Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Manipulating Metabolic Alterations and their Consequences to Unleash the Potential of Antitumor Immunotherapy

Author(s): Xuanyu Zhu, Longfei Zhu and Yan Wu*

Volume 23, Issue 9, 2022

Published on: 19 September, 2022

Page: [585 - 601] Pages: 17

DOI: 10.2174/1389203723666220620161742

Price: $65

conference banner
Abstract

Cellular metabolic reprogramming driven by oncogenic mutations is considered as a hallmark in the development of malignant cells, and has been a focus over the past decade. A common theme emerging from these metabolic alterations is that tumor cells can acquire necessary nutrients from a nutrient-limited microenvironment and utilize them to sustain growth and unrestrained cellular division. However, this significant metabolic flexibility and the hostile microenvironment caused by the insufficient vascular exchange, depletion of nutrients, hypoxia, and accumulation of waste products, can inhibit the metabolism and immune activity of tumor-infiltrating lymphocytes and impose barriers to effective antitumor immunotherapies. In this perspective, we review the classical alterations in tumorigenesis- associated metabolic reprogramming and examine the functional contribution of these aberrant metabolisms to the establishment and maintenance of an immunosuppressive microenvironment. Furthermore, we explore the possible approaches to targeting on these metabolic pathways to achieve antitumor immunotherapy, as well as some hypothetical or ongoing combination therapeutic strategies that could, to a certain extent, biologically rationalize and broaden the utility of immune checkpoint inhibitors. Ultimately, we elucidate some dietary modifications that can limit tumor-specific nutritional requirements and maximize the cytotoxicity of other antineoplastic drugs.

Keywords: Tumor metabolic reprogramming, T-cell, immune response, antitumor immunotherapy, nutrition, diet intervention.

Graphical Abstract
[1]
Pavlova, N.N.; Thompson, C.B. The emerging hallmarks of cancer metabolism. Cell Metab., 2016, 23(1), 27-47.
[http://dx.doi.org/10.1016/j.cmet.2015.12.006] [PMID: 26771115]
[2]
Warburg, O. On the origin of cancer cells. Science, 1956, 123(3191), 309-314.
[http://dx.doi.org/10.1126/science.123.3191.309] [PMID: 13298683]
[3]
Hosios, A.M.; Hecht, V.C.; Danai, L.V.; Johnson, M.O.; Rathmell, J.C.; Steinhauser, M.L.; Manalis, S.R.; Vander Heiden, M.G. Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. Dev. Cell, 2016, 36(5), 540-549.
[http://dx.doi.org/10.1016/j.devcel.2016.02.012] [PMID: 26954548]
[4]
DeBerardinis, R.J.; Cheng, T. Q’s next: The diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene, 2010, 29(3), 313-324.
[http://dx.doi.org/10.1038/onc.2009.358] [PMID: 19881548]
[5]
Mayers, J.R.; Torrence, M.E.; Danai, L.V.; Papagiannakopoulos, T.; Davidson, S.M.; Bauer, M.R.; Lau, A.N.; Ji, B.W.; Dixit, P.D.; Hosios, A.M.; Muir, A.; Chin, C.R.; Freinkman, E.; Jacks, T.; Wolpin, B.M.; Vitkup, D.; Vander Heiden, M.G. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science, 2016, 353(6304), 1161-1165.
[http://dx.doi.org/10.1126/science.aaf5171] [PMID: 27609895]
[6]
Zaidi, N.; Lupien, L.; Kuemmerle, N.B.; Kinlaw, W.B.; Swinnen, J.V.; Smans, K. Lipogenesis and lipolysis: The pathways exploited by the cancer cells to acquire fatty acids. Prog. Lipid Res., 2013, 52(4), 585-589.
[http://dx.doi.org/10.1016/j.plipres.2013.08.005] [PMID: 24001676]
[7]
Menendez, J.A.; Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer, 2007, 7(10), 763-777.
[http://dx.doi.org/10.1038/nrc2222] [PMID: 17882277]
[8]
Wang, C.; Rajput, S.; Watabe, K.; Liao, D.F.; Cao, D. Acetyl-CoA carboxylase-a as a novel target for cancer therapy. Front. Biosci. (Schol. Ed.), 2010, 2(2), 515-526.
[PMID: 20036965]
[9]
Bergers, G.; Fendt, S.M. The metabolism of cancer cells during metastasis. Nat. Rev. Cancer, 2021, 21(3), 162-180.
[http://dx.doi.org/10.1038/s41568-020-00320-2] [PMID: 33462499]
[10]
Marx, J. Cell biology. How cells endure low oxygen. Science, 2004, 303(5663), 1454-1456.
[http://dx.doi.org/10.1126/science.303.5663.1454] [PMID: 15001751]
[11]
Miska, J.; Lee-Chang, C.; Rashidi, A.; Muroski, M.E.; Chang, A.L.; Lopez-Rosas, A.; Zhang, P.; Panek, W.K.; Cordero, A.; Han, Y.; Ahmed, A.U.; Chandel, N.S.; Lesniak, M.S. HIF-1α is a metabolic switch between glycolytic-driven migration and oxidative phosphorylation-driven immunosuppression of tregs in glioblastoma. Cell Rep., 2019, 27(1), 226-237.
[http://dx.doi.org/10.1016/j.celrep.2019.03.029] [PMID: 30943404]
[12]
Liikanen, I.; Lauhan, C.; Quon, S.; Omilusik, K.; Phan, A.T.; Bartrolí, L.B.; Ferry, A.; Goulding, J.; Chen, J.; Scott-Browne, J.P.; Yustein, J.T.; Scharping, N.E.; Witherden, D.A.; Goldrath, A.W. Hypoxia-inducible factor activity promotes antitumor effector function and tissue residency by CD8+ T cells. J. Clin. Invest., 2021, 131(7), 143729.
[http://dx.doi.org/10.1172/JCI143729] [PMID: 33792560]
[13]
Noman, M.Z.; Desantis, G.; Janji, B.; Hasmim, M.; Karray, S.; Dessen, P.; Bronte, V.; Chouaib, S. PD-L1 is a novel direct target of HIF-1α and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exp. Med., 2014, 211(5), 781-790.
[http://dx.doi.org/10.1084/jem.20131916] [PMID: 24778419]
[14]
Scharping, N.E.; Rivadeneira, D.B.; Menk, A.V.; Vignali, P.D.A.; Ford, B.R.; Rittenhouse, N.L.; Peralta, R.; Wang, Y.; Wang, Y.; DePeaux, K.; Poholek, A.C.; Delgoffe, G.M. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat. Immunol., 2021, 22(2), 205-215.
[http://dx.doi.org/10.1038/s41590-020-00834-9] [PMID: 33398183]
[15]
Chang, C.H.; Curtis, J.D.; Maggi, L.B., Jr; Faubert, B.; Villarino, A.V.; O’Sullivan, D.; Huang, S.C.; van der Windt, G.J.; Blagih, J.; Qiu, J.; Weber, J.D.; Pearce, E.J.; Jones, R.G.; Pearce, E.L. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell, 2013, 153(6), 1239-1251.
[http://dx.doi.org/10.1016/j.cell.2013.05.016] [PMID: 23746840]
[16]
Buchakjian, M.R.; Kornbluth, S. The engine driving the ship: Metabolic steering of cell proliferation and death. Nat. Rev. Mol. Cell Biol., 2010, 11(10), 715-727.
[http://dx.doi.org/10.1038/nrm2972] [PMID: 20861880]
[17]
Ho, P.C.; Bihuniak, J.D.; Macintyre, A.N.; Staron, M.; Liu, X.; Amezquita, R.; Tsui, Y.C.; Cui, G.; Micevic, G.; Perales, J.C.; Kleinstein, S.H.; Abel, E.D.; Insogna, K.L.; Feske, S.; Locasale, J.W.; Bosenberg, M.W.; Rathmell, J.C.; Kaech, S.M. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell, 2015, 162(6), 1217-1228.
[http://dx.doi.org/10.1016/j.cell.2015.08.012] [PMID: 26321681]
[18]
Walenta, S.; Wetterling, M.; Lehrke, M.; Schwickert, G.; Sundfør, K.; Rofstad, E.K.; Mueller-Klieser, W. High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res., 2000, 60(4), 916-921.
[PMID: 10706105]
[19]
Nakagawa, Y.; Negishi, Y.; Shimizu, M.; Takahashi, M.; Ichikawa, M.; Takahashi, H. Effects of extracellular pH and hypoxia on the function and development of antigen-specific cytotoxic T lymphocytes. Immunol. Lett., 2015, 167(2), 72-86.
[http://dx.doi.org/10.1016/j.imlet.2015.07.003] [PMID: 26209187]
[20]
Calcinotto, A.; Filipazzi, P.; Grioni, M.; Iero, M.; De Milito, A.; Ricupito, A.; Cova, A.; Canese, R.; Jachetti, E.; Rossetti, M.; Huber, V.; Parmiani, G.; Generoso, L.; Santinami, M.; Borghi, M.; Fais, S.; Bellone, M.; Rivoltini, L. Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res., 2012, 72(11), 2746-2756.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1272] [PMID: 22593198]
[21]
Pilon-Thomas, S.; Kodumudi, K.N.; El-Kenawi, A.E.; Russell, S.; Weber, A.M.; Luddy, K.; Damaghi, M.; Wojtkowiak, J.W.; Mulé, J.J.; Ibrahim-Hashim, A.; Gillies, R.J. Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res., 2016, 76(6), 1381-1390.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1743] [PMID: 26719539]
[22]
Zhang, Y.X.; Zhao, Y.Y.; Shen, J.; Sun, X.; Liu, Y.; Liu, H.; Wang, Y.; Wang, J. Nanoenabled modulation of acidic tumor microenvironment reverses anergy of infiltrating t cells and potentiates anti-PD-1 therapy. Nano Lett., 2019, 19(5), 2774-2783.
[http://dx.doi.org/10.1021/acs.nanolett.8b04296] [PMID: 30943039]
[23]
Munn, D.H.; Mellor, A.L. IDO in the tumor microenvironment: Inflammation, counter-regulation, and tolerance. Trends Immunol., 2016, 37(3), 193-207.
[http://dx.doi.org/10.1016/j.it.2016.01.002] [PMID: 26839260]
[24]
Fallarino, F.; Grohmann, U.; Hwang, K.W.; Orabona, C.; Vacca, C.; Bianchi, R.; Belladonna, M.L.; Fioretti, M.C.; Alegre, M.L.; Puccetti, P. Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol., 2003, 4(12), 1206-1212.
[http://dx.doi.org/10.1038/ni1003] [PMID: 14578884]
[25]
Liu, Y.; Liang, X.; Dong, W.; Fang, Y.; Lv, J.; Zhang, T.; Fiskesund, R.; Xie, J.; Liu, J.; Yin, X.; Jin, X.; Chen, D.; Tang, K.; Ma, J.; Zhang, H.; Yu, J.; Yan, J.; Liang, H.; Mo, S.; Cheng, F.; Zhou, Y.; Zhang, H.; Wang, J.; Li, J.; Chen, Y.; Cui, B.; Hu, Z.W.; Cao, X.; Xiao-Feng, Qin. F.; Huang, B. Tumor-repopulating cells induce PD-1 expression in CD8+ T cells by transferring kynurenine and AhR activation. Cancer Cell, 2018, 33(3), 480-494.
[http://dx.doi.org/10.1016/j.ccell.2018.02.005] [PMID: 29533786]
[26]
Vigano, S.; Alatzoglou, D.; Irving, M.; Ménétrier-Caux, C.; Caux, C.; Romero, P.; Coukos, G. Targeting adenosine in cancer immunotherapy to enhance T-Cell function. Front. Immunol., 2019, 10, 925.
[http://dx.doi.org/10.3389/fimmu.2019.00925] [PMID: 31244820]
[27]
Zhang, N.; Zhang, H.; Zhu, D. JiRiGaLa; Yu, D.; Wang, C.; WuYunBiLiGe; Amin; ZhiHong; Yu, H.; Chen, X.; Wang, M. Prognostic role of pretreatment lactate dehydrogenase in patients with metastatic renal cell carcinoma: A systematic review and meta-analysis. Int. J. Surg., 2020, 79, 66-73.
[http://dx.doi.org/10.1016/j.ijsu.2020.05.019] [PMID: 32417461]
[28]
Yu, M.; Chen, S.; Hong, W.; Gu, Y.; Huang, B.; Lin, Y.; Zhou, Y.; Jin, H.; Deng, Y.; Tu, L.; Hou, B.; Jian, Z. Prognostic role of glycolysis for cancer outcome: Evidence from 86 studies. J. Cancer Res. Clin. Oncol., 2019, 145(4), 967-999.
[http://dx.doi.org/10.1007/s00432-019-02847-w] [PMID: 30825027]
[29]
Kefas, B.; Comeau, L.; Erdle, N.; Montgomery, E.; Amos, S.; Purow, B. Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells. Neuro-oncol., 2010, 12(11), 1102-1112.
[http://dx.doi.org/10.1093/neuonc/noq080] [PMID: 20667897]
[30]
Wang, Z.; Yin, J.; Li, M.; Shen, J.; Xiao, Z.; Zhao, Y.; Huang, C.; Zhang, H.; Zhang, Z.; Cho, C.H.; Wu, X. Combination of shikonin with paclitaxel overcomes multidrug resistance in human ovarian carcinoma cells in a P-gp-independent manner through enhanced ROS generation. Chin. Med., 2019, 14(1), 7.
[http://dx.doi.org/10.1186/s13020-019-0231-3] [PMID: 30911326]
[31]
Palsson-McDermott, E.M.; Dyck, L. Zasłona, Z.; Menon, D.; McGettrick, A.F.; Mills, K.H.G.; O’Neill, L.A. Pyruvate kinase M2 is required for the expression of the immune Checkpoint PD-L1 in immune cells and tumors. Front. Immunol., 2017, 8, 1300.
[http://dx.doi.org/10.3389/fimmu.2017.01300] [PMID: 29081778]
[32]
Payen, V.L.; Mina, E.; Van Hée, V.F.; Porporato, P.E.; Sonveaux, P. Monocarboxylate transporters in cancer. Mol. Metab., 2020, 33, 48-66.
[http://dx.doi.org/10.1016/j.molmet.2019.07.006] [PMID: 31395464]
[33]
Quanz, M.; Bender, E.; Kopitz, C.; Grünewald, S.; Schlicker, A.; Schwede, W.; Eheim, A.; Toschi, L.; Neuhaus, R.; Richter, C.; Toedling, J.; Merz, C.; Lesche, R.; Kamburov, A.; Siebeneicher, H.; Bauser, M.; Hägebarth, A. Preclinical efficacy of the novel monocarboxylate transporter 1 inhibitor BAY-8002 and associated markers of resistance. Mol. Cancer Ther., 2018, 17(11), 2285-2296.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-1253] [PMID: 30115664]
[34]
Deck, L.M.; Royer, R.E.; Chamblee, B.B.; Hernandez, V.M.; Malone, R.R.; Torres, J.E.; Hunsaker, L.A.; Piper, R.C.; Makler, M.T.; Vander Jagt, D.L. Selective inhibitors of human lactate dehydrogenases and lactate dehydrogenase from the malarial parasite Plasmodium falciparum. J. Med. Chem., 1998, 41(20), 3879-3887.
[http://dx.doi.org/10.1021/jm980334n] [PMID: 9748363]
[35]
Cascone, T.; McKenzie, J.A.; Mbofung, R.M.; Punt, S.; Wang, Z.; Xu, C.; Williams, L.J.; Wang, Z.; Bristow, C.A.; Carugo, A.; Peoples, M.D.; Li, L.; Karpinets, T.; Huang, L.; Malu, S.; Creasy, C.; Leahey, S.E.; Chen, J.; Chen, Y.; Pelicano, H.; Bernatchez, C.; Gopal, Y.N.V.; Heffernan, T.P.; Hu, J.; Wang, J.; Amaria, R.N.; Garraway, L.A.; Huang, P.; Yang, P.; Wistuba, I.I., II; Woodman, S.E.; Roszik, J.; Davis, R.E.; Davies, M.A.; Heymach, J.V.; Hwu, P.; Peng, W. Increased tumor glycolysis characterizes immune resistance to adoptive t cell therapy. Cell Metab., 2018, 27(5), 977-987.
[http://dx.doi.org/10.1016/j.cmet.2018.02.024] [PMID: 29628419]
[36]
Weide, B.; Martens, A.; Hassel, J.C.; Berking, C.; Postow, M.A.; Bisschop, K.; Simeone, E.; Mangana, J.; Schilling, B.; Di Giacomo, A.M.; Brenner, N.; Kähler, K.; Heinzerling, L.; Gutzmer, R.; Bender, A.; Gebhardt, C.; Romano, E.; Meier, F.; Martus, P.; Maio, M.; Blank, C.; Schadendorf, D.; Dummer, R.; Ascierto, P.A.; Hospers, G.; Garbe, C.; Wolchok, J.D. Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab. Clin. Cancer Res., 2016, 22(22), 5487-5496.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0127] [PMID: 27185375]
[37]
Woolbright, B.L.; Rajendran, G.; Harris, R.A.; Taylor, J.A., III Metabolic flexibility in cancer: Targeting the pyruvate dehydrogenase kinase: Pyruvate dehydrogenase Axis. Mol. Cancer Ther., 2019, 18(10), 1673-1681.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0079] [PMID: 31511353]
[38]
Bordon, Y. T cell flexibility points to a metabolic checkpoint for cancer therapy. Nat. Rev. Immunol., 2020, 20(1), 2-3.
[http://dx.doi.org/10.1038/s41577-019-0256-y] [PMID: 31784671]
[39]
Oh, M.H.; Sun, I.H.; Zhao, L.; Leone, R.D.; Sun, I.M.; Xu, W.; Collins, S.L.; Tam, A.J.; Blosser, R.L.; Patel, C.H.; Englert, J.M.; Arwood, M.L.; Wen, J.; Chan-Li, Y.; Tenora, L.; Majer, P.; Rais, R.; Slusher, B.S.; Horton, M.R.; Powell, J.D. Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J. Clin. Invest., 2020, 130(7), 3865-3884.
[http://dx.doi.org/10.1172/JCI131859] [PMID: 32324593]
[40]
Xu, X.; Meng, Y.; Li, L.; Xu, P.; Wang, J.; Li, Z.; Bian, J. Overview of the development of glutaminase inhibitors: Achievements and future directions. J. Med. Chem., 2019, 62(3), 1096-1115.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00961] [PMID: 30148361]
[41]
Wang, Z.; Liu, F.; Fan, N.; Zhou, C.; Li, D.; Macvicar, T.; Dong, Q.; Bruns, C.J.; Zhao, Y. Targeting glutaminolysis: New perspectives to understand cancer development and novel strategies for potential target therapies. Front. Oncol., 2020, 10, 589508.
[http://dx.doi.org/10.3389/fonc.2020.589508] [PMID: 33194749]
[42]
Li, X.; Wenes, M.; Romero, P.; Huang, S.C.; Fendt, S.M.; Ho, P.C. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat. Rev. Clin. Oncol., 2019, 16(7), 425-441.
[http://dx.doi.org/10.1038/s41571-019-0203-7] [PMID: 30914826]
[43]
Byun, J.K.; Park, M.; Lee, S.; Yun, J.W.; Lee, J.; Kim, J.S.; Cho, S.J.; Jeon, H.J.; Lee, I.K.; Choi, Y.K.; Park, K.G. Inhibition of glutamine utilization synergizes with immune checkpoint inhibitor to promote antitumor immunity. Mol. Cell, 2020, 80(4), 592-606.
[http://dx.doi.org/10.1016/j.molcel.2020.10.015] [PMID: 33159855]
[44]
He, X.; Lin, H.; Yuan, L.; Li, B. Combination therapy with L-arginine and α-PD-L1 antibody boosts immune response against osteosarcoma in immunocompetent mice. Cancer Biol. Ther., 2017, 18(2), 94-100.
[http://dx.doi.org/10.1080/15384047.2016.1276136] [PMID: 28045576]
[45]
Chung, S.F.; Kim, C.F.; Kwok, S.Y.; Tam, S.Y.; Chen, Y.W.; Chong, H.C.; Leung, S.L.; So, P.K.; Wong, K.Y.; Leung, Y.C.; Lo, W.H. Mono-PEGylation of a thermostable arginine-depleting enzyme for the treatment of lung cancer. Int. J. Mol. Sci., 2020, 21(12), E4234.
[http://dx.doi.org/10.3390/ijms21124234] [PMID: 32545874]
[46]
Ji, J.X.; Cochrane, D.R.; Tessier-Cloutier, B.; Chen, S.Y.; Ho, G.; Pathak, K.V.; Alcazar, I.N.; Farnell, D.; Leung, S.; Cheng, A.; Chow, C.; Colborne, S.; Negri, G.L.; Kommoss, F.; Karnezis, A.; Morin, G.B.; McAlpine, J.N.; Gilks, C.B.; Weissman, B.E.; Trent, J.M.; Hoang, L.; Pirrotte, P.; Wang, Y.; Huntsman, D.G. Arginine Depletion Therapy with ADI-PEG20 limits tumor growth in argininosuccinate synthase-deficient ovarian cancer, including small-cell carcinoma of the ovary, hypercalcemic type. Clin. Cancer Res., 2020, 26(16), 4402-4413.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1905] [PMID: 32409304]
[47]
Brin, E.; Wu, K.; Lu, H.T.; He, Y.; Dai, Z.; He, W. PEGylated arginine deiminase can modulate tumor immune microenvironment by affecting immune checkpoint expression, decreasing regulatory T cell accumulation and inducing tumor T cell infiltration. Oncotarget, 2017, 8(35), 58948-58963.
[http://dx.doi.org/10.18632/oncotarget.19564] [PMID: 28938609]
[48]
Swayden, M.; Bekdash, A.; Fakhoury, I.; El-Atat, O.; Borjac-Natour, J.; El-Sibai, M.; Abi-Habib, R.J. Activation of autophagy following [HuArgI (Co)-PEG5000]-induced arginine deprivation mediates cell death in colon cancer cells. Hum. Cell, 2021, 34(1), 152-164.
[http://dx.doi.org/10.1007/s13577-020-00437-4] [PMID: 32979152]
[49]
Grzywa, T.M.; Sosnowska, A.; Matryba, P.; Rydzynska, Z.; Jasinski, M.; Nowis, D.; Golab, J. Myeloid cell-derived arginase in cancer immune response. Front. Immunol., 2020, 11, 938.
[http://dx.doi.org/10.3389/fimmu.2020.00938] [PMID: 32499785]
[50]
Ma, Z.; Lian, J.; Yang, M.; Wuyang, J.; Zhao, C.; Chen, W.; Liu, C.; Zhao, Q.; Lou, C.; Han, J.; Zhang, Y. Overexpression of Arginase-1 is an indicator of poor prognosis in patients with colorectal cancer. Pathol. Res. Pract., 2019, 215(6), 152383.
[http://dx.doi.org/10.1016/j.prp.2019.03.012] [PMID: 30890279]
[51]
Pudlo, M.; Demougeot, C.; Girard-Thernier, C. Arginase inhibitors: A rational approach over one century. Med. Res. Rev., 2017, 37(3), 475-513.
[http://dx.doi.org/10.1002/med.21419] [PMID: 27862081]
[52]
Steggerda, S.M.; Bennett, M.K.; Chen, J.; Emberley, E.; Huang, T.; Janes, J.R.; Li, W.; MacKinnon, A.L.; Makkouk, A.; Marguier, G.; Murray, P.J.; Neou, S.; Pan, A.; Parlati, F.; Rodriguez, M.L.M.; Van de Velde, L.A.; Wang, T.; Works, M.; Zhang, J.; Zhang, W.; Gross, M.I. Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. J. Immunother. Cancer, 2017, 5(1), 101.
[http://dx.doi.org/10.1186/s40425-017-0308-4] [PMID: 29254508]
[53]
Blaszczyk, R.; Brzezinska, J.; Dymek, B.; Stanczak, P.S.; Mazurkiewicz, M.; Olczak, J.; Nowicka, J.; Dzwonek, K.; Zagozdzon, A.; Golab, J.; Golebiowski, A. Discovery and pharmacokinetics of sulfamides and guanidines as potent human arginase 1 inhibitors. ACS Med. Chem. Lett., 2020, 11(4), 433-438.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00508] [PMID: 32292546]
[54]
Czystowska-Kuzmicz, M.; Sosnowska, A.; Nowis, D.; Ramji, K.; Szajnik, M.; Chlebowska-Tuz, J.; Wolinska, E.; Gaj, P.; Grazul, M.; Pilch, Z.; Zerrouqi, A.; Graczyk-Jarzynka, A.; Soroczynska, K.; Cierniak, S.; Koktysz, R.; Elishaev, E.; Gruca, S.; Stefanowicz, A.; Blaszczyk, R.; Borek, B.; Gzik, A.; Whiteside, T.; Golab, J. Small extracellular vesicles containing arginase-1 suppress T-cell responses and promote tumor growth in ovarian carcinoma. Nat. Commun., 2019, 10(1), 3000.
[http://dx.doi.org/10.1038/s41467-019-10979-3] [PMID: 31278254]
[55]
Cervenka, I.; Agudelo, L.Z.; Ruas, J.L. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health. Science, 2017, 357(6349), eaaf9794.
[http://dx.doi.org/10.1126/science.aaf9794] [PMID: 28751584]
[56]
Lemos, H.; Huang, L.; Prendergast, G.C.; Mellor, A.L. Immune control by amino acid catabolism during tumorigenesis and therapy. Nat. Rev. Cancer, 2019, 19(3), 162-175.
[http://dx.doi.org/10.1038/s41568-019-0106-z] [PMID: 30696923]
[57]
Platten, M.; Nollen, E.A.A.; Röhrig, U.F.; Fallarino, F.; Opitz, C.A. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat. Rev. Drug Discov., 2019, 18(5), 379-401.
[http://dx.doi.org/10.1038/s41573-019-0016-5] [PMID: 30760888]
[58]
Zhang, T.; Tan, X.L.; Xu, Y.; Wang, Z.Z.; Xiao, C.H.; Liu, R. Expression and prognostic value of Indoleamine 2,3-dioxygenase in pancreatic cancer. Chin. Med. J. (Engl.), 2017, 130(6), 710-716.
[http://dx.doi.org/10.4103/0366-6999.201613] [PMID: 28303855]
[59]
Le Naour, J.; Galluzzi, L.; Zitvogel, L.; Kroemer, G.; Vacchelli, E. Trial watch: IDO inhibitors in cancer therapy. OncoImmunology, 2020, 9(1), 1777625.
[http://dx.doi.org/10.1080/2162402X.2020.1777625] [PMID: 32934882]
[60]
Opitz, C.A.; Somarribas Patterson, L.F.; Mohapatra, S.R.; Dewi, D.L.; Sadik, A.; Platten, M.; Trump, S. The therapeutic potential of targeting tryptophan catabolism in cancer. Br. J. Cancer, 2020, 122(1), 30-44.
[http://dx.doi.org/10.1038/s41416-019-0664-6] [PMID: 31819194]
[61]
Nishino, M.; Ramaiya, N.H.; Hatabu, H.; Hodi, F.S. Monitoring immune-checkpoint blockade: Response evaluation and biomarker development. Nat. Rev. Clin. Oncol., 2017, 14(11), 655-668.
[http://dx.doi.org/10.1038/nrclinonc.2017.88] [PMID: 28653677]
[62]
Kverneland, A.H.; Enevold, C.; Donia, M.; Bastholt, L.; Svane, I.M.; Nielsen, C.H. Development of anti-drug antibodies is associated with shortened survival in patients with metastatic melanoma treated with ipilimumab. OncoImmunology, 2018, 7(5), e1424674.
[http://dx.doi.org/10.1080/2162402X.2018.1424674] [PMID: 29721387]
[63]
Gibney, G.T.; Hamid, O.; Lutzky, J.; Olszanski, A.J.; Mitchell, T.C.; Gajewski, T.F.; Chmielowski, B.; Hanks, B.A.; Zhao, Y.; Newton, R.C.; Maleski, J.; Leopold, L.; Weber, J.S. Phase 1/2 study of epacadostat in combination with ipilimumab in patients with unresectable or metastatic melanoma. J. Immunother. Cancer, 2019, 7(1), 80.
[http://dx.doi.org/10.1186/s40425-019-0562-8] [PMID: 30894212]
[64]
Long, G.V.; Dummer, R.; Hamid, O.; Gajewski, T.F.; Caglevic, C.; Dalle, S.; Arance, A.; Carlino, M.S.; Grob, J-J.; Kim, T.M.; Demidov, L.; Robert, C.; Larkin, J.; Anderson, J.R.; Maleski, J.; Jones, M.; Diede, S.J.; Mitchell, T.C. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): A phase 3, randomised, double-blind study. Lancet Oncol., 2019, 20(8), 1083-1097.
[http://dx.doi.org/10.1016/S1470-2045(19)30274-8] [PMID: 31221619]
[65]
Ebata, T.; Shimizu, T.; Fujiwara, Y.; Tamura, K.; Kondo, S.; Iwasa, S.; Yonemori, K.; Shimomura, A.; Kitano, S.; Koyama, T.; Sato, N.; Nakai, K.; Inatani, M.; Yamamoto, N. Phase I study of the indoleamine 2,3-dioxygenase 1 inhibitor navoximod (GDC-0919) as monotherapy and in combination with the PD-L1 inhibitor atezolizumab in Japanese patients with advanced solid tumours. Invest. New Drugs, 2020, 38(2), 468-477.
[http://dx.doi.org/10.1007/s10637-019-00787-3] [PMID: 31124055]
[66]
Garber, K. A new cancer immunotherapy suffers a setback. American Association for the Advancement of Science, 2018, 360(6389), 588.
[http://dx.doi.org/10.1126/science.360.6389.588]
[67]
Guri, Y.; Colombi, M.; Dazert, E.; Hindupur, S.K.; Roszik, J.; Moes, S.; Jenoe, P.; Heim, M.H.; Riezman, I.; Riezman, H.; Hall, M.N. mTORC2 promotes tumorigenesis via lipid synthesis. Cancer Cell, 2017, 32(6), 807-823.
[http://dx.doi.org/10.1016/j.ccell.2017.11.011] [PMID: 29232555]
[68]
Buckley, D.; Duke, G.; Heuer, T.S.; O’Farrell, M.; Wagman, A.S.; McCulloch, W.; Kemble, G. Fatty acid synthase - Modern tumor cell biology insights into a classical oncology target. Pharmacol. Ther., 2017, 177, 23-31.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.021] [PMID: 28202364]
[69]
Zaytseva, Y.Y.; Rychahou, P.G.; Le, A.T.; Scott, T.L.; Flight, R.M.; Kim, J.T.; Harris, J.; Liu, J.; Wang, C.; Morris, A.J.; Sivakumaran, T.A.; Fan, T.; Moseley, H.; Gao, T.; Lee, E.Y.; Weiss, H.L.; Heuer, T.S.; Kemble, G.; Evers, M. Preclinical evaluation of novel fatty acid synthase inhibitors in primary colorectal cancer cells and a patient-derived xenograft model of colorectal cancer. Oncotarget, 2018, 9(37), 24787-24800.
[http://dx.doi.org/10.18632/oncotarget.25361] [PMID: 29872506]
[70]
Falchook, G.; Infante, J.; Arkenau, H.T.; Patel, M.R.; Dean, E.; Borazanci, E.; Brenner, A.; Cook, N.; Lopez, J.; Pant, S.; Frankel, A.; Schmid, P.; Moore, K.; McCulloch, W.; Grimmer, K.; O’Farrell, M.; Kemble, G.; Burris, H. First-in-human study of the safety, pharmacokinetics, and pharmacodynamics of first-in-class fatty acid synthase inhibitor TVB-2640 alone and with a taxane in advanced tumors. EClinicalMedicine, 2021, 34, 100797.
[http://dx.doi.org/10.1016/j.eclinm.2021.100797] [PMID: 33870151]
[71]
Lee, C.; Safdie, F.M.; Raffaghello, L.; Wei, M.; Madia, F.; Parrella, E.; Hwang, D.; Cohen, P.; Bianchi, G.; Longo, V.D. Reduced levels of IGF-I mediate differential protection of normal and cancer cells in response to fasting and improve chemotherapeutic index. Cancer Res., 2010, 70(4), 1564-1572.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3228] [PMID: 20145127]
[72]
Ma, D.; Chen, X.; Zhang, P.Y.; Zhang, H.; Wei, L.J.; Hu, S.; Tang, J.Z.; Zhou, M.T.; Xie, C.; Ou, R.; Xu, Y.; Tang, K.F. Upregulation of the ALDOA/DNA-PK/p53 pathway by dietary restriction suppresses tumor growth. Oncogene, 2018, 37(8), 1041-1048.
[http://dx.doi.org/10.1038/onc.2017.398] [PMID: 29084207]
[73]
Brandhorst, S.; Choi, I.Y.; Wei, M.; Cheng, C.W.; Sedrakyan, S.; Navarrete, G.; Dubeau, L.; Yap, L.P.; Park, R.; Vinciguerra, M.; Di Biase, S.; Mirzaei, H.; Mirisola, M.G.; Childress, P.; Ji, L.; Groshen, S.; Penna, F.; Odetti, P.; Perin, L.; Conti, P.S.; Ikeno, Y.; Kennedy, B.K.; Cohen, P.; Morgan, T.E.; Dorff, T.B.; Longo, V.D. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metab., 2015, 22(1), 86-99.
[http://dx.doi.org/10.1016/j.cmet.2015.05.012] [PMID: 26094889]
[74]
de Groot, S.; Pijl, H.; van der Hoeven, J.J.M.; Kroep, J.R. Effects of short-term fasting on cancer treatment. J. Exp. Clin. Cancer Res., 2019, 38(1), 209.
[http://dx.doi.org/10.1186/s13046-019-1189-9] [PMID: 31113478]
[75]
Yang, H.; Youm, Y.H.; Dixit, V.D. Inhibition of thymic adipogenesis by caloric restriction is coupled with reduction in age-related thymic involution. J. Immunol., 2009, 183(5), 3040-3052.
[http://dx.doi.org/10.4049/jimmunol.0900562] [PMID: 19648267]
[76]
Messaoudi, I.; Warner, J.; Fischer, M.; Park, B.; Hill, B.; Mattison, J.; Lane, M.A.; Roth, G.S.; Ingram, D.K.; Picker, L.J.; Douek, D.C.; Mori, M.; Nikolich-Zugich, J. Delay of T cell senescence by caloric restriction in aged long-lived nonhuman primates. Proc. Natl. Acad. Sci. USA, 2006, 103(51), 19448-19453.
[http://dx.doi.org/10.1073/pnas.0606661103] [PMID: 17159149]
[77]
Di Biase, S.; Lee, C.; Brandhorst, S.; Manes, B.; Buono, R.; Cheng, C.W.; Cacciottolo, M.; Martin-Montalvo, A.; de Cabo, R.; Wei, M.; Morgan, T.E.; Longo, V.D. Fasting-mimicking diet reduces HO-1 to promote T cell-mediated tumor cytotoxicity. Cancer Cell, 2016, 30(1), 136-146.
[http://dx.doi.org/10.1016/j.ccell.2016.06.005] [PMID: 27411588]
[78]
Farazi, M.; Nguyen, J.; Goldufsky, J.; Linnane, S.; Lukaesko, L.; Weinberg, A.D.; Ruby, C.E. Caloric restriction maintains OX40 agonist-mediated tumor immunity and CD4 T cell priming during aging. Cancer Immunol. Immunother., 2014, 63(6), 615-626.
[http://dx.doi.org/10.1007/s00262-014-1542-y] [PMID: 24682539]
[79]
Collins, N.; Han, S.J.; Enamorado, M.; Link, V.M.; Huang, B.; Moseman, E.A.; Kishton, R.J.; Shannon, J.P.; Dixit, D.; Schwab, S.R.; Hickman, H.D.; Restifo, N.P.; McGavern, D.B.; Schwartzberg, P.L.; Belkaid, Y. The bone marrow protects and optimizes immunological memory during dietary restriction. Cell, 2019, 178(5), 1088-1101.
[http://dx.doi.org/10.1016/j.cell.2019.07.049] [PMID: 31442402]
[80]
Weber, D.D.; Aminazdeh-Gohari, S.; Kofler, B. Ketogenic diet in cancer therapy. Aging (Albany NY), 2018, 10(2), 164-165.
[http://dx.doi.org/10.18632/aging.101382] [PMID: 29443693]
[81]
Paoli, A. Ketogenic diet for obesity: Friend or foe? Int. J. Environ. Res. Public Health, 2014, 11(2), 2092-2107.
[http://dx.doi.org/10.3390/ijerph110202092] [PMID: 24557522]
[82]
Martuscello, R.T.; Vedam-Mai, V.; McCarthy, D.J.; Schmoll, M.E.; Jundi, M.A.; Louviere, C.D.; Griffith, B.G.; Skinner, C.L.; Suslov, O.; Deleyrolle, L.P.; Reynolds, B.A. A supplemented high-fat low-carbohydrate diet for the treatment of glioblastoma. Clin. Cancer Res., 2016, 22(10), 2482-2495.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0916] [PMID: 26631612]
[83]
Weber, D.D.; Aminzadeh-Gohari, S.; Tulipan, J.; Catalano, L.; Feichtinger, R.G.; Kofler, B. Ketogenic diet in the treatment of cancer - Where do we stand? Mol. Metab., 2020, 33, 102-121.
[http://dx.doi.org/10.1016/j.molmet.2019.06.026] [PMID: 31399389]
[84]
Zahra, A.; Fath, M.A.; Opat, E.; Mapuskar, K.A.; Bhatia, S.K.; Ma, D.C.; Rodman, S.N., III; Snyders, T.P.; Chenard, C.A.; Eichenberger-Gilmore, J.M.; Bodeker, K.L.; Ahmann, L.; Smith, B.J.; Vollstedt, S.A.; Brown, H.A.; Hejleh, T.A.; Clamon, G.H.; Berg, D.J.; Szweda, L.I.; Spitz, D.R.; Buatti, J.M.; Allen, B.G. Consuming a ketogenic diet while receiving radiation and chemotherapy for locally advanced lung cancer and pancreatic cancer: The university of iowa experience of two phase 1 clinical trials. Radiat. Res., 2017, 187(6), 743-754.
[http://dx.doi.org/10.1667/RR14668.1] [PMID: 28437190]
[85]
Hopkins, B.D.; Pauli, C.; Du, X.; Wang, D.G.; Li, X.; Wu, D.; Amadiume, S.C.; Goncalves, M.D.; Hodakoski, C.; Lundquist, M.R.; Bareja, R.; Ma, Y.; Harris, E.M.; Sboner, A.; Beltran, H.; Rubin, M.A.; Mukherjee, S.; Cantley, L.C. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature, 2018, 560(7719), 499-503.
[http://dx.doi.org/10.1038/s41586-018-0343-4] [PMID: 30051890]
[86]
Lussier, D.M.; Woolf, E.C.; Johnson, J.L.; Brooks, K.S.; Blattman, J.N.; Scheck, A.C. Enhanced immunity in a mouse model of malignant glioma is mediated by a therapeutic ketogenic diet. BMC Cancer, 2016, 16(1), 310.
[http://dx.doi.org/10.1186/s12885-016-2337-7] [PMID: 27178315]
[87]
İyikesici, M.S.; Slocum, A.K.; Slocum, A.; Berkarda, F.B.; Kalamian, M.; Seyfried, T.N. Efficacy of metabolically supported chemotherapy combined with ketogenic diet, hyperthermia, and hyperbaric oxygen therapy for stage IV triple-negative breast cancer. Cureus, 2017, 9(7), e1445.
[http://dx.doi.org/10.7759/cureus.1445] [PMID: 28924531]
[88]
van der Louw, E.J.T.M.; Olieman, J.F.; van den Bemt, P.M.L.A.; Bromberg, J.E.C.; Oomen-de Hoop, E.; Neuteboom, R.F.; Catsman-Berrevoets, C.E.; Vincent, A.J.P.E. Ketogenic diet treatment as adjuvant to standard treatment of glioblastoma multiforme: A feasibility and safety study. Ther. Adv. Med. Oncol., 2019, 11, 1758835919853958.
[http://dx.doi.org/10.1177/1758835919853958] [PMID: 31258628]
[89]
Santos, J.G.; Da Cruz, W.M.S.; Schönthal, A.H.; Salazar, M.D.; Fontes, C.A.P.; Quirico-Santos, T.; Da Fonseca, C.O. Efficacy of a ketogenic diet with concomitant intranasal perillyl alcohol as a novel strategy for the therapy of recurrent glioblastoma. Oncol. Lett., 2018, 15(1), 1263-1270.
[PMID: 29391903]
[90]
Drijvers, J.M.; Sharpe, A.H.; Haigis, M.C. The effects of age and systemic metabolism on anti-tumor T cell responses. eLife, 2020, 9, 9.
[http://dx.doi.org/10.7554/eLife.62420] [PMID: 33170123]
[91]
Orillion, A.; Damayanti, N.P.; Shen, L.; Adelaiye-Ogala, R.; Affronti, H.; Elbanna, M.; Chintala, S.; Ciesielski, M.; Fontana, L.; Kao, C.; Elzey, B.D.; Ratliff, T.L.; Nelson, D.E.; Smiraglia, D.; Abrams, S.I.; Pili, R. Dietary protein restriction reprograms tumor-associated macrophages and enhances immunotherapy. Clin. Cancer Res., 2018, 24(24), 6383-6395.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0980] [PMID: 30190370]
[92]
Wanders, D.; Hobson, K.; Ji, X. Methionine restriction and cancer biology. Nutrients, 2020, 12(3), E684.
[http://dx.doi.org/10.3390/nu12030684] [PMID: 32138282]
[93]
Gao, X.; Sanderson, S.M.; Dai, Z.; Reid, M.A.; Cooper, D.E.; Lu, M.; Richie, J.P., Jr; Ciccarella, A.; Calcagnotto, A.; Mikhael, P.G.; Mentch, S.J.; Liu, J.; Ables, G.; Kirsch, D.G.; Hsu, D.S.; Nichenametla, S.N.; Locasale, J.W. Dietary methionine influences therapy in mouse cancer models and alters human metabolism. Nature, 2019, 572(7769), 397-401.
[http://dx.doi.org/10.1038/s41586-019-1437-3] [PMID: 31367041]
[94]
Tajan, M.; Vousden, K.H. Dietary approaches to cancer therapy. Cancer Cell, 2020, 37(6), 767-785.
[http://dx.doi.org/10.1016/j.ccell.2020.04.005] [PMID: 32413275]
[95]
Peng, H.; Wang, Y.; Luo, W. Multifaceted role of branched-chain amino acid metabolism in cancer. Oncogene, 2020, 39(44), 6747-6756.
[http://dx.doi.org/10.1038/s41388-020-01480-z] [PMID: 32978521]
[96]
Ananieva, E.A.; Wilkinson, A.C. Branched-chain amino acid metabolism in cancer. Curr. Opin. Clin. Nutr. Metab. Care, 2018, 21(1), 64-70.
[http://dx.doi.org/10.1097/MCO.0000000000000430] [PMID: 29211698]
[97]
Cummings, N.E.; Williams, E.M.; Kasza, I.; Konon, E.N.; Schaid, M.D.; Schmidt, B.A.; Poudel, C.; Sherman, D.S.; Yu, D.; Arriola Apelo, S.I.; Cottrell, S.E.; Geiger, G.; Barnes, M.E.; Wisinski, J.A.; Fenske, R.J.; Matkowskyj, K.A.; Kimple, M.E.; Alexander, C.M.; Merrins, M.J.; Lamming, D.W. Restoration of metabolic health by decreased consumption of branched-chain amino acids. J. Physiol., 2018, 596(4), 623-645.
[http://dx.doi.org/10.1113/JP275075] [PMID: 29266268]
[98]
Iwasa, M.; Kobayashi, Y.; Mifuji-Moroka, R.; Hara, N.; Miyachi, H.; Sugimoto, R.; Tanaka, H.; Fujita, N.; Gabazza, E.C.; Takei, Y. Branched-chain amino acid supplementation reduces oxidative stress and prolongs survival in rats with advanced liver cirrhosis. PLoS One, 2013, 8(7), e70309.
[http://dx.doi.org/10.1371/journal.pone.0070309] [PMID: 23936183]
[99]
Iwasa, M.; Sugimoto, R.; Ishihara, T.; Sekoguchi-Fujikawa, N.; Yoshikawa, K.; Mifuji-Moroka, R.; Tanaka, H.; Kobayashi, Y.; Hasegawa, H.; Takei, Y. Usefulness of levocarnitine and/or branched-chain amino acids during invasive treatment for hepatocellular carcinoma. J. Nutr. Sci. Vitaminol. (Tokyo), 2015, 61(6), 433-440.
[http://dx.doi.org/10.3177/jnsv.61.433] [PMID: 26875483]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy