Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

In vitro and In vivo Evaluation of the Antidiabetic Activity of Solidago virgaurea Extracts

Author(s): Syeda Andleeb Zehra, Prapanna Bhattarai, Jian Zhang, Yin Liu, Zahida Parveen, Muhammad Sajid and Lin Zhu*

Volume 19, Issue 4, 2023

Published on: 01 November, 2022

Article ID: e150622206034 Pages: 11

DOI: 10.2174/1573407218666220615143502

Open Access Journals Promotions 2
conference banner
Abstract

Background: Solidago virgaurea (Asteraceae) has been used for more than 700 years for treating cystitis, chronic nephritis, urolithiasis, rheumatism, and inflammatory diseases. However, the antidiabetic activity of Solidago virgaurea has been rarely studied.

Methods: Three extracts of Solidago virgaurea were prepared, and their antidiabetic potentials were evaluated by various cell-free, cell-based, and in vivo studies.

Results: We found that the Solidago virgaurea contained multiple bioactive phytochemicals based on the GC-MS analysis. The Solidago virgaurea extracts effectively inhibited the functions of the carbohydrate digestive enzyme (α-glucosidase) and protein tyrosine phosphatase 1B (PTP1B), as well as decreased the amount of advanced glycation end products (AGEs). In the L6 myotubes, the Solidago virgaurea methanolic extract remarkably enhanced the glucose uptake via the upregulation of glucose transporter type 4 (GLUT4). The extract also significantly downregulated the expression of PTP1B. In the streptozotocin-nicotinamide induced diabetic mice, the daily intraperitoneal injection of 100 mg/kg Solidago virgaurea methanolic extract for 24 days, substantially lowered the postprandial blood glucose level with no obvious toxicity. The extract’s anti-hyperglycemic effect was comparable to that of the glibenclamide treatment.

Conclusion: Our findings suggested that the Solidago virgaurea extract might have great potential in the prevention and treatment of diabetes.

Keywords: Solidago virgaurea, protein tyrosine phosphatase 1B, glucose transporter, α-glucosidase, advanced glycation end products, GC-MS.

Graphical Abstract
[1]
Alberti, K.G.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med., 1998, 15(7), 539-553.
[http://dx.doi.org/10.1002/(SICI)1096-9136(199807)15:7<539:AIDDIA668>3.0.CO;2-S] [PMID: 9686693]
[2]
Association, A.D. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2014, 37(Suppl. 1), S81-S90.
[http://dx.doi.org/10.2337/dc14-S081] [PMID: 24357215]
[3]
Vieira, R.; Souto, S.B.; Sánchez-López, E.; Machado, A.L.; Severino, P.; Jose, S.; Santini, A.; Fortuna, A.; García, M.L.; Silva, A.M.; Souto, E.B. Sugar-lowering drugs for type 2 diabetes mellitus and metabolic syndrome-review of classical and new compounds: Part-I. Pharmaceuticals (Basel), 2019, 12(4), 152.
[http://dx.doi.org/10.3390/ph12040152] [PMID: 31658729]
[4]
Ahmed, N. Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Res. Clin. Pract., 2005, 67(1), 3-21.
[http://dx.doi.org/10.1016/j.diabres.2004.09.004] [PMID: 15620429]
[5]
Vistoli, G.; De Maddis, D.; Cipak, A.; Zarkovic, N.; Carini, M.; Aldini, G. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): An overview of their mechanisms of formation. Free Radic. Res., 2013, 47(Suppl. 1), 3-27.
[http://dx.doi.org/10.3109/10715762.2013.815348] [PMID: 23767955]
[6]
Nagai, R.; Murray, D.B.; Metz, T.O.; Baynes, J.W. Chelation: A fundamental mechanism of action of AGE inhibitors, AGE breakers, and other inhibitors of diabetes complications. Diabetes, 2012, 61(3), 549-559.
[http://dx.doi.org/10.2337/db11-1120] [PMID: 22354928]
[7]
Rasheed, S.; Sánchez, S.S.; Yousuf, S.; Honoré, S.M.; Choudhary, M.I. Drug repurposing: In-vitro anti-glycation properties of 18 common drugs. PLoS One, 2018, 13(1), e0190509.
[http://dx.doi.org/10.1371/journal.pone.0190509] [PMID: 29300762]
[8]
Johnson, T.O.; Ermolieff, J.; Jirousek, M.R. Protein tyrosine phosphatase 1B inhibitors for diabetes. Nat. Rev. Drug Discov., 2002, 1(9), 696-709.
[http://dx.doi.org/10.1038/nrd895] [PMID: 12209150]
[9]
Gum, R.J.; Gaede, L.L.; Koterski, S.L.; Heindel, M.; Clampit, J.E.; Zinker, B.A.; Trevillyan, J.M.; Ulrich, R.G.; Jirousek, M.R.; Rondinone, C.M. Reduction of protein tyrosine phosphatase 1B increases insulin-dependent signaling in ob/ob mice. Diabetes, 2003, 52(1), 21-28.
[http://dx.doi.org/10.2337/diabetes.52.1.21] [PMID: 12502489]
[10]
Xue, B.; Kim, Y.B.; Lee, A.; Toschi, E.; Bonner-Weir, S.; Kahn, C.R.; Neel, B.G.; Kahn, B.B. Protein-tyrosine phosphatase 1B deficiency reduces insulin resistance and the diabetic phenotype in mice with polygenic insulin resistance. J. Biol. Chem., 2007, 282(33), 23829-23840.
[http://dx.doi.org/10.1074/jbc.M609680200] [PMID: 17545163]
[11]
Liu, D.; Gao, Y.; Liu, J.; Huang, Y.; Yin, J.; Feng, Y.; Shi, L.; Meloni, B.P.; Zhang, C.; Zheng, M.; Gao, J. Intercellular mitochondrial transfer as a means of tissue revitalization. Signal Transduct. Target. Ther., 2021, 6(1), 65.
[http://dx.doi.org/10.1038/s41392-020-00440-z] [PMID: 33589598]
[12]
Zhang, S.; Zhang, Z.Y. PTP1B as a drug target: Recent developments in PTP1B inhibitor discovery. Drug Discov. Today, 2007, 12(9-10), 373-381.
[http://dx.doi.org/10.1016/j.drudis.2007.03.011] [PMID: 17467573]
[13]
Bailes, B.K. Diabetes mellitus and its chronic complications. AORN J., 2002, 76(2), 266-276.
[http://dx.doi.org/10.1016/S0001-2092(06)61065-X] [PMID: 12194653]
[14]
Avogaro, A.; Fadini, G.P. The effects of dipeptidyl peptidase-4 inhibition on microvascular diabetes complications. Diabetes Care, 2014, 37(10), 2884-2894.
[http://dx.doi.org/10.2337/dc14-0865] [PMID: 25249673]
[15]
Tundis, R.; Loizzo, M.R.; Menichini, F. Natural products as α-amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update. Mini Rev. Med. Chem., 2010, 10(4), 315-331.
[http://dx.doi.org/10.2174/138955710791331007] [PMID: 20470247]
[16]
Chinchansure, A.A.; Korwar, A.M.; Kulkarni, M.J.; Joshi, S.P. Recent development of plant products with anti-glycation activity: A review. RSC Adv, 2015, 5(39), 31113-31138.
[http://dx.doi.org/10.1039/C4RA14211J]
[17]
Costa, E.V.; Soares, L.N.; Pinheiro, M.L.B.; Maia, B.H.L.N.S.; Marques, F.A.; Barison, A.; Almeida, J.R.G.S.; Sousa, I.L.; Galaverna, R.S.; Heerdt, G.; Morgon, N.H.; Acho, L.D.R.; Lima, E.S.; da Silva, F.M.A.; Koolen, H.H.F. Guaianolide sesquiterpene lactones and aporphine alkaloids from the stem bark of Guatteria friesiana. Phytochemistry, 2018, 145, 18-25.
[http://dx.doi.org/10.1016/j.phytochem.2017.10.003] [PMID: 29059536]
[18]
Li, Y-K.; Zhao, Q-J.; Hu, J.; Zou, Z.; He, X-Y.; Yuan, H-B.; Shi, X-Y. Two new quinoline alkaloid mannopyranosides from Solidago canadensis. Helv. Chim. Acta, 2009, 92(5), 928-931.
[http://dx.doi.org/10.1002/hlca.200800365]
[19]
Apáti, P.; Szentmihályi, K.; Kristó, S.T.; Papp, I.; Vinkler, P.; Szoke, E.; Kéry, A. Herbal remedies of Solidago-correlation of phytochemical characteristics and antioxidative properties. J. Pharm. Biomed. Anal., 2003, 32(4-5), 1045-1053.
[http://dx.doi.org/10.1016/S0731-7085(03)00207-3] [PMID: 12899992]
[20]
Radvaien, J.; Marska, M.; Ivanauskas, L.; Jakstas, V. Karpavj ieo, B. Assessment of phenolic compound accumulation in two widespread goldenrods. Ind. Crops Prod., 2015, 63, 158-166.
[http://dx.doi.org/10.1016/j.indcrop.2014.10.015]
[21]
Tang, D.; Chen, Q.B.; Xin, X.L.; Aisa, H.A. Anti-diabetic effect of three new norditerpenoid alkaloids in vitro and potential mechanismvia PI3K/Akt signaling pathway. Biomed. Pharmacother., 2017, 87, 145-152.
[http://dx.doi.org/10.1016/j.biopha.2016.12.058] [PMID: 28049096]
[22]
Yang, Z.; Wu, F.; He, Y.; Zhang, Q.; Zhang, Y.; Zhou, G.; Yang, H.; Zhou, P. A novel PTP1B inhibitor extracted from Ganoderma lucidum ameliorates insulin resistance by regulating IRS1-GLUT4 cascades in the insulin signaling pathway. Food Funct., 2018, 9(1), 397-406.
[http://dx.doi.org/10.1039/C7FO01489A] [PMID: 29215104]
[23]
Nawaz, H.; Shad, M.A.; Rehman, N.; Andaleeb, H.; Ullah, N. Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Braz. J. Pharm. Sci., 2020, 56, 1-9.
[http://dx.doi.org/10.1590/s2175-97902019000417129]
[24]
Daliu, P.; Annunziata, G.; Tenore, G.C.; Santini, A. Abscisic acid identification in Okra, Abelmoschus esculentus L. (Moench): Perspective nutraceutical use for the treatment of diabetes. Nat. Prod. Res., 2020, 34(1), 3-9.
[http://dx.doi.org/10.1080/14786419.2019.1637874] [PMID: 31282220]
[25]
Shai, L.L. Inhibitory effects of five medicinal plants on rat alpha-glucosidase: Comparison with their effects on yeast alpha-glucosidase. J. Med. Plants Res., 2011, 5, 2863-2867.
[26]
Choudhary, M.I.; Abbas, G.; Ali, S.; Shuja, S.; Khalid, N.; Khan, K.M. Atta-ur-Rahman; Basha, F.Z. Substituted benzenediol Schiff bases as promising new anti-glycation agents. J. Enzyme Inhib. Med. Chem., 2011, 26(1), 98-103.
[http://dx.doi.org/10.3109/14756361003733621] [PMID: 20583858]
[27]
Nguyen, P.H.; Yang, J.L.; Uddin, M.N.; Park, S.L.; Lim, S.I.; Jung, D.W.; Williams, D.R.; Oh, W.K. Protein tyrosine phosphatase 1B (PTP1B) inhibitors from Morinda citrifolia (Noni) and their insulin mimetic activity. J. Nat. Prod., 2013, 76(11), 2080-2087.
[http://dx.doi.org/10.1021/np400533h] [PMID: 24224843]
[28]
Nguyen, P.H.; Zhao, B.T.; Ali, M.Y.; Choi, J.S.; Rhyu, D.Y.; Min, B.S.; Woo, M.H. Insulin-mimetic selaginellins from Selaginella tamariscina with protein tyrosine phosphatase 1B (PTP1B) inhibitory activity. J. Nat. Prod., 2015, 78(1), 34-42.
[http://dx.doi.org/10.1021/np5005856] [PMID: 25559759]
[29]
Yao, Q.; Choi, J.H.; Dai, Z.; Wang, J.; Kim, D.; Tang, X.; Zhu, L. Improving tumor specificity and anticancer activity of dasatinib by dual-targeted polymeric micelles. ACS Appl. Mater. Interfaces, 2017, 9(42), 36642-36654.
[http://dx.doi.org/10.1021/acsami.7b12233] [PMID: 28960955]
[30]
Dubowski, K.M. An o-toluidine method for body-fluid glucose determination. Clin. Chem., 2008, 54(11), 1919-1920.
[http://dx.doi.org/10.1373/clinchem.2008.104844] [PMID: 18957560]
[31]
Yuan, J.S.; Reed, A.; Chen, F.; Stewart, C.N., Jr Statistical analysis of real-time PCR data. BMC Bioinfor, 2006, 7(1), 85.
[http://dx.doi.org/10.1186/1471-2105-7-85] [PMID: 16504059]
[32]
Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; Tinevez, J-Y.; White, D.J.; Hartenstein, V.; Eliceiri, K.; Tomancak, P.; Cardona, A. Fiji: An open-source platform for biological-image analysis. Nat. Methods, 2012, 9(7), 676-682.
[http://dx.doi.org/10.1038/nmeth.2019] [PMID: 22743772]
[33]
Ghasemi, A.; Khalifi, S.; Jedi, S. Streptozotocin-nicotinamide-induced rat model of type 2 diabetes (review). Acta Physiol. Hung., 2014, 101(4), 408-420.
[http://dx.doi.org/10.1556/APhysiol.101.2014.4.2] [PMID: 25532953]
[34]
Vieira, R.; Souto, S.B.; Sánchez-López, E.; Machado, A.L.; Severino, P.; Jose, S.; Santini, A.; Silva, A.M.; Fortuna, A.; García, M.L.; Souto, E.B. Sugar-lowering drugs for type 2 diabetes mellitus and metabolic syndrome-strategies forin vivo administration: part-II. J. Clin. Med., 2019, 8(9), 1332.
[http://dx.doi.org/10.3390/jcm8091332] [PMID: 31466386]
[35]
Lee, J.; Yee, S.T.; Kim, J.J.; Choi, M.S.; Kwon, E.Y.; Seo, K.I.; Lee, M.K. Ursolic acid ameliorates thymic atrophy and hyperglycemia in streptozotocin-nicotinamide-induced diabetic mice. Chem. Biol. Interact., 2010, 188(3), 635-642.
[http://dx.doi.org/10.1016/j.cbi.2010.09.019] [PMID: 20869956]
[36]
Gad, S.C.; Cassidy, C.D.; Aubert, N.; Spainhour, B.; Robbe, H. Nonclinical vehicle use in studies by multiple routes in multiple species. Int. J. Toxicol., 2006, 25(6), 499-521.
[http://dx.doi.org/10.1080/10915810600961531] [PMID: 17132609]
[37]
Kamalakkannan, N.; Prince, P.S.M. Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic wistar rats. Basic Clin. Pharmacol. Toxicol., 2006, 98(1), 97-103.
[http://dx.doi.org/10.1111/j.1742-7843.2006.pto_241.x] [PMID: 16433898]
[38]
Workman, P.; Aboagye, E.O.; Balkwill, F.; Balmain, A.; Bruder, G.; Chaplin, D.J.; Double, J.A.; Everitt, J.; Farningham, D.A.; Glennie, M.J.; Kelland, L.R.; Robinson, V.; Stratford, I.J.; Tozer, G.M.; Watson, S.; Wedge, S.R.; Eccles, S.A. Guidelines for the welfare and use of animals in cancer research. Br. J. Cancer, 2010, 102(11), 1555-1577.
[http://dx.doi.org/10.1038/sj.bjc.6605642] [PMID: 20502460]
[39]
Balsells, M.; García-Patterson, A.; Solà, I.; Roqué, M.; Gich, I.; Corcoy, R. Glibenclamide, metformin, and insulin for the treatment of gestational diabetes: A systematic review and meta-analysis. BMJ, 2015, 350, h102.
[http://dx.doi.org/10.1136/bmj.h102] [PMID: 25609400]
[40]
Scott, L.J.; Spencer, C.M. Miglitol: A review of its therapeutic potential in type 2 diabetes mellitus. Drugs, 2000, 59(3), 521-549.
[http://dx.doi.org/10.2165/00003495-200059030-00012] [PMID: 10776834]
[41]
Kuppusamy, A.; Muthusamy, U.; Thirumalaisamy, S.A.; Varadharajan, S.; Ramasamy, K.; Ramanathan, S. In vitro (α-glucosidase and α-amylase inhibition) and in vivo antidiabetic property of phytic acid (IP6) in streptozotocin- nicotinamide-induced type 2 diabetes mellitus (NIDDM) in rats. J. Complement. Integr. Med., 2011, 8, 8.
[http://dx.doi.org/10.2202/1553-3840.1483] [PMID: 22754949]
[42]
Dzib-Guerra, W.D.; Escalante-Erosa, F.; García-Sosa, K.; Derbré, S.; Blanchard, P.; Richomme, P.; Peña-Rodríguez, L.M. Anti-Advanced glycation end-product and free radical scavenging activity of plants from the Yucatecan flora. Pharmacognosy Res., 2016, 8(4), 276-280.
[http://dx.doi.org/10.4103/0974-8490.188883] [PMID: 27695268]
[43]
Singh, V.P.; Bali, A.; Singh, N.; Jaggi, A.S. Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol., 2014, 18(1), 1-14.
[http://dx.doi.org/10.4196/kjpp.2014.18.1.1] [PMID: 24634591]
[44]
Huang, S.; Czech, M.P. The GLUT4 glucose transporter. Cell Metab., 2007, 5(4), 237-252.
[http://dx.doi.org/10.1016/j.cmet.2007.03.006] [PMID: 17403369]
[45]
Ueda, M.; Hayashibara, K.; Ashida, H. Propolis extract promotes translocation of glucose transporter 4 and glucose uptake through both PI3K- and AMPK-dependent pathways in skeletal muscle. Biofactors, 2013, 39(4), 457-466.
[http://dx.doi.org/10.1002/biof.1085] [PMID: 23355380]
[46]
Codeluppi, S.; Gregory, E.N.; Kjell, J.; Wigerblad, G.; Olson, L.; Svensson, C.I. Influence of rat substrain and growth conditions on the characteristics of primary cultures of adult rat spinal cord astrocytes. J. Neurosci. Methods, 2011, 197(1), 118-127.
[http://dx.doi.org/10.1016/j.jneumeth.2011.02.011] [PMID: 21345349]
[47]
Pontarin, G.; Ferraro, P.; Rampazzo, C.; Kollberg, G.; Holme, E.; Reichard, P.; Bianchi, V. Deoxyribonucleotide metabolism in cycling and resting human fibroblasts with a missense mutation in p53R2, a subunit of ribonucleotide reductase. J. Biol. Chem., 2011, 286(13), 11132-11140.
[http://dx.doi.org/10.1074/jbc.M110.202283] [PMID: 21297166]
[48]
Ching, J.K.; Rajguru, P.; Marupudi, N.; Banerjee, S.; Fisher, J.S. A role for AMPK in increased insulin action after serum starvation. Am. J. Physiol. Cell Physiol., 2010, 299(5), C1171-C1179.
[http://dx.doi.org/10.1152/ajpcell.00514.2009] [PMID: 20810907]
[49]
Tyagi, T.; Mala, A. Phytochemical and GC-MS analysis of bioactive constituents in the ethanolic of Pistia stratiotes L. and Eichhornia crassipes (Mart.) solms. J. Pharmacogn. Phytochem., 2017, 6, 195-206.
[50]
Moradali, M.F.; Mostafavi, H.; Ghods, S.; Hedjaroude, G.A. Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). Int. Immunopharmacol., 2007, 7(6), 701-724.
[http://dx.doi.org/10.1016/j.intimp.2007.01.008] [PMID: 17466905]
[51]
Yoo, Y.C.; Shin, B.H.; Hong, J.H.; Lee, J.; Chee, H.Y.; Song, K.S.; Lee, K.B. Isolation of fatty acids with anticancer activity from Protaetia brevitarsis larva. Arch. Pharm. Res., 2007, 30(3), 361-365.
[http://dx.doi.org/10.1007/BF02977619] [PMID: 17424944]
[52]
Sanad, F.A.; Ahmed, S.F.; El-Tantawy, W.H. Antidiabetic and hypolipidemic potentials of Solidago virgaurea extract in alloxan-induced diabetes type 1. Arch. Physiol. Biochem., 2022, 128, 716-723.
[http://dx.doi.org/10.1080/13813455.2020.1722705] [PMID: 32026741]
[53]
Demir, H. Açık, L.; Bali, E.; Gönder, L.; Kaynak, G. Antioxidant and antimicrobial activities of Solidago virgaurea extracts. Afr. J. Biotechnol., 2009, 8, 274-279.

© 2024 Bentham Science Publishers | Privacy Policy