Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

阿尔茨海默氏症、血管性痴呆和混合性痴呆的血管损伤和脑萎缩:优化的3T MRI方案揭示了独特的放射学特征

卷 19, 期 6, 2022

发表于: 04 August, 2022

页: [449 - 457] 页: 9

弟呕挨: 10.2174/1567205019666220620112831

价格: $65

conference banner
摘要

背景:血管损伤可能也是阿尔茨海默氏痴呆症的常见发现,但其对认知状态的作用尚不确定。 目的:本研究旨在调查其在阿尔茨海默氏症、血管性痴呆或混合性痴呆患者中的分布,并检测任何独特的神经放射学特征。 方法:76名受试者被诊断为阿尔茨海默病(AD=32)、血管性痴呆(VD=26)和混合性痴呆(MD=18)。三位独立的评估者使用血管病变(脑室周围病变(PVL)、深白质病变(DWML)、深灰质病变(DGML)、扩大的血管周围间隙(PVS))的半定量量表,评估了通过优化的3T MRI方案(包括(3D FLAIR、T1、SWI和2D冠状T2序列)采集的脑图像,和微出血(MB))和脑萎缩(内侧颞叶萎缩(MTA)、后部萎缩(PA)、全局皮质萎缩-额叶(GCA-F)和Evans指数)。 结果:Raters在所有量表中都达到了良好到极好的一致性(ICC范围为0.78-0.96)。与AD相比,VD中观察到更多的PVL(p<0.001)、DWML(p<0.001)、DGML(p=0.010)和PVS(p=0.001),而MD显示PVL(p=0.001)、DML(p=0.002)、DGML(p=0.01 8)以及深部和近部MB(分别为p=0.006和p<0.001。与VD和MD相比,VD显示基底节和半卵圆中心PVS的数量更高(p=0.040),而MD显示更深和更近的MB(分别为p=0.042和p=0.022)。三组间皮质萎缩量表和Evans指数评分无显著差异。 结论:通过更准确地检测血管病变(主要是微出血),所提出的MRI方案在认知障碍患者的诊断评估中代表了一个有用的进步,而不会显著增加时间和资源支出。我们的发现证实,白质和灰质病变在血管性痴呆和混合性痴呆中占主导地位,而深部和边缘微出血在混合性痴呆患者中占主导,这表明大脑淀粉样血管病可能是主要的潜在病理。

关键词: 阿尔茨海默氏痴呆、血管性痴呆、混合性痴呆、白质病变、微出血、视觉评分

[1]
Jellinger KA. Pathology and pathogenesis of vascular cognitive impairment-A critical update. Front Aging Neurosci 2013; 5: 17.
[http://dx.doi.org/10.3389/fnagi.2013.00017] [PMID: 23596414]
[2]
O’Brien JT, Thomas A. Vascular dementia. Lancet 2015; 386(10004): 1698-706.
[http://dx.doi.org/10.1016/S0140-6736(15)00463-8] [PMID: 26595643]
[3]
Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: Systematic review and meta-analysis. BMJ 2010; 341(jul26 1): c3666.
[http://dx.doi.org/10.1136/bmj.c3666] [PMID: 20660506]
[4]
Esiri M, Chance S, Joachim C, et al. Cerebral amyloid angiopathy, subcortical white matter disease and dementia: Literature review and study in OPTIMA. Brain Pathol 2015; 25(1): 51-62.
[http://dx.doi.org/10.1111/bpa.12221] [PMID: 25521177]
[5]
van Veluw SJ, Zwanenburg JJM, Engelen-Lee J, et al. In vivo detection of cerebral cortical microinfarcts with high-resolution 7T MRI. J Cereb Blood Flow Metab 2013; 33(3): 322-9.
[http://dx.doi.org/10.1038/jcbfm.2012.196] [PMID: 23250109]
[6]
Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013; 12(8): 822-38.
[http://dx.doi.org/10.1016/S1474-4422(13)70124-8] [PMID: 23867200]
[7]
Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of fronto temporal dementia. Brain 2011; 134(Pt 9): 2456-77.
[http://dx.doi.org/10.1093/brain/awr179] [PMID: 21810890]
[8]
Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology 2011; 76(11): 1006-14.
[http://dx.doi.org/10.1212/WNL.0b013e31821103e6] [PMID: 21325651]
[9]
McKeith IG, Boeve BF, Dickson DW, et al. Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology 2017; 89(1): 88-100.
[http://dx.doi.org/10.1212/WNL.0000000000004058] [PMID: 28592453]
[10]
Hachinski VC, Iliff LD, Zilhka E, et al. Cerebral blood flow in dementia. Arch Neurol 1975; 32(9): 632-7.
[http://dx.doi.org/10.1001/archneur.1975.00490510088009] [PMID: 1164215]
[11]
Moroney JT, Bagiella E, Desmond DW, et al. Meta-analysis of the Hachinski Ischemic Score in pathologically verified dementias. Neurology 1997; 49(4): 1096-105.
[http://dx.doi.org/10.1212/WNL.49.4.1096] [PMID: 9339696]
[12]
McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7(3): 263-9.
[http://dx.doi.org/10.1016/j.jalz.2011.03.005] [PMID: 21514250]
[13]
Jack CR Jr, Barnes J, Bernstein MA, et al. Magnetic resonance imaging in Alzheimer’s Disease Neuroimaging Initiative 2. Alzheimers Dement 2015; 11(7): 740-56.
[http://dx.doi.org/10.1016/j.jalz.2015.05.002] [PMID: 26194310]
[14]
Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 1987; 149(2): 351-6.
[http://dx.doi.org/10.2214/ajr.149.2.351] [PMID: 3496763]
[15]
Wahlund LO, Barkhof F, Fazekas F, et al. A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke 2001; 32(6): 1318-22.
[http://dx.doi.org/10.1161/01.STR.32.6.1318] [PMID: 11387493]
[16]
Potter GM, Chappell FM, Morris Z, Wardlaw JM. Cerebral perivascular spaces visible on magnetic resonance imaging: Development of a qualitative rating scale and its observer reliability. Cerebrovasc Dis 2015; 39(3-4): 224-31.
[http://dx.doi.org/10.1159/000375153] [PMID: 25823458]
[17]
Cordonnier C, Potter GM, Jackson CA, et al. improving interrater agreement about brain microbleeds: Development of the Brain Observer MicroBleed Scale (BOMBS). Stroke 2009; 40(1): 94-9.
[http://dx.doi.org/10.1161/STROKEAHA.108.526996] [PMID: 19008468]
[18]
Toma AK, Holl E, Kitchen ND, Watkins LD. Evans’ index revisited: The need for an alternative in normal pressure hydrocephalus. Neurosurgery 2011; 68(4): 939-44.
[http://dx.doi.org/10.1227/NEU.0b013e318208f5e0] [PMID: 21221031]
[19]
Scheltens P, Leys D, Barkhof F, et al. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: Diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 1992; 55(10): 967-72.
[http://dx.doi.org/10.1136/jnnp.55.10.967] [PMID: 1431963]
[20]
Koedam EL, Lehmann M, van der Flier WM, et al. Visual assessment of posterior atrophy development of a MRI rating scale. Eur Radiol 2011; 21(12): 2618-25.
[http://dx.doi.org/10.1007/s00330-011-2205-4] [PMID: 21805370]
[21]
Pasquier F, Leys D, Weerts JGE, Mounier-Vehier F, Barkhof F, Scheltens P. Inter- and intraobserver reproducibility of cerebral atrophy assessment on MRI scans with hemispheric infarcts. Eur Neurol 1996; 36(5): 268-72.
[http://dx.doi.org/10.1159/000117270] [PMID: 8864706]
[22]
Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 2016; 15(2): 155-63.
[http://dx.doi.org/10.1016/j.jcm.2016.02.012] [PMID: 27330520]
[23]
Potter GM, Doubal FN, Jackson CA, et al. Enlarged perivascular spaces and cerebral small vessel disease. Int J Stroke 2015; 10(3): 376-81.
[http://dx.doi.org/10.1111/ijs.12054] [PMID: 23692610]
[24]
Ikram MA, van der Lugt A, Niessen WJ, et al. The Rotterdam Scan Study: Design update 2016 and main findings. Eur J Epidemiol 2015; 30(12): 1299-315.
[http://dx.doi.org/10.1007/s10654-015-0105-7] [PMID: 26650042]
[25]
Shams S, Martola J, Granberg T, et al. Cerebral microbleeds: Different prevalence, topography, and risk factors depending on dementia diagnosis—the Karolinska Imaging Dementia Study. AJNR Am J Neuroradiol 2015; 36(4): 661-6.
[http://dx.doi.org/10.3174/ajnr.A4176] [PMID: 25523590]
[26]
Guo H, Song X, Vandorpe R, et al. Evaluation of common structural brain changes in aging and Alzheimer disease with the use of an MRI-based brain atrophy and lesion index: A comparison between T1WI and T2WI at 1.5T and 3T. AJNR Am J Neuroradiol 2014; 35(3): 504-12.
[http://dx.doi.org/10.3174/ajnr.A3709] [PMID: 23988753]
[27]
Nandigam RN, Viswanathan A, Delgado P, et al. MR imaging detection of cerebral microbleeds: Effect of susceptibility-weighted imaging, section thickness, and field strength. AJNR Am J Neuroradiol 2009; 30(2): 338-43.
[http://dx.doi.org/10.3174/ajnr.A1355] [PMID: 19001544]
[28]
Kim GH, Lee JH, Seo SW, et al. Seoul criteria for PiB(-) subcortical vascular dementia based on clinical and MRI variables. Neurology 2014; 82(17): 1529-35.
[http://dx.doi.org/10.1212/WNL.0000000000000360] [PMID: 24682969]
[29]
Prins ND, Scheltens P. White matter hyperintensities, cognitive impairment and dementia: An update. Nat Rev Neurol 2015; 11(3): 157-65.
[http://dx.doi.org/10.1038/nrneurol.2015.10] [PMID: 25686760]
[30]
Duering M, Righart R, Wollenweber FA, Zietemann V, Gesierich B, Dichgans M. Acute infarcts cause focal thinning in remote cortex via degeneration of connecting fiber tracts. Neurology 2015; 84(16): 1685-92.
[http://dx.doi.org/10.1212/WNL.0000000000001502] [PMID: 25809303]
[31]
Niazi M, Karaman M, Das S, Zhou XJ, Yushkevich P, Cai K. Quantitative MRI of perivascular spaces at 3T for early diagnosis of mild cognitive impairment. AJNR Am J Neuroradiol 2018; 39(9): 1622-8.
[http://dx.doi.org/10.3174/ajnr.A5734] [PMID: 30093484]
[32]
Shi Y, Wardlaw JM. Update on cerebral small vessel disease: A dynamic whole-brain disease. Stroke Vasc Neurol 2016; 1(3): 83-92.
[http://dx.doi.org/10.1136/svn-2016-000035] [PMID: 28959468]
[33]
De Reuck JL, Deramecourt V, Auger F, et al. Cerebrovascular lesions in mixed neurodegenerative dementia: A neuropathological and magnetic resonance study. Eur Neurol 2017; 78(1-2): 1-5.
[http://dx.doi.org/10.1159/000476032] [PMID: 28478439]
[34]
De Reuck J, Maurage CA, Deramecourt V, et al. Aging and cerebrovascular lesions in pure and in mixed neurodegenerative and vascular dementia brains: A neuropathological study. Folia Neuropathol 2018; 56(2): 81-7.
[http://dx.doi.org/10.5114/fn.2018.76610] [PMID: 30509027]
[35]
Akoudad S, Wolters FJ, Viswanathan A, et al. Association of cerebral microbleeds with cognitive decline and dementia. JAMA Neurol 2016; 73(8): 934-43.
[http://dx.doi.org/10.1001/jamaneurol.2016.1017] [PMID: 27271785]
[36]
Werring DJ, Gregoire SM, Cipolotti L. Cerebral microbleeds and vascular cognitive impairment. J Neurol Sci 2010; 299(1-2): 131-5.
[http://dx.doi.org/10.1016/j.jns.2010.08.034] [PMID: 20850134]
[37]
Podcasy JL, Epperson CN. Considering sex and gender in Alzheimer disease and other dementias. Dialogues Clin Neurosci 2016; 18(4): 437-46.
[http://dx.doi.org/10.31887/DCNS.2016.18.4/cepperson] [PMID: 28179815]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy