Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Vascular Lesions and Brain Atrophy in Alzheimer’s, Vascular and Mixed Dementia: An Optimized 3T MRI Protocol Reveals Distinctive Radiological Profiles

Author(s): Matteo Cotta Ramusino*, Paolo Vitali*, Nicoletta Anzalone, Luca Melazzini, Francesca Paola Lombardo, Lisa Maria Farina, Sara Bernini and Alfredo Costa

Volume 19, Issue 6, 2022

Published on: 04 August, 2022

Page: [449 - 457] Pages: 9

DOI: 10.2174/1567205019666220620112831

Price: $65

conference banner
Abstract

Background: Vascular lesions may be a common finding also in Alzheimer's dementia, but their role on cognitive status is uncertain.

Objective: The study aims to investigate their distribution in patients with Alzheimer's, vascular or mixed dementia and detect any distinctive neuroradiological profiles.

Methods: Seventy-six subjects received a diagnosis of Alzheimer’s (AD=32), vascular (VD=26) and mixed (MD=18) dementia. Three independent raters assessed the brain images acquired with an optimized 3T MRI protocol (including (3D FLAIR, T1, SWI, and 2D coronal T2 sequences) using semiquantitative scales for vascular lesions (periventricular lesions (PVL), deep white matter lesions (DWML), deep grey matter lesions (DGML), enlarged perivascular spaces (PVS), and microbleeds (MB)) and brain atrophy (medial temporal atrophy (MTA), posterior atrophy (PA), global cortical atrophy- frontal (GCA-F) and Evans’ index).

Results: Raters reached a good-to-excellent agreement for all scales (ICC ranging from 0.78-0.96). A greater number of PVL (p<0.001), DWML (p<0.001), DGML (p=0.010), and PVS (p=0.001) was observed in VD compared to AD, while MD showed a significant greater number of PVL (p=0.001), DWML (p=0.002), DGML (p=0.018), and deep and juxtacortical MB (p=0.006 and p<0.001, respectively). Comparing VD and MD, VD showed a higher number of PVS in basal ganglia and centrum semiovale (p=0.040), while MD showed more deep and juxtacortical MB (p=0.042 and p=0.022, respectively). No significant difference was observed in scores of cortical atrophy scales and Evans’ index among the three groups.

Conclusion: The proposed MRI protocol represents a useful advancement in the diagnostic assessment of patients with cognitive impairment by more accurately detecting vascular lesions, mainly microbleeds, without a significant increase in time and resource expenditure. Our findings confirm that white and grey matter lesions predominate in vascular and mixed dementia, whereas deep and juxtacortical microbleeds predominate in mixed dementia, suggesting that cerebral amyloid angiopathy could be the main underlying pathology.

Keywords: Alzheimer’s dementia, vascular dementia, mixed dementia, white matter lesions, microbleeds, visual scale

[1]
Jellinger KA. Pathology and pathogenesis of vascular cognitive impairment-A critical update. Front Aging Neurosci 2013; 5: 17.
[http://dx.doi.org/10.3389/fnagi.2013.00017] [PMID: 23596414]
[2]
O’Brien JT, Thomas A. Vascular dementia. Lancet 2015; 386(10004): 1698-706.
[http://dx.doi.org/10.1016/S0140-6736(15)00463-8] [PMID: 26595643]
[3]
Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: Systematic review and meta-analysis. BMJ 2010; 341(jul26 1): c3666.
[http://dx.doi.org/10.1136/bmj.c3666] [PMID: 20660506]
[4]
Esiri M, Chance S, Joachim C, et al. Cerebral amyloid angiopathy, subcortical white matter disease and dementia: Literature review and study in OPTIMA. Brain Pathol 2015; 25(1): 51-62.
[http://dx.doi.org/10.1111/bpa.12221] [PMID: 25521177]
[5]
van Veluw SJ, Zwanenburg JJM, Engelen-Lee J, et al. In vivo detection of cerebral cortical microinfarcts with high-resolution 7T MRI. J Cereb Blood Flow Metab 2013; 33(3): 322-9.
[http://dx.doi.org/10.1038/jcbfm.2012.196] [PMID: 23250109]
[6]
Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013; 12(8): 822-38.
[http://dx.doi.org/10.1016/S1474-4422(13)70124-8] [PMID: 23867200]
[7]
Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of fronto temporal dementia. Brain 2011; 134(Pt 9): 2456-77.
[http://dx.doi.org/10.1093/brain/awr179] [PMID: 21810890]
[8]
Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology 2011; 76(11): 1006-14.
[http://dx.doi.org/10.1212/WNL.0b013e31821103e6] [PMID: 21325651]
[9]
McKeith IG, Boeve BF, Dickson DW, et al. Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology 2017; 89(1): 88-100.
[http://dx.doi.org/10.1212/WNL.0000000000004058] [PMID: 28592453]
[10]
Hachinski VC, Iliff LD, Zilhka E, et al. Cerebral blood flow in dementia. Arch Neurol 1975; 32(9): 632-7.
[http://dx.doi.org/10.1001/archneur.1975.00490510088009] [PMID: 1164215]
[11]
Moroney JT, Bagiella E, Desmond DW, et al. Meta-analysis of the Hachinski Ischemic Score in pathologically verified dementias. Neurology 1997; 49(4): 1096-105.
[http://dx.doi.org/10.1212/WNL.49.4.1096] [PMID: 9339696]
[12]
McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7(3): 263-9.
[http://dx.doi.org/10.1016/j.jalz.2011.03.005] [PMID: 21514250]
[13]
Jack CR Jr, Barnes J, Bernstein MA, et al. Magnetic resonance imaging in Alzheimer’s Disease Neuroimaging Initiative 2. Alzheimers Dement 2015; 11(7): 740-56.
[http://dx.doi.org/10.1016/j.jalz.2015.05.002] [PMID: 26194310]
[14]
Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 1987; 149(2): 351-6.
[http://dx.doi.org/10.2214/ajr.149.2.351] [PMID: 3496763]
[15]
Wahlund LO, Barkhof F, Fazekas F, et al. A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke 2001; 32(6): 1318-22.
[http://dx.doi.org/10.1161/01.STR.32.6.1318] [PMID: 11387493]
[16]
Potter GM, Chappell FM, Morris Z, Wardlaw JM. Cerebral perivascular spaces visible on magnetic resonance imaging: Development of a qualitative rating scale and its observer reliability. Cerebrovasc Dis 2015; 39(3-4): 224-31.
[http://dx.doi.org/10.1159/000375153] [PMID: 25823458]
[17]
Cordonnier C, Potter GM, Jackson CA, et al. improving interrater agreement about brain microbleeds: Development of the Brain Observer MicroBleed Scale (BOMBS). Stroke 2009; 40(1): 94-9.
[http://dx.doi.org/10.1161/STROKEAHA.108.526996] [PMID: 19008468]
[18]
Toma AK, Holl E, Kitchen ND, Watkins LD. Evans’ index revisited: The need for an alternative in normal pressure hydrocephalus. Neurosurgery 2011; 68(4): 939-44.
[http://dx.doi.org/10.1227/NEU.0b013e318208f5e0] [PMID: 21221031]
[19]
Scheltens P, Leys D, Barkhof F, et al. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: Diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 1992; 55(10): 967-72.
[http://dx.doi.org/10.1136/jnnp.55.10.967] [PMID: 1431963]
[20]
Koedam EL, Lehmann M, van der Flier WM, et al. Visual assessment of posterior atrophy development of a MRI rating scale. Eur Radiol 2011; 21(12): 2618-25.
[http://dx.doi.org/10.1007/s00330-011-2205-4] [PMID: 21805370]
[21]
Pasquier F, Leys D, Weerts JGE, Mounier-Vehier F, Barkhof F, Scheltens P. Inter- and intraobserver reproducibility of cerebral atrophy assessment on MRI scans with hemispheric infarcts. Eur Neurol 1996; 36(5): 268-72.
[http://dx.doi.org/10.1159/000117270] [PMID: 8864706]
[22]
Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 2016; 15(2): 155-63.
[http://dx.doi.org/10.1016/j.jcm.2016.02.012] [PMID: 27330520]
[23]
Potter GM, Doubal FN, Jackson CA, et al. Enlarged perivascular spaces and cerebral small vessel disease. Int J Stroke 2015; 10(3): 376-81.
[http://dx.doi.org/10.1111/ijs.12054] [PMID: 23692610]
[24]
Ikram MA, van der Lugt A, Niessen WJ, et al. The Rotterdam Scan Study: Design update 2016 and main findings. Eur J Epidemiol 2015; 30(12): 1299-315.
[http://dx.doi.org/10.1007/s10654-015-0105-7] [PMID: 26650042]
[25]
Shams S, Martola J, Granberg T, et al. Cerebral microbleeds: Different prevalence, topography, and risk factors depending on dementia diagnosis—the Karolinska Imaging Dementia Study. AJNR Am J Neuroradiol 2015; 36(4): 661-6.
[http://dx.doi.org/10.3174/ajnr.A4176] [PMID: 25523590]
[26]
Guo H, Song X, Vandorpe R, et al. Evaluation of common structural brain changes in aging and Alzheimer disease with the use of an MRI-based brain atrophy and lesion index: A comparison between T1WI and T2WI at 1.5T and 3T. AJNR Am J Neuroradiol 2014; 35(3): 504-12.
[http://dx.doi.org/10.3174/ajnr.A3709] [PMID: 23988753]
[27]
Nandigam RN, Viswanathan A, Delgado P, et al. MR imaging detection of cerebral microbleeds: Effect of susceptibility-weighted imaging, section thickness, and field strength. AJNR Am J Neuroradiol 2009; 30(2): 338-43.
[http://dx.doi.org/10.3174/ajnr.A1355] [PMID: 19001544]
[28]
Kim GH, Lee JH, Seo SW, et al. Seoul criteria for PiB(-) subcortical vascular dementia based on clinical and MRI variables. Neurology 2014; 82(17): 1529-35.
[http://dx.doi.org/10.1212/WNL.0000000000000360] [PMID: 24682969]
[29]
Prins ND, Scheltens P. White matter hyperintensities, cognitive impairment and dementia: An update. Nat Rev Neurol 2015; 11(3): 157-65.
[http://dx.doi.org/10.1038/nrneurol.2015.10] [PMID: 25686760]
[30]
Duering M, Righart R, Wollenweber FA, Zietemann V, Gesierich B, Dichgans M. Acute infarcts cause focal thinning in remote cortex via degeneration of connecting fiber tracts. Neurology 2015; 84(16): 1685-92.
[http://dx.doi.org/10.1212/WNL.0000000000001502] [PMID: 25809303]
[31]
Niazi M, Karaman M, Das S, Zhou XJ, Yushkevich P, Cai K. Quantitative MRI of perivascular spaces at 3T for early diagnosis of mild cognitive impairment. AJNR Am J Neuroradiol 2018; 39(9): 1622-8.
[http://dx.doi.org/10.3174/ajnr.A5734] [PMID: 30093484]
[32]
Shi Y, Wardlaw JM. Update on cerebral small vessel disease: A dynamic whole-brain disease. Stroke Vasc Neurol 2016; 1(3): 83-92.
[http://dx.doi.org/10.1136/svn-2016-000035] [PMID: 28959468]
[33]
De Reuck JL, Deramecourt V, Auger F, et al. Cerebrovascular lesions in mixed neurodegenerative dementia: A neuropathological and magnetic resonance study. Eur Neurol 2017; 78(1-2): 1-5.
[http://dx.doi.org/10.1159/000476032] [PMID: 28478439]
[34]
De Reuck J, Maurage CA, Deramecourt V, et al. Aging and cerebrovascular lesions in pure and in mixed neurodegenerative and vascular dementia brains: A neuropathological study. Folia Neuropathol 2018; 56(2): 81-7.
[http://dx.doi.org/10.5114/fn.2018.76610] [PMID: 30509027]
[35]
Akoudad S, Wolters FJ, Viswanathan A, et al. Association of cerebral microbleeds with cognitive decline and dementia. JAMA Neurol 2016; 73(8): 934-43.
[http://dx.doi.org/10.1001/jamaneurol.2016.1017] [PMID: 27271785]
[36]
Werring DJ, Gregoire SM, Cipolotti L. Cerebral microbleeds and vascular cognitive impairment. J Neurol Sci 2010; 299(1-2): 131-5.
[http://dx.doi.org/10.1016/j.jns.2010.08.034] [PMID: 20850134]
[37]
Podcasy JL, Epperson CN. Considering sex and gender in Alzheimer disease and other dementias. Dialogues Clin Neurosci 2016; 18(4): 437-46.
[http://dx.doi.org/10.31887/DCNS.2016.18.4/cepperson] [PMID: 28179815]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy