Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Molecular Insights on Selective and Specific Inhibitors of Cyclin Dependent Kinase 9 Enzyme (CDK9) for the Purpose of Cancer Therapy

Author(s): Dipanjan Karati, Kaka Saheb Ramoo Mahadik, Piyush Trivedi and Dileep Kumar*

Volume 23, Issue 4, 2023

Published on: 07 September, 2022

Page: [383 - 403] Pages: 21

DOI: 10.2174/1871520622666220615125826

Price: $65

conference banner
Abstract

Cyclin Dependent Kinase 9 (CDK9), which controls transcriptional elongation, is a promising pharmacological target for a variety of cancerous cells, specifically those characterized by transcriptional dysregulation. CDK9 promotes the pause or release of RNA polymerase II, a rate-limiting stage in normal transcriptional regulation that is often disturbed in cancers. New indications suggest that selective CDK9 antagonism may be beneficial in the treatment of some cancers. CDK9 modulators (inhibitors and degraders) have gained a lot of attention recently, and many molecules are currently in clinical trials. In this review, the CDK9 antagonists under clinical and preclinical trials have been discussed, as well as the structure-activity relationship has been studied, which will help scientists generate more target- specific drug molecules in the future with less toxicity.

Keywords: CDK9, selective CDK9 inhibitors, apoptosis, cyclin T and K, cancer, SAR.

Graphical Abstract
[1]
Wheler, J.J.; Tsimberidou, A.M.; Hong, D.S.; Naing, A.; Falchook, G.S.; Fu, S.; Moulder, S.; Stephen, B.; Wen, S.; Kurzrock, R. Risk of serious toxicity in 1181 patients treated in phase I clinical trials of predominantly targeted anticancer drugs: The M.D. Anderson Cancer Center experience. Ann. Oncol., 2012, 23(8), 1963-1967.
[http://dx.doi.org/10.1093/annonc/mds027] [PMID: 22377564]
[2]
Karati, D.; Mahadik, K.R.; Trivedi, P.; Kumar, D. Alkylating agents, the road less traversed, changing anticancer therapy. Anticancer. Agents Med. Chem., 2021, 21, 1-7.
[PMID: 34382529]
[3]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mor-tality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[4]
Godman, C.A.; Joshi, R.; Tierney, B.R.; Greenspan, E.; Rasmussen, T.P.; Wang, H.W.; Shin, D.G.; Rosenberg, D.W.; Giardina, C. HDAC3 impacts multiple oncogenic pathways in colon cancer cells with effects on Wnt and vitamin D signaling. Cancer Biol. Ther., 2008, 7(10), 1570-1580.
[http://dx.doi.org/10.4161/cbt.7.10.6561] [PMID: 18769117]
[5]
Shao, Y.; Gao, Z.; Marks, P.A.; Jiang, X. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc. Natl. Acad. Sci., 2004, 101(52), 18030-18035.
[http://dx.doi.org/10.1073/pnas.0408345102] [PMID: 15596714]
[6]
Malumbres, M.; Barbacid, M. Cell cycle, CDKs and cancer: A changing paradigm. Nat. Rev. Cancer, 2009, 9(3), 153-166.
[http://dx.doi.org/10.1038/nrc2602] [PMID: 19238148]
[7]
Thomas, M.C.; Chiang, C.M. The general transcription machinery and general cofactors. Crit. Rev. Biochem. Mol. Biol., 2006, 41(3), 105-178.
[http://dx.doi.org/10.1080/10409230600648736] [PMID: 16858867]
[8]
McInnes, C. Progress in the evaluation of CDK inhibitors as anti-tumor agents. Drug Discov. Today, 2008, 13(19-20), 875-881.
[http://dx.doi.org/10.1016/j.drudis.2008.06.012] [PMID: 18639646]
[9]
Yoo, K.Y.; Kang, D. Current researches on breast cancer epidemiology in Korea. Breast Cancer, 2003, 10(4), 289-293.
[http://dx.doi.org/10.1007/BF02967647] [PMID: 14634505]
[10]
Bellan, C.; De Falco, G.; Lazzi, S.; Micheli, P.; Vicidomini, S.; Schürfeld, K.; Amato, T.; Palumbo, A.; Bagella, L.; Sabattini, E.; Barto-lommei, S.; Hummel, M.; Pileri, S.; Tosi, P.; Leoncini, L.; Giordano, A. CDK9/CYCLIN T1 expression during normal lymphoid differenti-ation and malignant transformation. J. Pathol., 2004, 203(4), 946-952.
[http://dx.doi.org/10.1002/path.1588] [PMID: 15258998]
[11]
Shan, B.; Zhuo, Y.; Chin, D.; Morris, C.A.; Morris, G.F.; Lasky, J.A. Cyclin-dependent kinase 9 is required for tumor necrosis factor-alpha-stimulated matrix metalloproteinase-9 expression in human lung adenocarcinoma cells. J. Biol. Chem., 2005, 280(2), 1103-1111.
[http://dx.doi.org/10.1074/jbc.M406293200] [PMID: 15528190]
[12]
De Falco, G.; Bellan, C.; D’Amuri, A.; Angeloni, G.; Leucci, E.; Giordano, A.; Leoncini, L. Cdk9 regulates neural differentiation and its expression correlates with the differentiation grade of neuroblastoma and PNET tumors. Cancer Biol. Ther., 2005, 4(3), 277-281.
[http://dx.doi.org/10.4161/cbt.4.3.1497] [PMID: 15753651]
[13]
Cai, D.; Latham, V.M., Jr; Zhang, X.; Shapiro, G.I. Combined depletion of cell cycle and transcriptional cyclin-dependent kinase activities induces apoptosis in cancer cells. Cancer Res., 2006, 66(18), 9270-9280.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1758] [PMID: 16982772]
[14]
Li, Y.; Jin, G.; Wang, H.; Liu, H.; Qian, J.; Gu, S.; Ma, H.; Miao, R.; Hu, Z.; Sun, W.; Wang, Y.; Jin, L.; Wei, Q.; Shen, H.; Huang, W.; Lu, D. Polymorphisms of CAK genes and risk for lung cancer: A case-control study in Chinese population. Lung Cancer, 2007, 58(2), 171-183.
[http://dx.doi.org/10.1016/j.lungcan.2007.06.016] [PMID: 17707548]
[15]
Cunningham, J.M.; Vierkant, R.A.; Sellers, T.A.; Phelan, C.; Rider, D.N.; Liebow, M.; Schildkraut, J.; Berchuck, A.; Couch, F.J.; Wang, X.; Fridley, B.L.; Gentry-Maharaj, A.; Menon, U.; Hogdall, E.; Kjaer, S.; Whittemore, A.; DiCioccio, R.; Song, H.; Gayther, S.A.; Ramus, S.J.; Pharaoh, P.D.; Goode, E.L. Cell cycle genes and ovarian cancer susceptibility: A tagSNP analysis. Br. J. Cancer, 2009, 101(8), 1461-1468.
[http://dx.doi.org/10.1038/sj.bjc.6605284] [PMID: 19738611]
[16]
Jeon, S.; Choi, J.Y.; Lee, K.M.; Park, S.K.; Yoo, K.Y.; Noh, D.Y.; Ahn, S.H.; Kang, D. Combined genetic effect of CDK7 and ESR1 poly-morphisms on breast cancer. Breast Cancer Res. Treat., 2010, 121(3), 737-742.
[http://dx.doi.org/10.1007/s10549-009-0640-6] [PMID: 19941161]
[17]
Sansó, M.; Fisher, R.P. Pause, play, repeat: CDKs push RNAP II’s buttons. Transcription, 2013, 4(4), 146-152.
[http://dx.doi.org/10.4161/trns.25146] [PMID: 23756342]
[18]
Lam, L. T.; Pickeral, O. K.; Peng, A. C.; Rosenwald, A.; Hurt, E. M.; Giltnane, J. M. Genomic-scale measurement of mRNA turnover and the mechanisms of action of the anti-cancer drug flavopiridol. Genome Biol., 2001, 2(10), 0041.
[19]
Malumbres, M.; Harlow, E.; Hunt, T.; Hunter, T.; Lahti, J.M.; Manning, G.; Morgan, D.O.; Tsai, L.H.; Wolgemuth, D.J. Cyclin-dependent kinases: A family portrait. Nat. Cell Biol., 2009, 11(11), 1275-1276.
[http://dx.doi.org/10.1038/ncb1109-1275] [PMID: 19884882]
[20]
Morgan, D.L. The cell cycle: Principles of control; New Science Press: London, 2007, pp. 30-31.
[21]
Tsai, L.H.; Harlow, E.; Meyerson, M. Isolation of the human CDK2 gene that encodes the cyclin A- and adenovirus E1A- associated p33 kinas. Natur, 1991, 6340, 174-177.
[http://dx.doi.org/10.1038/353174a0]
[22]
Lew, D.J.; Dulić, V.; Reed, S.I. Isolation of three novel human cyclins by rescue of G1 cyclin (Cln) function in yeast. Cell, 1991, 66(6), 1197-1206.
[http://dx.doi.org/10.1016/0092-8674(91)90042-W] [PMID: 1833066]
[23]
Brown, N.R.; Noble, M.E.M.; Endicott, J.A.; Johnson, L.N. The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat. Cell Biol., 1999, 1(7), 438-443.
[http://dx.doi.org/10.1038/15674] [PMID: 10559988]
[24]
Baumli, S.; Lolli, G.; Lowe, E.D.; Troiani, S.; Rusconi, L.; Bullock, A.N.; Debreczeni, J.E.; Knapp, S.; Johnson, L.N. The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation. EMBO J., 2008, 27(13), 1907-1918.
[http://dx.doi.org/10.1038/emboj.2008.121] [PMID: 18566585]
[25]
Tahirov, T.H.; Babayeva, N.D.; Varzavand, K.; Cooper, J.J.; Sedore, S.C.; Price, D.H. Crystal structure of HIV-1 Tat complexed with hu-man P-TEFb. Nature, 2010, 465(7299), 747-751.
[http://dx.doi.org/10.1038/nature09131] [PMID: 20535204]
[26]
Graña, X.; De Luca, A.; Sang, N.; Fu, Y.; Claudio, P.P.; Rosenblatt, J.; Morgan, D.O.; Giordano, A. PITALRE, a nuclear CDC2-related protein kinase that phosphorylates the retinoblastoma protein in vitro. Proc. Natl. Acad. Sci., 1994, 91(9), 3834-3838.
[http://dx.doi.org/10.1073/pnas.91.9.3834] [PMID: 8170997]
[27]
Shore, S.M.; Byers, S.A.; Dent, P.; Price, D.H. Characterization of Cdk9(55) and differential regulation of two Cdk9 isoforms. Gene, 2005, 350(1), 51-58.
[http://dx.doi.org/10.1016/j.gene.2005.01.015] [PMID: 15780980]
[28]
Liu, H.; Herrmann, C.H. Differential localization and expression of the Cdk9 42k and 55k isoforms. J. Cell. Physiol., 2005, 203(1), 251-260.
[http://dx.doi.org/10.1002/jcp.20224] [PMID: 15452830]
[29]
Malumbres, M.; Pevarello, P.; Barbacid, M.; Bischoff, J.R. CDK inhibitors in cancer therapy: What is next? Trends Pharmacol. Sci., 2008, 29(1), 16-21.
[http://dx.doi.org/10.1016/j.tips.2007.10.012] [PMID: 18054800]
[30]
Wang, S.; Fischer, P.M. Cyclin-dependent kinase 9: A key transcriptional regulator and potential drug target in oncology, virology and cardiology. Trends Pharmacol. Sci., 2008, 29(6), 302-313.
[http://dx.doi.org/10.1016/j.tips.2008.03.003] [PMID: 18423896]
[31]
Hellvard, A.; Zeitlmann, L.; Heiser, U.; Kehlen, A.; Niestroj, A.; Demuth, H.U.; Koziel, J.; Delaleu, N. Jan Potempa; Mydel, P. Inhibition of CDK9 as a therapeutic strategy for inflammatory arthritis. Sci. Rep., 2016, 6, 31441.
[http://dx.doi.org/10.1038/srep31441] [PMID: 27511630]
[32]
Kohoutek, J.; Li, Q.; Blazek, D.; Luo, Z.; Jiang, H.; Peterlin, B.M. Cyclin T2 is essential for mouse embryogenesis. Mol. Cell. Biol., 2009, 29(12), 3280-3285.
[http://dx.doi.org/10.1128/MCB.00172-09] [PMID: 19364821]
[33]
Leitch, A.E.; Lucas, C.D.; Marwick, J.A.; Duffin, R.; Haslett, C.; Rossi, A.G. Cyclin-dependent kinases 7 and 9 specifically regulate neu-trophil transcription and their inhibition drives apoptosis to promote resolution of inflammation. Cell Death Differ., 2012, 19(12), 1950-1961.
[http://dx.doi.org/10.1038/cdd.2012.80] [PMID: 22743999]
[34]
Sekine, C.; Sugihara, T.; Miyake, S.; Hirai, H.; Yoshida, M.; Miyasaka, N.; Kohsaka, H. Successful treatment of animal models of rheuma-toid arthritis with small-molecule cyclin-dependent kinase inhibitors. J. Immunol., 2008, 180(3), 1954-1961.
[http://dx.doi.org/10.4049/jimmunol.180.3.1954] [PMID: 18209094]
[35]
Barboric, M.; Nissen, R.M.; Kanazawa, S.; Jabrane-Ferrat, N.; Peterlin, B.M. NF-kappaB binds P-TEFb to stimulate transcriptional elonga-tion by RNA polymerase II. Mol. Cell, 2001, 8(2), 327-337.
[http://dx.doi.org/10.1016/S1097-2765(01)00314-8] [PMID: 11545735]
[36]
Franco, L.C.; Morales, F.; Boffo, S.; Giordano, A. CDK9: A key player in cancer and other diseases. J. Cell. Biochem., 2018, 119(2), 1273-1284.
[http://dx.doi.org/10.1002/jcb.26293] [PMID: 28722178]
[37]
Salerno, D.; Hasham, M.G.; Marshall, R. Direct inhibition of CDK9 blocks HIV-1 replication without preventing T-cell activation in pri-mary human peripheral blood lymphocytes. Gene, 2007, 405(1-2), 65-78.
[38]
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[39]
Lapenna, S.; Giordano, A. Cell cycle kinases as therapeutic targets for cancer. Nat. Rev. Drug Discov., 2009, 8(7), 547-566.
[http://dx.doi.org/10.1038/nrd2907] [PMID: 19568282]
[40]
Krystof, V.; Uldrijan, S. Cyclin-dependent kinase inhibitors as anticancer drugs. Curr. Drug Targets, 2010, 11(3), 291-302.
[http://dx.doi.org/10.2174/138945010790711950] [PMID: 20210754]
[41]
Dickson, M.A.; Schwartz, G.K. Development of cell-cycle inhibitors for cancer therapy. Curr. Oncol., 2009, 16(2), 36-43.
[http://dx.doi.org/10.3747/co.v16i2.428] [PMID: 19370178]
[42]
Carlson, B.A.; Dubay, M.M.; Sausville, E.A.; Brizuela, L.; Worland, P.J. Flavopiridol induces G1 arrest with inhibition of cyclin-dependent kinase (CDK) 2 and CDK4 in human breast carcinoma cells. Cancer Res., 1996, 56(13), 2973-2978.
[PMID: 8674031]
[43]
Squires, M.S.; Feltell, R.E.; Wallis, N.G.; Lewis, E.J.; Smith, D.M.; Cross, D.M.; Lyons, J.F.; Thompson, N.T. Biological characterization of AT7519, a small-molecule inhibitor of cyclin-dependent kinases, in human tumor cell lines. Mol. Cancer Ther., 2009, 8(2), 324-332.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0890] [PMID: 19174555]
[44]
Alsfouk, A. Small molecule inhibitors of cyclin-dependent kinase 9 for cancer therapy. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 693-706.
[http://dx.doi.org/10.1080/14756366.2021.1890726] [PMID: 33632038]
[45]
Tibes, R.; Bogenberger, J.M. Transcriptional silencing of MCL-1 through cyclin-dependent kinase inhibition in acute myeloid leukemia. Front. Oncol., 2019, 9, 1205.
[http://dx.doi.org/10.3389/fonc.2019.01205] [PMID: 31921615]
[46]
Scrace, S.F.; Kierstan, P.; Borgognoni, J.; Wang, L.Z.; Denny, S.; Wayne, J.; Bentley, C.; Cansfield, A.D.; Jackson, P.S.; Lockie, A.M.; Curtin, N.J.; Newell, D.R.; Williamson, D.S.; Moore, J.D. Transient treatment with CDK inhibitors eliminates proliferative potential even when their abilities to evoke apoptosis and DNA damage are blocked. Cell Cycle, 2008, 7(24), 3898-3907.
[http://dx.doi.org/10.4161/cc.7.24.7345] [PMID: 19066469]
[47]
Gojo, I.; Zhang, B.; Fenton, R.G. The cyclin-dependent kinase inhibitor flavopiridol induces apoptosis in multiple myeloma cells through transcriptional repression and down-regulation of Mcl-1. Clin. Cancer Res., 2002, 8(11), 3527-3538.
[PMID: 12429644]
[48]
MacCallum, D.E.; Melville, J.; Frame, S.; Watt, K.; Anderson, S.; Gianella-Borradori, A.; Lane, D.P.; Green, S.R. Seliciclib (CYC202, R-Roscovitine) induces cell death in multiple myeloma cells by inhibition of RNA polymerase II-dependent transcription and down-regulation of Mcl-1. Cancer Res., 2005, 65(12), 5399-5407.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0233] [PMID: 15958589]
[49]
Raje, N.; Kumar, S.; Hideshima, T.; Roccaro, A.; Ishitsuka, K.; Yasui, H.; Shiraishi, N.; Chauhan, D.; Munshi, N.C.; Green, S.R.; Ander-son, K.C. Seliciclib (CYC202 or R-roscovitine), a small-molecule cyclin-dependent kinase inhibitor, mediates activity via down-regulation of Mcl-1 in multiple myeloma. Blood, 2005, 106(3), 1042-1047.
[http://dx.doi.org/10.1182/blood-2005-01-0320] [PMID: 15827128]
[50]
Santo, L.; Vallet, S.; Hideshima, T.; Cirstea, D.; Ikeda, H.; Pozzi, S.; Patel, K.; Okawa, Y.; Gorgun, G.; Perrone, G.; Calabrese, E.; Yule, M.; Squires, M.; Ladetto, M.; Boccadoro, M.; Richardson, P.G.; Munshi, N.C.; Anderson, K.C.; Raje, N. AT7519, A novel small molecule multi-cyclin-dependent kinase inhibitor, induces apoptosis in multiple myeloma via GSK-3beta activation and RNA polymerase II inhibi-tion. Oncogene, 2010, 29(16), 2325-2336.
[http://dx.doi.org/10.1038/onc.2009.510] [PMID: 20101221]
[51]
Kretz, A.L.; Schaum, M.; Richter, J.; Kitzig, E.F.; Engler, C.C.; Leithäuser, F.; Henne-Bruns, D.; Knippschild, U.; Lemke, J. CDK9 is a prognostic marker and therapeutic target in pancreatic cancer. Tumour Biol., 2017, 39(2), 1010428317694304.
[http://dx.doi.org/10.1177/1010428317694304] [PMID: 28231737]
[52]
Boffo, S.; Damato, A.; Alfano, L.; Giordano, A. CDK9 inhibitors in acute myeloid leukemia. J. Exp. Clin. Cancer Res., 2018, 37(1), 36.
[http://dx.doi.org/10.1186/s13046-018-0704-8] [PMID: 29471852]
[53]
Chen, R.; Keating, M.J.; Gandhi, V.; Plunkett, W. Transcription inhibition by flavopiridol:Mechanism of chronic lymphocytic leukemia cell death. Blood, 2005, 106(7), 2513-2519.
[http://dx.doi.org/10.1182/blood-2005-04-1678] [PMID: 15972445]
[54]
Chen, R.; Wierda, W.G.; Benaissa, S. mechanism of action of sns-032, a novel cyclin dependent kinase inhibitor, in chronic lymphocytic leukemia:Comparison with flavopiridol. Blood, 2009, 110, 915A.
[http://dx.doi.org/10.1182/blood-2008-12-190256]
[55]
Hahntow, I.N.; Schneller, F.; Oelsner, M.; Weick, K.; Ringshausen, I.; Fend, F.; Peschel, C.; Decker, T. Cyclin-dependent kinase inhibitor Roscovitine induces apoptosis in chronic lymphocytic leukemia cells. Leukemia, 2004, 18(4), 747-755.
[http://dx.doi.org/10.1038/sj.leu.2403295] [PMID: 14973497]
[56]
Bettayeb, K.; Baunbæk, D.; Delehouze, C.; Loaëc, N.; Hole, A.J.; Baumli, S.; Endicott, J.A.; Douc-Rasy, S.; Bénard, J.; Oumata, N.; Galons, H.; Meijer, L. cdk inhibitors roscovitine and cr8 trigger mcl-1 down-regulation and apoptotic cell death in neuroblastoma cells. Genes Cancer, 2010, 1(4), 369-380.
[http://dx.doi.org/10.1177/1947601910369817] [PMID: 21779453]
[57]
Ambrosini, G.; Seelman, S.L.; Qin, L.X.; Schwartz, G.K. The cyclin-dependent kinase inhibitor flavopiridol potentiates the effects of topoisomerase I poisons by suppressing Rad51 expression in a p53-dependent manner. Cancer Res., 2008, 68(7), 2312-2320.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2395] [PMID: 18381438]
[58]
Gordon, V.; Bhadel, S.; Wunderlich, W.; Zhang, J.; Ficarro, S.B.; Mollah, S.A.; Shabanowitz, J.; Hunt, D.F.; Xenarios, I.; Hahn, W.C.; Con-away, M.; Carey, M.F.; Gioeli, D. CDK9 regulates AR promoter selectivity and cell growth through serine 81 phosphorylation. Mol. Endocrinol., 2010, 24(12), 2267-2280.
[http://dx.doi.org/10.1210/me.2010-0238] [PMID: 20980437]
[59]
Pawar, A.; Gollavilli, P.N.; Wang, S.; Asangani, I.A. Resistance to BET inhibitor leads to alternative therapeutic vulnerabilities in castra-tion-resistant prostate cancer. Cell Rep., 2018, 22(9), 2236-2245.
[http://dx.doi.org/10.1016/j.celrep.2018.02.011] [PMID: 29490263]
[60]
Borowczak, J.; Szczerbowski, K.; Stec, E.; Grzanka, D.; Szylberg, Ł. CDK9: Therapeutic perspective in HCC therapy. Curr. Cancer Drug Targets, 2020, 20(5), 318-324.
[http://dx.doi.org/10.2174/1568009620666200212124357] [PMID: 32048975]
[61]
Wang, X.; Yu, C.; Wang, C.; Ma, Y.; Wang, T.; Li, Y.; Huang, Z.; Zhou, M.; Sun, P.; Zheng, J.; Yang, S.; Fan, Y.; Xiang, R. Novel cyclin-dependent kinase 9 (CDK9) inhibitor with suppression of cancer stemness activity against non-small-cell lung cancer. Eur. J. Med. Chem., 2019, 181, 111535.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.038] [PMID: 31376566]
[62]
Lemke, J.; von Karstedt, S.; Abd El Hay, M.; Conti, A.; Arce, F.; Montinaro, A.; Papenfuss, K.; El-Bahrawy, M.A.; Walczak, H. Selective CDK9 inhibition overcomes TRAIL resistance by concomitant suppression of cFlip and Mcl-1. Cell Death Differ., 2014, 21(3), 491-502.
[http://dx.doi.org/10.1038/cdd.2013.179] [PMID: 24362439]
[63]
Lu, Y.; Tang, L.; Zhang, Q.; Zhang, Z.; Wei, W. MicroRNA-613 inhibits the progression of gastric cancer by targeting CDK9. Artif. Cells Nanomed. Biotechnol., 2018, 46(5), 980-984.
[http://dx.doi.org/10.1080/21691401.2017.1351983] [PMID: 28701053]
[64]
Rajput, S.; Khera, N.; Guo, Z.; Hoog, J.; Li, S.; Ma, C.X. Inhibition of cyclin dependent kinase 9 by dinaciclib suppresses cyclin B1 ex-pression and tumor growth in triple negative breast cancer. Oncotarget, 2016, 7(35), 56864-56875.
[http://dx.doi.org/10.18632/oncotarget.10870] [PMID: 27486754]
[65]
Wang, J.; Dean, D.C.; Hornicek, F.J.; Shi, H.; Duan, Z. Cyclin-dependent kinase 9 (CDK9) is a novel prognostic marker and therapeutic target in ovarian cancer. FASEB J., 2019, 33(5), 5990-6000.
[http://dx.doi.org/10.1096/fj.201801789RR] [PMID: 30726104]
[66]
Rahaman, M.H.; Kumarasiri, M.; Mekonnen, L.B.; Yu, M.; Diab, S.; Albrecht, H.; Milne, R.W.; Wang, S. Targeting CDK9: A promising therapeutic opportunity in prostate cancer. Endocr. Relat. Cancer, 2016, 23(12), T211-T226.
[http://dx.doi.org/10.1530/ERC-16-0299] [PMID: 27582311]
[67]
Narita, T.; Ishida, T.; Ito, A.; Masaki, A.; Kinoshita, S.; Suzuki, S.; Takino, H.; Yoshida, T.; Ri, M.; Kusumoto, S.; Komatsu, H.; Imada, K.; Tanaka, Y.; Takaori-Kondo, A.; Inagaki, H.; Scholz, A.; Lienau, P.; Kuroda, T.; Ueda, R.; Iida, S. Cyclin-dependent kinase 9 is a novel specific molecular target in adult T-cell leukemia/lymphoma. Blood, 2017, 130(9), 1114-1124.
[http://dx.doi.org/10.1182/blood-2016-09-741983] [PMID: 28646117]
[68]
Gregory, G.P.; Hogg, S.J.; Kats, L.M.; Vidacs, E.; Baker, A.J.; Gilan, O.; Lefebure, M.; Martin, B.P.; Dawson, M.A.; Johnstone, R.W.; Shortt, J. CDK9 inhibition by dinaciclib potently suppresses Mcl-1 to induce durable apoptotic responses in aggressive MYC-driven B-cell lymphoma in vivo. Leukemia, 2015, 29(6), 1437-1441.
[http://dx.doi.org/10.1038/leu.2015.10] [PMID: 25578475]
[69]
Storch, K.; Cordes, N. The impact of CDK9 on radiosensitivity, DNA damage repair and cell cycling of HNSCC cancer cells. Int. J. Oncol., 2016, 48(1), 191-198.
[http://dx.doi.org/10.3892/ijo.2015.3246] [PMID: 26573875]
[70]
Shen, S.; Dean, D.C.; Yu, Z.; Hornicek, F.; Kan, Q.; Duan, Z. Aberrant CDK9 expression within chordoma tissues and the therapeutic potential of a selective CDK9 inhibitor LDC000067. J. Cancer, 2020, 11(1), 132-141.
[http://dx.doi.org/10.7150/jca.35426] [PMID: 31892980]
[71]
Rahaman, M.H.; Lam, F.; Zhong, L.; Teo, T.; Adams, J.; Yu, M.; Milne, R.W.; Pepper, C.; Lokman, N.A.; Ricciardelli, C.; Oehler, M.K.; Wang, S. Targeting CDK9 for treatment of colorectal cancer. Mol. Oncol., 2019, 13(10), 2178-2193.
[http://dx.doi.org/10.1002/1878-0261.12559] [PMID: 31398271]
[72]
De Falco, G.; Giordano, A. CDK9: From basal transcription to cancer and AIDS. Cancer Biol. Ther., 2002, 1(4), 342-347.
[http://dx.doi.org/10.4161/cbt.1.4.6113] [PMID: 12432243]
[73]
Devaraj, S.G.; Fiskus, W.; Shah, B.; Qi, J.; Sun, B.; Iyer, S.P.; Sharma, S.; Bradner, J.E.; Bhalla, K.N. HEXIM1 induction is mechanistically involved in mediating anti-AML activity of BET protein bromodomain antagonist. Leukemia, 2016, 30(2), 504-508.
[http://dx.doi.org/10.1038/leu.2015.142] [PMID: 26148704]
[74]
Lu, H.; Xue, Y.; Yu, G.K.; Arias, C.; Lin, J.; Fong, S.; Faure, M.; Weisburd, B.; Ji, X.; Mercier, A.; Sutton, J.; Luo, K.; Gao, Z.; Zhou, Q. Compensatory induction of MYC expression by sustained CDK9 inhibition via a BRD4-dependent mechanism. eLife, 2015, 4, e06535.
[http://dx.doi.org/10.7554/eLife.06535] [PMID: 26083714]
[75]
Thomas, D.; Powell, J.A.; Vergez, F.; Segal, D.H.; Nguyen, N.Y.; Baker, A.; Teh, T.C.; Barry, E.F.; Sarry, J.E.; Lee, E.M.; Nero, T.L.; Jab-bour, A.M.; Pomilio, G.; Green, B.D.; Manenti, S.; Glaser, S.P.; Parker, M.W.; Lopez, A.F.; Ekert, P.G.; Lock, R.B.; Huang, D.C.; Nilsson, S.K.; Récher, C.; Wei, A.H.; Guthridge, M.A. Targeting acute myeloid leukemia by dual inhibition of PI3K signaling and Cdk9-mediated Mcl-1 transcription. Blood, 2013, 122(5), 738-748.
[http://dx.doi.org/10.1182/blood-2012-08-447441] [PMID: 23775716]
[76]
Zhang, H.; Pandey, S.; Travers, M.; Sun, H.; Morton, G.; Madzo, J.; Chung, W.; Khowsathit, J.; Perez-Leal, O.; Barrero, C.A.; Merali, C.; Okamoto, Y.; Sato, T.; Pan, J.; Garriga, J.; Bhanu, N.V.; Simithy, J.; Patel, B.; Huang, J.; Raynal, N.J.; Garcia, B.A.; Jacobson, M.A.; Ka-doch, C.; Merali, S.; Zhang, Y.; Childers, W.; Abou-Gharbia, M.; Karanicolas, J.; Baylin, S.B.; Zahnow, C.A.; Jelinek, J.; Graña, X.; Issa, J.J. Targeting CDK9 reactivates epigenetically silenced genes in cancer. Cell, 2018, 175(5), 1244-1258.e26.
[http://dx.doi.org/10.1016/j.cell.2018.09.051] [PMID: 30454645]
[77]
Barboric, M.; Lenasi, T.; Chen, H.; Johansen, E.B.; Guo, S.; Peterlin, B.M. 7SK snRNP/P-TEFb couples transcription elongation with alter-native splicing and is essential for vertebrate development. Proc. Natl. Acad. Sci., 2009, 106(19), 7798-7803.
[http://dx.doi.org/10.1073/pnas.0903188106] [PMID: 19416841]
[78]
Nguyen, V.T.; Kiss, T.; Michels, A.A.; Bensaude, O. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complex-es. Nature, 2001, 414(6861), 322-325.
[http://dx.doi.org/10.1038/35104581] [PMID: 11713533]
[79]
Yang, Z.; Zhu, Q.; Luo, K.; Zhou, Q. The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature, 2001, 414(6861), 317-322.
[http://dx.doi.org/10.1038/35104575] [PMID: 11713532]
[80]
Brogie, J.E.; Price, D.H. Reconstitution of a functional 7SK snRNP. Nucleic Acids Res., 2017, 45(11), 6864-6880.
[http://dx.doi.org/10.1093/nar/gkx262] [PMID: 28431135]
[81]
Li, Q.; Price, J.P.; Byers, S.A.; Cheng, D.; Peng, J.; Price, D.H. Analysis of the large inactive P-TEFb complex indicates that it contains one 7SK molecule, a dimer of HEXIM1 or HEXIM2, and two P-TEFb molecules containing Cdk9 phosphorylated at threonine 186. J. Biol. Chem., 2005, 280(31), 28819-28826.
[http://dx.doi.org/10.1074/jbc.M502712200] [PMID: 15965233]
[82]
Bacon, C.W.; D’Orso, I. CDK9: A signaling hub for transcriptional control. Transcription, 2019, 10(2), 57-75.
[http://dx.doi.org/10.1080/21541264.2018.1523668] [PMID: 30227759]
[83]
Wang, B.; Wu, J.; Wu, Y.; Chen, C.; Zou, F.; Wang, A.; Wu, H.; Hu, Z.; Jiang, Z.; Liu, Q.; Wang, W.; Zhang, Y.; Liu, F.; Zhao, M.; Hu, J.; Huang, T.; Ge, J.; Wang, L.; Ren, T.; Wang, Y.; Liu, J.; Liu, Q. Discovery of 4-(((4-(5-chloro-2-(((1s,4s)-4-((2-methoxyethyl)amino)cyclohexyl)amino)pyridin-4-yl)thiazol-2-yl)amino)methyl)tetrahydro-2H-pyran-4-carbonitrile (JSH-150) as a novel highly selective and potent CDK9 kinase inhibitor. Eur. J. Med. Chem., 2018, 158, 896-916.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.025] [PMID: 30253346]
[84]
Tong, Y.; Bruncko, M.; Clark, R.F. Pyrrolo [2,3-B] pyridine CDK9 kinase inhibitors. W.O. Patent 2014139328, 2014.
[85]
Gong, J.U.; Tao, Z-F.U.; Tong, Y.U. Pyrrolo[2,3-b]pyridine cdk9 kinase inhibitors. Patent WO2014151444, 2014.
[86]
Gray, S.; Nathanael, T.; Zhang, P. Inhibitors of cyclin-dependent kinases. W.O. Patent 2017044858, 2017.
[87]
Strum, J.C.; Jung, D. Heterocyclic compounds for the treatment of abnormal cellular proliferation W.O. Patent 2019136244, G1, 2019.
[88]
Strum, J.C. CDK inhibitors for the treatment of neoplastic W.O. Patent 2019222521, G1, 2019.
[89]
Strum, J.C. Pyrimidine-based compounds for the treatment of cancer W.O. patent 2018005863, G1, 2018.
[90]
Weinstein, J.N.; Myers, T.G.; O’Connor, P.M.; Friend, S.H.; Fornace, A.J., Jr; Kohn, K.W.; Fojo, T.; Bates, S.E.; Rubinstein, L.V.; Ander-son, N.L.; Buolamwini, J.K.; van Osdol, W.W.; Monks, A.P.; Scudiero, D.A.; Sausville, E.A.; Zaharevitz, D.W.; Bunow, B.; Viswanadhan, V.N.; Johnson, G.S.; Wittes, R.E.; Paull, K.D. An information-intensive approach to the molecular pharmacology of cancer. Science, 1997, 275(5298), 343-349.
[http://dx.doi.org/10.1126/science.275.5298.343] [PMID: 8994024]
[91]
Senderowicz, A.M. Flavopiridol: The first cyclin-dependent kinase inhibitor in human clinical trials. Invest. New Drugs, 1999, 17(3), 313-320.
[http://dx.doi.org/10.1023/A:1006353008903] [PMID: 10665481]
[92]
Chao, S.H.; Price, D.H. Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J. Biol. Chem., 2001, 276(34), 31793-31799.
[http://dx.doi.org/10.1074/jbc.M102306200] [PMID: 11431468]
[93]
Wyatt, P.G.; Woodhead, A.J.; Berdini, V.; Boulstridge, J.A.; Carr, M.G.; Cross, D.M.; Davis, D.J.; Devine, L.A.; Early, T.R.; Feltell, R.E.; Lewis, E.J.; McMenamin, R.L.; Navarro, E.F.; O’Brien, M.A.; O’Reilly, M.; Reule, M.; Saxty, G.; Seavers, L.C.; Smith, D.M.; Squires, M.S.; Trewartha, G.; Walker, M.T.; Woolford, A.J. Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H-pyrazole-3-carboxamide (AT7519), a novel cyclin dependent kinase inhibitor using fragment-based X-ray crystallography and structure based drug design. J. Med. Chem., 2008, 51(16), 4986-4999.
[http://dx.doi.org/10.1021/jm800382h] [PMID: 18656911]
[94]
Peter, F. M.; Wang, S.; Zaytsev, A. Pyrimidines, triazines and their use as pharmaceutical agents WO2009118567A2, 2010.
[95]
Walsby, E.; Pratt, G.; Shao, H.; Abbas, A.Y.; Fischer, P.M.; Bradshaw, T.D.; Brennan, P.; Fegan, C.; Wang, S.; Pepper, C. A novel Cdk9 inhibitor preferentially targets tumor cells and synergizes with fludarabine. Oncotarget, 2014, 5(2), 375-385.
[http://dx.doi.org/10.18632/oncotarget.1568] [PMID: 24495868]
[96]
Paruch, K.; Dwyer, M.P.; Alvarez, C.; Brown, C.; Chan, T-Y.; Doll, R.J.; Keertikar, K.; Knutson, C.; McKittrick, B.; Rivera, J.; Rossman, R.; Tucker, G.; Fischmann, T.; Hruza, A.; Madison, V.; Nomeir, A.A.; Wang, Y.; Kirschmeier, P.; Lees, E.; Parry, D.; Sgambellone, N.; Seghezzi, W.; Schultz, L.; Shanahan, F.; Wiswell, D.; Xu, X.; Zhou, Q.; James, R.A.; Paradkar, V.M.; Park, H.; Rokosz, L.R.; Stauffer, T.M.; Guzi, T.J. Discovery of Dinaciclib (SCH 727965): A potent and selective inhibitor of cyclin-dependent kinases. ACS Med. Chem. Lett., 2010, 1(5), 204-208.
[http://dx.doi.org/10.1021/ml100051d] [PMID: 24900195]
[97]
Conroy, A.; Stockett, D.E.; Walker, D.; Arkin, M.R.; Hoch, U.; Fox, J.A.; Hawtin, R.E. SNS-032 is a potent and selective CDK 2, 7 and 9 inhibitor that drives target modulation in patient samples. Cancer Chemother. Pharmacol., 2009, 64(4), 723-732.
[http://dx.doi.org/10.1007/s00280-008-0921-5] [PMID: 19169685]
[98]
Albert, T.K.; Rigault, C.; Eickhoff, J.; Baumgart, K.; Antrecht, C.; Klebl, B.; Mittler, G.; Meisterernst, M. Characterization of molecular and cellular functions of the cyclin-dependent kinase CDK9 using a novel specific inhibitor. Br. J. Pharmacol., 2014, 171(1), 55-68.
[http://dx.doi.org/10.1111/bph.12408] [PMID: 24102143]
[99]
Ferguson, F.M.; Gray, N.S. Kinase inhibitors: The road ahead. Nat. Rev. Drug Discov., 2018, 17(5), 353-377.
[http://dx.doi.org/10.1038/nrd.2018.21] [PMID: 29545548]
[100]
Pharma, V. VIP152, a highly selective PTEFb /CDK9 inhibitor with encouraging Phase 1 monotherapy activity, including complete responses in DH-DLBCL Available from: https://apnews.com/press-release/globe-newswire/virus-outbreaktechnology
[101]
Karaman, M.W.; Herrgard, S.; Treiber, D.K.; Gallant, P.; Atteridge, C.E.; Campbell, B.T.; Chan, K.W.; Ciceri, P.; Davis, M.I.; Edeen, P.T.; Faraoni, R.; Floyd, M.; Hunt, J.P.; Lockhart, D.J.; Milanov, Z.V.; Morrison, M.J.; Pallares, G.; Patel, H.K.; Pritchard, S.; Wodicka, L.M.; Zarrinkar, P.P. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol., 2008, 26(1), 127-132.
[http://dx.doi.org/10.1038/nbt1358] [PMID: 18183025]
[102]
Zeidner, J.F.; Karp, J.E. Clinical activity of alvocidib (flavopiridol) in acute myeloid leukemia. Leuk. Res., 2015, 39(12), 1312-1318.
[http://dx.doi.org/10.1016/j.leukres.2015.10.010] [PMID: 26521988]
[103]
Xie, S.; Jiang, H.; Zhai, X.W.; Wei, F.; Wang, S.D.; Ding, J.; Chen, Y. Antitumor action of CDK inhibitor LS-007 as a single agent and in combination with ABT-199 against human acute leukemia cells. Acta Pharmacol. Sin., 2016, 37(11), 1481-1489.
[http://dx.doi.org/10.1038/aps.2016.49] [PMID: 27569395]
[104]
Mandal, R.; Becker, S.; Strebhardt, K. Targeting CDK9 for anti-cancer therapeutics. Cancers, 2021, 13(9), 2181.
[http://dx.doi.org/10.3390/cancers13092181] [PMID: 34062779]
[105]
Parry, D.; Guzi, T.; Shanahan, F.; Davis, N.; Prabhavalkar, D.; Wiswell, D.; Seghezzi, W.; Paruch, K.; Dwyer, M.P.; Doll, R.; Nomeir, A.; Windsor, W.; Fischmann, T.; Wang, Y.; Oft, M.; Chen, T.; Kirschmeier, P.; Lees, E.M. Dinaciclib (SCH 727965), a novel and potent cy-clin-dependent kinase inhibitor. Mol. Cancer Ther., 2010, 9(8), 2344-2353.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0324] [PMID: 20663931]
[106]
Yin, T.; Lallena, M.J.; Kreklau, E.L.; Fales, K.R.; Carballares, S.; Torrres, R.; Wishart, G.N.; Ajamie, R.T.; Cronier, D.M.; Iversen, P.W.; Meier, T.I.; Foreman, R.T.; Zeckner, D.; Sissons, S.E.; Halstead, B.W.; Lin, A.B.; Donoho, G.P.; Qian, Y.; Li, S.; Wu, S.; Aggarwal, A.; Ye, X.S.; Starling, J.J.; Gaynor, R.B.; de Dios, A.; Du, J. A novel CDK9 inhibitor shows potent antitumor efficacy in preclinical hematologic tumor models. Mol. Cancer Ther., 2014, 13(6), 1442-1456.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0849] [PMID: 24688048]
[107]
Joshi, K.S.; Rathos, M.J.; Joshi, R.D.; Sivakumar, M.; Mascarenhas, M.; Kamble, S.; Lal, B.; Sharma, S. In vitro antitumor properties of a novel cyclin-dependent kinase inhibitor, P276-00. Mol. Cancer Ther., 2007, 6(3), 918-925.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0613] [PMID: 17363486]
[108]
Cassaday, R.D.; Goy, A.; Advani, S.; Chawla, P.; Nachankar, R.; Gandhi, M.; Gopal, A.K. A phase II, single-arm, open-label, multicenter study to evaluate the efficacy and safety of P276-00, a cyclin-dependent kinase inhibitor, in patients with relapsed or refractory mantle cell lymphoma. Clin. Lymphoma Myeloma Leuk., 2015, 15(7), 392-397.
[http://dx.doi.org/10.1016/j.clml.2015.02.021] [PMID: 25816934]
[109]
Tong, W.G.; Chen, R.; Plunkett, W.; Siegel, D.; Sinha, R.; Harvey, R.D.; Badros, A.Z.; Popplewell, L.; Coutre, S.; Fox, J.A.; Mahadocon, K.; Chen, T.; Kegley, P.; Hoch, U.; Wierda, W.G. Phase I and pharmacologic study of SNS-032, a potent and selective Cdk2, 7, and 9 in-hibitor, in patients with advanced chronic lymphocytic leukemia and multiple myeloma. J. Clin. Oncol., 2010, 28(18), 3015-3022.
[http://dx.doi.org/10.1200/JCO.2009.26.1347] [PMID: 20479412]
[110]
Goh, K.C.; Novotny-Diermayr, V.; Hart, S.; Ong, L.C.; Loh, Y.K.; Cheong, A.; Tan, Y.C.; Hu, C.; Jayaraman, R.; William, A.D.; Sun, E.T.; Dymock, B.W.; Ong, K.H.; Ethirajulu, K.; Burrows, F.; Wood, J.M. TG02, a novel oral multi-kinase inhibitor of CDKs, JAK2 and FLT3 with potent anti-leukemic properties. Leukemia, 2012, 26(2), 236-243.
[http://dx.doi.org/10.1038/leu.2011.218] [PMID: 21860433]
[111]
Wu, T.; Qin, Z.; Tian, Y.; Wang, J.; Xu, C.; Li, Z.; Bian, J. Recent Developments in the biology and medicinal chemistry of CDK9 inhibi-tors: An update. J. Med. Chem., 2020, 63(22), 13228-13257.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00744] [PMID: 32866383]
[112]
Shao, H.; Shi, S.; Foley, D.W.; Lam, F.; Abbas, A.Y.; Liu, X.; Huang, S.; Jiang, X.; Baharin, N.; Fischer, P.M.; Wang, S. Synthesis, struc-ture-activity relationship and biological evaluation of 2,4,5-trisubstituted pyrimidine CDK inhibitors as potential anti-tumour agents. Eur. J. Med. Chem., 2013, 70, 447-455.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.052] [PMID: 24185375]
[113]
Jing, L.; Tang, Y.; Goto, M.; Lee, K.H.; Xiao, Z. SAR study on N2,N4-disubstituted pyrimidine-2,4-diamines as effective CDK2/CDK9 inhibitors and antiproliferative agents. RSC Advances, 2018, 8(22), 11871-11885.
[http://dx.doi.org/10.1039/C8RA01440J] [PMID: 29682280]
[114]
Cherukupalli, S.; Karpoormath, R.; Chandrasekaran, B.; Hampannavar, G.A.; Thapliyal, N.; Palakollu, V.N. An insight on synthetic and medicinal aspects of pyrazolo[1,5-a]pyrimidine scaffold. Eur. J. Med. Chem., 2017, 126, 298-352.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.019] [PMID: 27894044]
[115]
Lücking, U.; Scholz, A.; Lienau, P.; Siemeister, G.; Kosemund, D.; Bohlmann, R.; Briem, H.; Terebesi, I.; Meyer, K.; Prelle, K.; Denner, K.; Bömer, U.; Schäfer, M.; Eis, K.; Valencia, R.; Ince, S.; von Nussbaum, F.; Mumberg, D.; Ziegelbauer, K.; Klebl, B.; Choidas, A.; Nussbaumer, P.; Baumann, M.; Schultz-Fademrecht, C.; Rühter, G.; Eickhoff, J.; Brands, M. Identification of Atuveciclib (BAY 1143572), the first highly selective, clinical ptefb/cdk9 inhibitor for the treatment of cancer. ChemMedChem, 2017, 12(21), 1776-1793.
[http://dx.doi.org/10.1002/cmdc.201700447] [PMID: 28961375]
[116]
Olson, C.M.; Jiang, B.; Erb, M.A.; Liang, Y.; Doctor, Z.M.; Zhang, Z.; Zhang, T.; Kwiatkowski, N.; Boukhali, M.; Green, J.L.; Haas, W.; Nomanbhoy, T.; Fischer, E.S.; Young, R.A.; Bradner, J.E.; Winter, G.E.; Gray, N.S. Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nat. Chem. Biol., 2018, 14(2), 163-170.
[http://dx.doi.org/10.1038/nchembio.2538] [PMID: 29251720]
[117]
Li, Y.; Guo, Q.; Zhang, C.; Huang, Z.; Wang, T.; Wang, X.; Wang, X.; Xu, G.; Liu, Y.; Yang, S.; Fan, Y.; Xiang, R. Discovery of a highly potent, selective and novel CDK9 inhibitor as an anticancer drug candidate. Bioorg. Med. Chem. Lett., 2017, 27(15), 3231-3237.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.041] [PMID: 28651979]
[118]
Cidado, J.; Shen, M.; Grondine, M.; Boiko, S. AZ5576, a novel potent and selective CDK9 inhibitor, induces rapid cell death and achieves efficacy in multiple preclinical hematological models. Cancer Res., 2016, 14, 3572.
[119]
Phillips, D.C.; Jin, S.; Gregory, G.P.; Zhang, Q.; Xue, J.; Zhao, X.; Chen, J.; Tong, Y.; Zhang, H.; Smith, M.; Tahir, S.K.; Clark, R.F.; Pen-ning, T.D.; Devlin, J.R.; Shortt, J.; Hsi, E.D.; Albert, D.H.; Konopleva, M.; Johnstone, R.W.; Leverson, J.D.; Souers, A.J. A novel CDK9 inhibitor increases the efficacy of venetoclax (ABT-199) in multiple models of hematologic malignancies. Leukemia, 2020, 34(6), 1646-1657.
[http://dx.doi.org/10.1038/s41375-019-0652-0] [PMID: 31827241]
[120]
Venkateswararao, E.; Sharma, V.K.; Manickam, M.; Yun, J.; Jung, S.H. Synthesis and SAR studies of bis-chromenone derivatives for anti-proliferative activity against human cancer cells. Bioorg. Med. Chem. Lett., 2014, 24(22), 5256-5259.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.057] [PMID: 25442319]
[121]
Morales, F.; Giordano, A. Overview of CDK9 as a target in cancer research. Cell Cycle, 2014, 24(22), 5256-9.
[122]
Cassandri, M.; Fioravanti, R.; Pomella, S.; Valente, S.; Rotili, D.; Del Baldo, G.; De Angelis, B.; Rota, R.; Mai, A. CDK9 as a valuable target in cancer: From natural compounds inhibitors to current treatment in pediatric soft tissue sarcomas. Front. Pharmacol., 2020, 11, 1230.
[http://dx.doi.org/10.3389/fphar.2020.01230] [PMID: 32903585]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy