S.; Kato, T.; Azuma, T.; Kikuzaki, H.; Abe, K. Anti-allergenic activity of polymethoxy flavones from Kaempferia parviflora. J. Funct. Foods, 2015, 13, 100-107.
[http://dx.doi.org/10.1016/j.jff.2014.12.029]
[56]
Lee, J.Y.; Park, S.H.; Jhee, K.H.; Yang, S.A. Tricin isolated from enzyme-treated Zizania latifolia extract inhibits IgE-mediated allergic reactions in rbl-2h3 cells by targeting the lyn/syk pathway. Molecules, 2020, 25(9), 1-14.
[http://dx.doi.org/10.3390/molecules25092084] [PMID: 32365709]
[57]
Tachibana, H.; Kubo, T.; Miyase, T.; Tanino, S.; Yoshimoto, M.; Sano, M.; Yamamoto-Maeda, M.; Yamada, K. Identification of an inhibitor for interleukin 4-induced epsilon germline transcription and antigen-specific IgE production in vivo. Biochem. Biophys. Res. Commun., 2001, 280(1), 53-60.
[http://dx.doi.org/10.1006/bbrc.2000.4069] [PMID: 11162477]
[58]
Nagashio, Y.; Matsuura, Y.; Miyamoto, J.; Kometani, T.; Suzuki, T.; Tanabe, S. Hesperidin inhibits development of atopic dermatitis-like skin lesions in NC/Nga mice by suppressing Th17 activity. J. Funct. Foods, 2013, 5(4), 1633-1641.
[http://dx.doi.org/10.1016/j.jff.2013.07.005]
[59]
Maeda-Yamamoto, M.; Ema, K.; Shibuichi, I. In vitro and in vivo anti-allergic effects of ‘benifuuki’ green tea containing O-methylated catechin and ginger extract enhancement. Cytotechnology, 2007, 55(2-3), 135-142.
[http://dx.doi.org/10.1007/s10616-007-9112-1] [PMID: 19003003]
[60]
Ninomiya, M.; Itoh, T.; Ishikawa, S.; Saiki, M.; Narumiya, K.; Yasuda, M.; Koshikawa, K.; Nozawa, Y.; Koketsu, M. Phenolic constituents isolated from Fragaria ananassa Duch. inhibit antigen-stimulated degranulation through direct inhibition of spleen tyrosine kinase activation. Bioorg. Med. Chem., 2010, 18(16), 5932-5937.
[http://dx.doi.org/10.1016/j.bmc.2010.06.083] [PMID: 20663674]
[61]
Iwamoto, A.; Mitsuda, K.; Inoue, A.; Kato, T.; Inoue, Y.; Kawahara, H. Purification and identification of an IgE suppressor from strawberry in an in vitro immunization system. Cytotechnology, 2012, 64(3), 309-314.
[http://dx.doi.org/10.1007/s10616-012-9432-7] [PMID: 22328134]
[62]
Mlcek, J.; Jurikova, T.; Skrovankova, S.; Sochor, J. Quercetin and its anti-allergic immune response. Molecules, 2016, 21(5), 1-15.
[http://dx.doi.org/10.3390/molecules21050623] [PMID: 27187333]
[63]
Matsushima, M.; Takagi, K.; Ogawa, M.; Hirose, E.; Ota, Y.; Abe, F.; Baba, K.; Hasegawa, T.; Hasegawa, Y.; Kawabe, T. Heme oxygenase-1 mediates the anti-allergic actions of quercetin in rodent mast cells. Inflamm. Res., 2009, 58(10), 705-715.
[http://dx.doi.org/10.1007/s00011-009-0039-1] [PMID: 19390785]
[64]
Makino, T.; Kanemaru, M.; Okuyama, S.; Shimizu, R.; Tanaka, H.; Mizukami, H. Anti-allergic effects of enzymatically modified isoquercitrin (α-oligoglucosyl quercetin 3-O-glucoside), quercetin 3-O-glucoside, α-oligoglucosyl rutin, and quercetin, when administered orally to mice. J. Nat. Med., 2013, 67(4), 881-886.
[http://dx.doi.org/10.1007/s11418-013-0760-5] [PMID: 23494818]
[65]
Chirumbolo, S. The role of quercetin, flavonols and flavones in modulating inflammatory cell function. Inflamm. Allergy Drug Targets, 2010, 9(4), 263-285.
[http://dx.doi.org/10.2174/187152810793358741] [PMID: 20887269]
[66]
Ding, Y.; Li, C.; Zhang, Y.; Ma, P.; Zhao, T.; Che, D.; Cao, J.; Wang, J.; Liu, R.; Zhang, T.; He, L. Quercetin as a Lyn kinase inhibitor inhibits IgE-mediated allergic conjunctivitis. Food Chem. Toxicol., 2020, 135, 110924.
[http://dx.doi.org/10.1016/j.fct.2019.110924] [PMID: 31672514]
[67]
Liang, T.; Guan, R.; Quan, Z.; Tao, Q.; Liu, Z.; Hu, Q. Cyanidin-3-o-glucoside liposome: Preparation via a green method and antioxidant activity in GES-1 cells. Food Res. Int., 2019, 125, 108648.
[68]
Muhit, M.A.; Izumikawa, M.; Umehara, K.; Noguchi, H. Phenolic constituents of the Bangladeshi medicinal plant Pothos scandens and their anti-estrogenic, hyaluronidase inhibition, and histamine release inhibitory activities. Phytochemistry, 2016, 121, 30-37.
[http://dx.doi.org/10.1016/j.phytochem.2015.10.009] [PMID: 26542239]
[69]
Toniazzo, T.; Peres, M.S.; Ramos, A.P.; Pinho, S.C. Encapsulation of quercetin in liposomes by ethanol injection and physicochemical characterization of dispersions and lyophilized vesicles. Food Biosci., 2017, 19, 17-25.
[http://dx.doi.org/10.1016/j.fbio.2017.05.003]
[70]
McNeil, B.D.; Pundir, P.; Meeker, S.; Han, L.; Undem, B.J.; Kulka, M.; Dong, X. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions nature, 2015, 519(7542), 237-241.
[http://dx.doi.org/10.1038/nature14022]
[71]
Zhang, T.; Che, D.; Liu, R.; Han, S.; Wang, N.; Zhan, Y.; Pundir, P.; Cao, J.; Lv, Y.; Yang, L.; Wang, J.; Ding, M.; Dong, X.; He, L. Typical antimicrobials induce mast cell degranulation and anaphylactoid reactions via MRGPRX2 and its murine homologue MRGPRB2. Eur. J. Immunol., 2017, 47(11), 1949-1958.
[http://dx.doi.org/10.1002/eji.201746951] [PMID: 28688196]
[72]
Lansu, K.; Karpiak, J.; Liu, J.; Huang, X.P.; McCorvy, J.D.; Kroeze, W.K.; Che, T.; Nagase, H.; Carroll, F.I.; Jin, J.; Shoichet, B.K.; Roth, B.L. In silico design of novel probes for the atypical opioid receptor MRGPRX2. Nat. Chem. Biol., 2017, 13(5), 529-536.
[http://dx.doi.org/10.1038/nchembio.2334] [PMID: 28288109]
[73]
Xue, Z.; Zhang, Y.; Zeng, Y.; Hu, S.; Bai, H.; Wang, J.; Jing, H.; Wang, N. Licochalcone A inhibits MAS-related GPR family member X2-induced pseudo-allergic reaction by suppressing nuclear migration of nuclear factor-κB Phytother. Res., 2021, 35(11), 6270-6280.
[http://dx.doi.org/10.1002/ptr.7272] [PMID: 34486187]
[74]
Hwang, D.; Park, H.J.; Seo, E.K.; Oh, J.Y.; Ji, S.Y.; Park, D.K.; Lim, Y. Effects of flavone derivatives on antigen-stimulated degranulation in RBL-2H3 cells. Chem. Biol. Drug Des., 2013, 81(2), 228-237.
[http://dx.doi.org/10.1111/cbdd.12067] [PMID: 23035634]
[75]
Gupta, K.; Kumar, S.; Gupta, R.K.; Sharma, A.; Verma, A.K.; Stalin, K.; Chaudhari, B.P.; Das, M.; Singh, S.P.; Dwivedi, P.D. Reversion of asthmatic complications and mast cell signalling pathways in balb/c mice model using quercetin nanocrystals. J. Biomed. Nanotechnol., 2016, 12(4), 717-731.
[http://dx.doi.org/10.1166/jbn.2016.2197] [PMID: 27301198]
[76]
Penalva, R.; González-Navarro, C.J.; Gamazo, C.; Esparza, I.; Irache, J.M. Zein nanoparticles for oral delivery of quercetin: Pharmacokinetic studies and preventive anti-inflammatory effects in a mouse model of endotoxemia. Nanomedicine , 2017, 13(1), 103-110.
[http://dx.doi.org/10.1016/j.nano.2016.08.033] [PMID: 27615118]
[77]
Cherk Yong, D.O.; Saker, S.R.; Wadhwa, R.; Chellappan, D.K.; Madheswaran, T.; Panneerselvam, J.; Tambuwala, M.M.; Bakshi, H.A.; Kumar, P.; Pillay, V.; Gupta, G.; Oliver, B.G.; Wark, P.; Hsu, A.; Hansbro, P.M.; Dua, K.; Zeeshan, F. Preparation, characterization and in-vitro efficacy of quercetin loaded liquid crystalline nanoparticles for the treatment of asthma. J. Drug Deliv. Sci. Technol., 2019, 54, 101297.
[http://dx.doi.org/10.1016/j.jddst.2019.101297]
[78]
Cha, K.J.; Kashif, A.; Hong, M.H.; Kim, G.; Lee, J.S.; Kim, I.S. Poncirus trifoliata (L.) raf. extract inhibits the development of atopic dermatitis-like lesions in human keratinocytes and NC/NGA mice. Int. J. Med. Sci., 2019, 16(8), 1116-1122.
[http://dx.doi.org/10.7150/ijms.34323] [PMID: 31523174]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy